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Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University, Park Angelinum 9, 041 54 Košice, Slovakia;
petro.danylchenko@student.upjs.sk (P.D.); erik.cizmar@upjs.sk (E.Č.); vladimir.tkac@upjs.sk (V.T.);
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Abstract: An experimental study of the rotational magnetocaloric effect in Ni(en)(H2O)4SO4·2H2O
(en = ethylenediamine) single crystal is presented. The study was carried out at temperatures above 2 K
and was associated with adiabatic crystal rotation between the easy plane and hard axis in magnetic
fields up to 7 T. The magnetocaloric properties of the studied system were investigated by isothermal
magnetization measurement. The experimental observations were completed with ab initio calcula-
tions of the anisotropy parameters. A large rotational magnetic entropy change ≈12 Jkg−1K−1 and
≈16.9 Jkg−1K−1 was achieved in 5 T and 7 T, respectively. The present study suggests a possible
application of this material in low-temperature refrigeration since the adiabatic rotation of the single
crystal in 7 T led to a cooldown of the sample from the initial temperature of 4.2 K down to 0.34 K.
Finally, theoretical calculations show that S = 1 Ni(II)-based systems with easy-plane anisotropy can
have better rotational magnetocaloric properties than costly materials containing rare-earth elements
in their chemical structures.

Keywords: rotational magnetocaloric effect; entropy; adiabatic temperature change; magnetic
anisotropy; crystal field

1. Introduction

Recently, the magnetocaloric effect (MCE) has become a focus of the physical and ma-
terial science community [1–8]. The effort is motivated by a search for a more efficient and
environmentally friendly alternative for refrigeration and air conditioning. The magnetic
coolant represents one of the crucial components of a magnetic refrigerator. Apart from a
pronounced magnetocaloric response, it must also meet specific criteria, e.g., a large density
of magnetic entropy, nearly zero magnetic hysteresis, very small thermal hysteresis, small
specific heat, large thermal conductivity, high chemical stability, low cost, availability, and
simple sample synthesis [9].

The conventional MCE is based on the heating (normal MCE) or cooling (inverse MCE)
of the system exposed to an increasing external magnetic field. Two parameters are essential
for the quantitative expression of MCE, namely, the isothermal magnetic entropy change
(∆SM) and the adiabatic temperature change (∆Tad) [4,10]. The mentioned parameters are
influenced by the magnitude of external magnetic field change. Obviously, the efficient
magnetic refrigerants for active MCE should have the given parameters in the relevant
temperature and magnetic field ranges as large as possible. Designing materials with a large
density of magnetic ions while keeping magnetic coupling weak [11,12] as well as tailoring
critical behavior [13] have become conventional approaches in tuning magnetocaloric prop-
erties. Alternatively, properties of spin liquids in quantum spin chains [14] and localized
excitations in geometrically frustrated magnets proved an enhanced magnetocaloric effect
in these systems.
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In addition, in recent years, the topic of the rotational magnetocaloric effect has come to
the forefront in the field of magnetic cooling [15–27]. The cooling of the sample is obtained
by a simple rotation of the magnetocaloric material in a constant magnetic field from the
easy to hard magnetization axis. The rotation of a magnetocaloric material changes its
entropy, referred to as a rotational entropy change, ∆SR. A large value of ∆SR causes a
significant temperature change during the rotation of the sample, and therefore the presence
of the magnetic anisotropy of the system is a necessary condition for the observation of
a large rotational MCE. It is important to note that all investigated systems with large
rotational MCE contained rare-earth elements in their chemical structures. However, the
single crystal preparation of these materials is money-, time-, and energy-consuming. For
this reason, the given materials may not meet the important criteria for selecting appropriate
magnetic refrigerants. It should be noted that the magnetocaloric properties of financially
affordable S = 1 Ni(II)-based systems have been studied. Their properties can be tuned
by magnetic dimensionality, exchange coupling, and single-ion anisotropy [28–30]. If the
S = 1 Ni(II)-based systems are described within a model of a spin-1 paramagnet in a crystal
field with a spin Hamiltonian H = DS2

z + E
(

S2
x − S2

y

)
, where D and E represent uniaxial

and in-plane anisotropy parameters, respectively, an inverse MCE can be observed for the
easy-plane anisotropy [31]. Thus, considering the combination of normal and inverse MCE,
a large rotational MCE can be expected, comparable to the rotational MCE observed in
materials containing rare-earth elements in their chemical structures.

The title compound Ni(en)(H2O)4SO4·2H2O (en = ethylenediamine) (NEHS) has been
identified as a spin-1 paramagnet with the nonmagnetic ground state introduced by the
easy-plane anisotropy D/kB = 11.6 K with E/D = 0.1 and negligible exchange interactions
J ≈ 0 [32]. Analysis of the specific heat in zero magnetic field indicated the absence of a
phase transition to a magnetically ordered state below 1.8 K as a direct consequence of the
dominant influence of the crystal field on the magnetic properties of the studied system.

This work presents an experimental study of the rotational MCE in NEHS single
crystal at temperatures above 2 K, associated with adiabatic crystal rotation between the
easy plane and hard axis in magnetic fields up to 7 T. The experimental observations are
completed with ab initio calculations of the anisotropy parameters. Besides that, theoretical
simulations of the rotational MCE in the S = 1 paramagnet were performed, and the
simulations were compared with experimental data. Based on the present results, the
design of better magnetocaloric properties of financially affordable S = 1 Ni(II)-based
systems is discussed.

2. Materials and Methods

The crystal structure of NEHS is a monoclinic, space group C 2/c with the unit cell
parameters a = 9.523 Å, b = 12.185 Å, c = 11.217 Å, β = 107.3◦; and Z = 4 [33]. The crystal
structure consists of [Ni(en)(H2O)4]2+ cations, [SO4]2− anions, and two molecules of water.
These units are connected by a large number of hydrogen bonds [33]. NEHS single crystals
were prepared in the form of blue prisms from an aqueous solution of nickel sulphate and
en in stoichiometric amounts.

Isothermal magnetization curves were measured in a commercial superconducting
quantum device (SQUID) magnetometer in magnetic fields up to 7 T in the temperature
range from 2 K to 20 K. A single crystal of NEHS glued to a quartz holder with a mass of
2.58 mg and dimensions 3 × 1 × 0.3 mm3 was used (Figure 1).



Magnetochemistry 2022, 8, 39 3 of 12

Magnetochemistry 2022, 8, x FOR PEER REVIEW 3 of 12 
 

 

Ni(II) as CAS(8,5) and CAS(8,10). The state averaged approach was used with all 10 triplet 
and 15 singlet states equally weighted. The ZFS parameters were calculated through the 
quasi-degenerate perturbation theory [40–42]. Relativistic effects were taken into account 
by using the zeroth-order regular approximation [43,44] together with the corresponding 
segmented all-electron relativistic contracted version of the triple-ζ basis set Def2-TZVP 
[45] for all atoms. The calculations utilized the RI approximation and the chain-of-spheres 
(RIJCOSX) approximation to exact exchange [46–48]. 

 
Figure 1. A photograph of the NEHS single crystal glued to a quartz holder for the orientation B || 
Z with a schematic illustration of the direction of the local anisotropy and crystallographic axes. 

3. Results 
The single-ion anisotropy parameters, together with the orientations of local anisot-

ropy axes of Ni(II) ions in NEHS [33], were predicted using ab initio calculations in ORCA 
on [Ni(en)(H2O)4]2+ cation using atom positions as obtained from X-ray diffraction. The 
SA-CASSCF/NEVPT2 calculations yielded crystal field parameters D/kB = 11.5 K, E/D = 
0.07 with an average g-factor g = 2.22. This result is in excellent agreement with the values 
obtained from the analysis of the heat capacity in the zero magnetic field [32]. The crystal 
structure of a [Ni(en)(H2O)4]2+ cation with the schematic orientation of the equatorial plane 
of the octahedron and local anisotropy axes predicted by SA-CASSCF/NEVPT2 calcula-
tions is shown in Figure 2. It can be seen that the local anisotropy Z-axis is parallel to the 
direction of the bond between the nickel ion and oxygen, which corresponds to the axis of 
the octahedron. On the other hand, the local anisotropy axes X and Y are located within 
the equatorial plane of the octahedron, with the X-axis passing along the bisector axis of 
the oxygen–nickel–oxygen angle while the Y-axis is oriented along the bisector axis of the 
oxygen–nickel–nitrogen angle. 

The field dependence of the magnetization of NEHS for the magnetic field parallel to 
the Y-axis is shown in Figure 3a. It can be seen that the value of the magnetization in-
creases with increasing magnetic field for each temperature, but the magnetization does 
not reach its saturation value even at the lowest measured temperatures. On the other 
hand, the magnetization decreases with increasing temperature for all magnetic fields, 
which implicates a normal magnetocaloric effect for the orientation B || Y. 

Figure 1. A photograph of the NEHS single crystal glued to a quartz holder for the orientation B || Z
with a schematic illustration of the direction of the local anisotropy and crystallographic axes.

Ab initio calculations were performed using the computational package ORCA 5.0.1 [34].
The estimates of single-ion anisotropy parameters were based on the state-averaged
complete-active-space self-consistent field wave functions (SA-CASSCF) with tight SCF
convergence criteria, including the following N-electron valence second-order perturba-
tion theory (NEVPT2) [35–39]. The active space was defined on metal-based d-orbitals
for Ni(II) as CAS(8,5) and CAS(8,10). The state averaged approach was used with all
10 triplet and 15 singlet states equally weighted. The ZFS parameters were calculated
through the quasi-degenerate perturbation theory [40–42]. Relativistic effects were taken
into account by using the zeroth-order regular approximation [43,44] together with the
corresponding segmented all-electron relativistic contracted version of the triple-ζ basis
set Def2-TZVP [45] for all atoms. The calculations utilized the RI approximation and the
chain-of-spheres (RIJCOSX) approximation to exact exchange [46–48].

3. Results

The single-ion anisotropy parameters, together with the orientations of local anisotropy
axes of Ni(II) ions in NEHS [33], were predicted using ab initio calculations in ORCA on
[Ni(en)(H2O)4]2+ cation using atom positions as obtained from X-ray diffraction. The SA-
CASSCF/NEVPT2 calculations yielded crystal field parameters D/kB = 11.5 K, E/D = 0.07
with an average g-factor g = 2.22. This result is in excellent agreement with the values
obtained from the analysis of the heat capacity in the zero magnetic field [32]. The crystal
structure of a [Ni(en)(H2O)4]2+ cation with the schematic orientation of the equatorial
plane of the octahedron and local anisotropy axes predicted by SA-CASSCF/NEVPT2
calculations is shown in Figure 2. It can be seen that the local anisotropy Z-axis is parallel
to the direction of the bond between the nickel ion and oxygen, which corresponds to the
axis of the octahedron. On the other hand, the local anisotropy axes X and Y are located
within the equatorial plane of the octahedron, with the X-axis passing along the bisector
axis of the oxygen–nickel–oxygen angle while the Y-axis is oriented along the bisector axis
of the oxygen–nickel–nitrogen angle.

The field dependence of the magnetization of NEHS for the magnetic field parallel
to the Y-axis is shown in Figure 3a. It can be seen that the value of the magnetization
increases with increasing magnetic field for each temperature, but the magnetization does
not reach its saturation value even at the lowest measured temperatures. On the other hand,
the magnetization decreases with increasing temperature for all magnetic fields, which
implicates a normal magnetocaloric effect for the orientation B || Y.
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Figure 3. Magnetic-field dependence of the magnetization of NEHS for B || Y (a) and B || Z (b,c),
temperature steps ∆T = 0.5 K and 1 K for intervals 2–10 and 11–20 K, respectively.

A different situation was observed for the field dependence of the magnetization in the
magnetic field parallel to the Z-axis (Figure 3b,c). The value of the magnetization increases
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with increasing magnetic field for each temperature, but at temperatures between 2 and
5.5 K the magnetization increases with increasing temperature. At higher temperatures the
isothermal magnetization curves for B || Z show the same behavior as the data for the
orientation B || Y.

For the analysis of the magnetocaloric effect of the system NEHS in both mentioned
orientations, the magnetic entropy change was calculated using the Maxwell relation [49]:

∆SM(T, ∆B) =
∫ B f

Bi

∂M(T, B)
∂T

dB, (1)

where ∆B = Bi − Bf, while Bf and Bi stand for the final and initial magnetic fields, respec-
tively. Due to the real conditions of the experiment, relation (1) can be replaced by:

∆SM

(Tj + Tj+1

2
, B
)
= ∑

j

(
Mj+1 −Mj

)
B

Tj+1 − Tj
∆B, (2)

where Mj+1 and Mj are the magnetization values measured in the magnetic field B at tem-
peratures Tj+1 and Tj, respectively. The temperature dependence of the magnetic entropy
change (Equation (2)) calculated for several Bf values and Bi = 0 T for the orientations
B || Y and B || Z is shown in Figure 4. It can be seen that the normal MCE has been
observed for the orientation B || Y in a whole range of temperatures and magnetic fields.
The maximum value of –∆SM is shifted towards high temperatures with increasing mag-
netic fields. A large magnetocaloric effect is observed around 6 K (−∆Smax = 10.9 Jkg−1K−1

for 7 T). However, an interesting situation is observed in the temperature dependence
of –∆SM for the orientation B || Z. Approximately below 7 K, an inverse magnetocaloric
effect is observed for all magnetic field values, with −∆SM decreasing with increasing
magnetic field. On the other hand, the temperature dependence of −∆SM above 7 K has a
similar tendency as the data in the orientation B || Y. Large inverse magnetocaloric effect
is observed around 2 K (−∆Smax = −14.5 Jkg−1K−1 for 7 T). Further analysis of the experi-
mental data was performed using the model of the S = 1 paramagnet, including single-ion
anisotropy with D/kB = 11.6 K, E/D = 0.1, and g = 2.16 as obtained from the previous
analysis of specific heat and susceptibility [32]. Corresponding theoretical prediction of
the temperature dependence of −∆SM for both field orientations is in excellent agreement
with experimental data (Figure 4).
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The isothermal rotational entropy change as a result of the isothermal rotation of
NEHS single crystal in constant magnetic field from the initial sample position B || Z to
the position B || Y yields from the relation:

∆SR = ∆SM(B ‖ Y)− ∆SM(B ‖ Z). (3)

The resulting isothermal rotational entropy change is shown in Figure 5. The max-
imal value of −∆SR,max increases with increasing magnetic field and is shifted to lower
temperatures. However, high values, −∆SR ≈ 12 Jkg−1K−1 and −∆SR ≈ 16.9 Jkg−1K−1,
are achieved in 5 T and 7 T, respectively. It should be mentioned again that the temperature
dependence of −∆SR is in excellent agreement with the theoretical prediction.

The temperature dependence of the total (i.e., magnetic and lattice) entropy in NEHS
was used for the calculation of the adiabatic temperature change −∆Tad,R, associated with
sample rotation in constant magnetic field from the initial sample position B || Y to the
position B || Z under adiabatic conditions. The total entropy in the zero magnetic field
was calculated from the experimental specific heat data from Ref. [32]. The temperature
dependence of the total entropy in different magnetic fields for both orientations was
calculated as the difference between the total entropy of NEHS in zero magnetic field and
the absolute values of ∆SM obtained from experimental magnetization curves (Figure 6).
The unavailable experimental d of the total entropy in magnetic fields below 2 K for B || Z
were approximated with the model of total entropy for the S = 1 paramagnet with E/D = 0.1,
D/kB = 11.6 K, g = 2.16 with included lattice entropy of NEHS taken from Ref. [32]. It can be
seen that the mentioned model perfectly describes the experimental d of the total entropy
in magnetic fields for B || Z.

The temperature dependence of the adiabatic temperature change −∆Tad,R, calculated
from the total entropy, is shown in Figure 7. The maximal value of −∆Tad,R is shifted
to higher temperatures with an increasing magnetic field. Rotation of the crystal from
position B || Y to position B || Z in 5 T and 7 T at the initial temperature of 6.5 K and
8.4 K leads to −∆Tad,R ≈ 3.55 K and 6.95 K, respectively. If the initial temperature of 4.2 K
is considered, the rotation of the crystal in conditions mentioned above in 5 and 7 T leads
to cooling of the samples to 1.4 K and 0.34 K, respectively, which suggests the applicability
of this material in low-temperature refrigeration. Examples of conventional and rotational
magnetocaloric properties of selected magnetic refrigerants compared with the studied
system NEHS are given in Table 1. One can conclude that NEHS is not a very suitable
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material in conventional magnetocaloric applications; however, in rotational MCE it is
competitive with expensive materials containing rare-earth metal ions.
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Table 1. Examples of conventional and rotational magnetocaloric properties of selected
potential refrigerants.

System
−∆SM

max (Jkg−1K−1) −∆SM
R (Jkg−1K−1)

References
B = 5 T B = 7 T B = 5 T B = 7 T

Ni(en)(H2O)4SO4·2H2O 7.6, −8 10.9, −14.5 12 16.9 This work
HoNiGe3 13.9 ≈16 12.3 ≈13 [23]

NdGa - 21.1 - 16.6 [22]
Tb2CoMnO6 −7.5 -17.3 20.8 20.5 [21]

h-ErMnO3 20.5 22.7 17 20 [20]
o-DyMnO3 14.6 17.25 14.2 16.3 [19]
HoMn2O5 10 13.1 10 12.43 [18]
TbMn2O5 12.35 13.35 ≈12 13.14 [17]

GdVO4 ≈44 56.03 ≈8 10.1 [16]
DyScO3 21.18 21.91 21.61 22.41 [15]
TbScO3 23.71 24.71 23.63 24.58 [50]

As already mentioned, the system NEHS was identified as a spin-1 paramagnet with
the nonmagnetic ground state induced by the easy-plane anisotropy with D/kB = 11.6
K and E/D = 0.1. For this system, there is a critical value of the magnetic field Bc equal
to
√
(D2 − E2) /(gµB) when the energy levels cross, and the character of the ground

state changes. For the description of the rotational magnetocaloric effect of the S = 1
paramagnet with easy-plane anisotropy, the temperature dependence of the isothermal
entropy change was calculated for magnetic fields applied parallel and perpendicular to
the easy plane. For simplicity, only parameter D was considered. It can be seen (Figure 8a)
that the normal MCE is observed for orientation B || easy plane in the whole range of
temperatures and magnetic fields. The maximum value of −∆SM is shifted towards low
temperatures with decreasing magnetic field. Different behavior is observed for magnetic
fields parallel to the hard axis. For temperatures kBT/D < 0.5, an inverse magnetocaloric
effect is observed for all considered magnetic field values, while the –∆SM acquires the
maximum value equal to ≈−5.76 Jmol−1K−1 in the critical magnetic field. However, the
magnitude of the inverse magnetocaloric effect begins to decrease with magnetic fields
above Bc at temperatures below kBT/D ≈ 0.5. Normal MCE is observed at temperatures
above kBT/D ≈ 0.5 for all values of the magnetic field, while −∆SM is larger with the
increasing magnetic field. The resulting isothermal rotational entropy change for the
mentioned model is shown in Figure 8b. The largest rotational MCE is observed in the
critical magnetic field, −∆SR ≈ 5.76 Jmol−1K−1, at temperatures below kBT/D ≈ 0.15. In
higher magnetic fields exceeding Bc, the isothermal rotational entropy change decreases
and the maximum of −∆SR is shifted to higher temperatures.

The critical field for NEHS can be estimated as Bc ≈ 7.95 T. The theoretical prediction
of the temperature dependence of the adiabatic temperature change −∆Tad,R for this
magnetic field value was calculated, as depicted in Figure 7. Apparently, in the critical
field the −∆Tad,R reaches a maximum at T = 9.7 K and −∆Tad,R ≈ 9.5 K. At liquid helium
temperatures (i.e., the initial temperature of 4.2 K), the rotation leads to −∆Tad,R ≈ 4.18 K,
suggesting the applicability of this material in low-temperature cooling at the critical
magnetic field.

The aforementioned theoretical calculations show that the largest rotational magne-
tocaloric effect is observed at the critical magnetic field Bc. If Bc is equal to 1, 2, 3, 4, 5, or 6 T,
the parameter D/kB must be equal to 1.45, 2.90, 4.35, 5.81, 7.26, and 8.71 K, respectively, to
achieve a similar effect for spin-1 systems with easy-plane anisotropy (neglecting in-plane
anisotropy parameter E).
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Figure 9. Theoretical prediction of an adiabatic temperature change as a function of the initial
temperature, i.e., cooling of the S = 1 paramagnet with the stated values of single-ion anisotropy
and g = 2.16 during the adiabatic rotation from the easy plane to the hard axis in the constant critical
magnetic fields. The lattice specific heat of NEHS was considered in the calculations.

Suppose the considered systems have a lattice specific heat comparable to the NEHS
system. In that case, it is possible to calculate the adiabatic temperature change as a function
of the initial temperature during the rotation of a single crystal from the easy plane to the
hard axis in adiabatic conditions in the mentioned critical magnetic fields (Figure 9). The
maximal values of −∆Tad,R shift to higher temperatures with increasing critical magnetic
fields, and the rotation leads to −∆Tad,R ≈ 4.18 K at an initial temperature of 4.2 K for
critical magnetic fields higher than 3 T.

To date, the largest rotational MCE has been observed in the system of HoNiSi in the
magnetic field 5 T, where −∆SR = 26.7 Jkg−1K−1 [51]. Theoretical calculations show that
the same value of rotational magnetic entropy change in the magnetic field of 5 T has a
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spin-1 magnet with a nonmagnetic ground state introduced by easy-plane anisotropy with
D/kB = 7.26 K and with a molecular mass of 215.73 g.mol−1. Such theoretical estimates
could help find financially affordable S = 1 Ni(II)-based systems with better magnetocaloric
properties than materials containing rare-earth elements in their chemical structures.

4. Conclusions

This work presents an experimental study of the rotational magnetocaloric effect in
Ni(en)(H2O)4SO4·2H2O single crystal at temperatures above 2 K, associated with adiabatic
crystal rotation between the easy plane and hard axis in magnetic fields up to 7 T. The
magnetocaloric properties of the studied system were investigated by isothermal mag-
netization measurement. The experimental observations were completed with ab initio
calculations of the anisotropy parameters. The calculations enabled determination of the
single-ion anisotropy parameters together with the orientations of local anisotropy axes of
Ni(II) ions. The calculated values of the single-ion anisotropy parameters are in excellent
agreement with the values obtained from previous analysis of heat capacity. A large rota-
tional magnetic entropy change ≈12 Jkg−1K−1 and ≈16.9 Jkg−1K−1 was achieved in 5 and
7 T, respectively.

The present study reveals that adiabatic rotation of the crystal in 7 T starting at the
initial temperature of 4.2 K leads to the cooling of the sample down to 0.34 K, which
suggests a possible application of this material in low-temperature refrigeration.

Finally, our simulations show that S = 1 Ni(II)-based systems with easy-plane anisotropy
can have better rotational magnetocaloric properties than costly materials containing rare-
earth elements in their chemical structures.
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24. Orendáč, M.; Gabáni, S.; Gažo, E.; Pristáš, G.; Shitsevalova, N.; Siemensmeyer, K.; Flachbart, K. Rotating Magnetocaloric Effect

and Unusual Magnetic Features in Metallic Strongly Anisotropic Geometrically Frustrated TmB4. Sci. Rep. 2018, 8, 10933.
[CrossRef] [PubMed]

25. Zhang, H.; Li, Y.; Liu, E.; Ke, Y.; Jin, J.; Long, Y.; Shen, B. Giant Rotating Magnetocaloric Effect Induced by Highly Texturing in
Polycrystalline DyNiSi Compound. Sci. Rep. 2015, 5, 11929. [CrossRef] [PubMed]
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