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Abstract: We present a theory of a detector of terahertz-frequency signals based on an antiferromag-
netic (AFM) crystal. The conversion of a THz-frequency electromagnetic signal into the DC voltage is
realized using the inverse spin Hall effect in an antiferromagnet/heavy metal bilayer. An additional
bias DC magnetic field can be used to tune the antiferromagnetic resonance frequency. We show that
if a uniaxial AFM is used, the detection of linearly polarized signals is possible only for a non-zero
DC magnetic field, while circularly polarized signals can be detected in a zero DC magnetic field.
In contrast, a detector based on a biaxial AFM can be used without a bias DC magnetic field for the
rectification of both linearly and circularly polarized signals. The sensitivity of a proposed AFM
detector can be increased by increasing the magnitude of the bias magnetic field, or by by decreasing
the thickness of the AFM layer. We believe that the presented results will be useful for the practical
development of tunable, sensitive and portable spintronic detectors of THz-frequency signals based
of the antiferromagnetic resonance (AFMR).

Keywords: spin pumping; spin-orbit torque; insulating antiferromagnet; sub-terahertz waves;
spin-Hall effect

1. Introduction

Frequency-selective and tunable detection of terahertz (THz) frequency signals is
an operation that is important for many different applications—from medical scanning,
to security, to high-speed 6G communication and radio astronomy [1]. Due to the rarity of
resonators with natural frequencies in the THz (from 0.1 to 10 THz) frequency range, the
tunable resonance detection in this frequency range is still a significant challenge [2–5]. One
option to realize resonance detection of THz-frequency signals is to use antiferromagnetic
(AFM) crystals that naturally have frequencies of the antiferromagnetic resonance (AFMR)
in the THz-frequency range. These high frequencies of the AFMR are related to the existence
of a strong exchange interaction between the AFM magnetic sublattices (internal exchange
magnetic fields of up to 102–103 T) [6].

It has been shown theoretically that AFMs can be used as active layers of THz-
frequency oscillators [7–10] and detectors [11–13]. Recent experiments on the effect of
spin-pumping performed in both uniaxial [14–16] and biaxial [17,18] AFMs indicate the
possibility of development of THz frequency-detectors based on antiferromagnet/heavy
metal (AFM/HM) heterostructures. In this work, we analyze the available theoretical and
experimental data on the properties of AFM crystals, and describe the influence of the
AFM crystal anisotropy, magnitude and orientation of the external bias magnetic field,
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as well as the polarization of the received THz-frequency electromagnetic signal, on the
possibility of resonance detection of such signals using spin pumping in passive spintronic
detectors-based AFM/HM bilayers.

The general theory of spin-pumping and spin-transfer torque in AFM/HM layered
structures was developed in [19]. The influence of the signal polarization and the type of
the AFM anisotropy on the detection of THz-frequency signals by the AFM/HM spintronic
detectors has been further studied theoretically in [11,13]. It was found that a uniaxial AFM
gives a zero rectified voltage for a linearly polarized AC spin current signal, but can detect
a circularly polarized AC signal [13]. It was also found that a biaxial dielectric AFM (such
as NiO) can be used as a sensitive element of a resonance quadratic rectifier of linearly
polarized AC spin current signals, and that a sensitivity of such a rectifier could be in
the range of 1 kV/W [11,13]. The conditions necessary for using uniaxial AFMs for the
detection of linearly polarized signals have not been studied in detail, so far.

It is well-known (see, e.g., [6]) that, in the absence of an external bias magnetic
field, the AFMR frequencies in AFM crystals are proportional to the square root of the
product of the anisotropy fields and the AFM internal exchange field. The AFM internal
exchange magnetic field, which keeps the AFM sublattices anti-parallel to each other,
reaches hundreds of Tesla, while the AFM anisotropy field is much smaller (from µT to
several T), and, therefore, the tuning of the AFMR frequency is, usually, done by changing
the AFM anisotropy fields. The variation of the anisotropy fields can be done using
magnetostriction in the adjacent piezoelectric layer [20,21], driving DC current through the
adjacent HM layer [13], or by changing temperature [22]. When an external bias magnetic
field is applied to a uniaxial AFM, its influence on the AFMR frequency depends on the
field direction relative to the anisotropy easy axis, and linear tuning of the AFMR frequency
is possible when the bias field is parallel to the anisotropy easy axis, but the bias field
magnitude necessary for the AFMR tuning is rather large, of the order of several tesla.

In this work, we consider a theory of resonance detection of both linearly and circularly
polarized electromagnetic (EM) signals via a spin-pumping mechanism in AFM/HM
heterostructures. We assume the presence of a DC external bias magnetic field that can
be used for tuning the AFMR frequency of the detector, as it was done in recent AFM
spin-pumping experiments [14–16]. We also study the additional influence of the bias
magnetic field on the detector properties. The paper is organized as follows. In Section 2,
we describe the possible physical structure of an AFM/HM based detector. In Section 3,
we present a mathematical model of the magnetization dynamics in an AFM using the
so-called “sigma-model” developed in [23–25] for both uniaxial and biaxial AFM crystals.
The expressions for the AFM-based detector sensitivity are presented in Section 4, while
the conclusions are given in Section 5.

2. Physical Structure

Let us consider a concept of a THz-frequency detector based on AFM/HM bilayer,
which is shown in Figure 1a. Here, the anisotropy easy-axis is oriented in the plane of
the sample eEA = e3. The magnetic field component of the AC electromagnetic field
hAC = hACeAC · eiωt created by an external signal is oriented in the plane perpendicular
to the easy-axis eEA, where eAC = (e1 + e2)/

√
2 and eAC = (e1 + ie2)/

√
2 for the cases of

linear (LP) and circular (CP) polarization, respectively, while hAC and ω are the amplitude
and frequency of the AC magnetic field.
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Figure 1. (a) Schematic view of the resonance detector based on an AFM/HM heterostructure under
the action of a THz-frequency electromagnetic signal with controllable polarization. Here l(t) is the
Neel vector oriented along the anisotropy easy-axis, VOUT is the output DC electric voltage, and H0

is the external DC bias magnetic field; (b) dependence of the resonance frequencies of the detector
based on the uniaxial AFM MnF2 on the DC bias magnetic field H0 for H0 ‖ eEA and H0 ⊥ eEA.

The external AC magnetic field induces torque, which acts on the magnetic sublattices
of the AFM, and causes oscillations of the Néel vector l = (M1 −M2)/2Ms near the
easy-axis, and creates a spin-current due to the spin-pumping mechanism [6]:

jSP =
h̄gr

2π

[
l× dl

dt

]
, (1)

where gr is the real part of the spin-mixing conductance, h̄ is the reduced Planck constant,
M1,2 are magnetization vectors of the AFM sublattices, and Ms is the saturation magneti-
zation of the sublattices. This spin current is then injected into the HM, which produces
a charge current and electric field between the output electrodes E through the inverse
spin Hall effect (ISHE), and results in an electric DC voltage VOUT. The experimental ISHE
voltages and other physical parameters of different uniaxial and biaxial AFMs for the zero
external DC magnetic field are presented in Table 1, and they are all above tens of nV.
One can see from Table 1 the resonance frequencies of the presented AFMs lie in the THz
frequency range. We use MnF2 and NiO for our numerical simulations for uniaxial and
biaxial cases, respectively, as materials with low damping at room temperatures, which
give the acceptable quality factor for AFM resonance.

Table 1. Parameters of uniaxial and biaxial AFMs at zero DC magnetic field H0 = 0.

Material HEA,HA, T Hex, T fAFMR, GHz ∆ f , GHz VISHE, nV Ref.

FeF2 20 108 1400 30 - [26,27]
Cr2O3 0.07 490 163 5.6 30 [15,17]
MnF2 0.85 106 245 2.6 60 [14,16]
NiO 0.03, 0.7668 1937 220, 1100 18 - [28,29]

3. Magnetization Precession Induced by a Polarized THz EM Signal

A general phenomenological method for the description of the AFM dynamics is
based on the use of coupled Landau–Lifshitz equations for the magnetizations of the
sublattices M1,2 [6]. Using this approach under the condition that the total magnetization
M = M1 + M2 is small, I.V. Baryakhtar and B.A. Ivanov [23] obtained an effectively closed
equation describing the dynamics of an antiferromagnet in terms of a normalized (unit)
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vector l = (M1 −M2)/2Ms. In their derivation, it was assumed that the magnetization
vector M of an antiferromagnet is a “slave” variable, and is determined by the vector l(t)
and its time derivative dl(t)/dt. The dynamic equations of motion for the unit vector
l(t) are usually called the equations of the “sigma-model”, and their application greatly
simplifies the analysis of both linear and nonlinear dynamic effects in antiferromagnets [6].
A.F. Andreev and V.I. Marchenko [25], as well as A.K. Zvezdin [24], obtained the sigma-
model equation based on the analysis of the dynamic symmetry of the AFM. In this section,
we describe the magnetization dynamics in an AFM crystal using the sigma-model in the
following form [23,25]:

l×
(

d2l
dt2 + γeff

dl
dt
− 2γ

[
dl
dt
×H0

]
+

∂WAFM

∂l

)
=

[
l× γ

dhAC

dt

]
× l, (2)

where γeff = αeffωex is the spectral linewidth of the AFM resonance at zero bias magnetic
field H0 [13], αeff is the effective damping including Gilbert constant and spin-pumping
term [11], γ = 2π · 28 GHz/T is the gyromagnetic ratio. The vector product dl/dt×
H0 is the gyroscopic torque [25] and WAFM(l, H0) is the magnetic energy density in the
presence of the DC bias magnetic field, which can be expressed in the form (see for more
details [23,25]:

WAFM(l, H0) = −
ωexωEA

2
(l · eEA)

2 +
ωexωHA

2
(l · eHA)

2 +
γ2

2
(H0 · l)2. (3)

Here characteristic frequencies are defined as follows: ωex = γHex, ωEA = γHEA,
ωHA = γHHA, and Hex is the AFM internal exchange magnetic field, HEA, HHA are the
AFM anisotropy fields corresponding to the easy and hard axes, respectively (see Table 1).
Some authors use a definition of the exchange field in an AFM, HE = Hex/2, which is half
of the exchange field Hex used in our current work. We use the definition Hex = 2 · HE.
following the classical papers on the magnetization dynamics in AFM crystals [23,25].
Thus, the left-hand side part in Equation (2) contains the inertial, damping, gyroscopic,
and anisotropy terms, respectively, while the right-hand side part of the equation describes
the influence of the AC magnetic field of the external signal. Note, that in [11,13] an AC
spin current with a torque [l× jAC]× l in the right-hand side of Equation (2) was used as
an excitation mechanism, where jAC is the density of the spin-current. Our further results
on the study of model (2) with external electromagnetic radiation are also applicable to the
case of a spin current.

Let us now consider the small-amplitude dynamics of the Néel vector expressed as
a sum of the static component l0, describing the AFM ground state, and a small dynamic
vector s(t) excited by the AC magnetic field of the external signal:

l(t) = l0 + s(t). (4)

Note, that the vectors l0 and s satisfy the orthogonality constraint, i.e., (l0 · s) = 0.
The ansatz (4) uses the assumption of a small change in the dynamic vector s(t) near the
stationary vector l0, which describes the AFM ground state. This is a common technique in
the theory of oscillations and waves. In such a linear theory it is assumed that the vector s(t)
is small, and we can linearize the original nonlinear sigma-model equation to obtain a linear
dynamic equation for the vector s(t). In a nonlinear case, the ansatz l = l0 + s can also be
used, but, then, Equation (6) must be modified, and the nonlinear terms must be considered
in that equation. Such nonlinear dynamics can include the second harmonic generation [30],
or the appearance of the self-oscillations [8], but the theory of such nonlinear processes is
beyond the scope of our current manuscript.

The equation defining the AFM ground state Néel vector l0 can be easily found from
(3) as follows:

ωexωEA(l0 · eEA)[l0 × eEA]−ωexωHA(l0 · eHA)[l0 × eHA] = ω2
H(l0 · eH)[l0 × eH], (5)
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where ωH = γH0, and eH is the unit vector along the DC bias magnetic field. Solving
Equation (5) gives the ground state Néel vector l0 = e3.

Using Equation (4) in Equation (2) we can derive the following differential equation
describing the oscillations of the dynamic part of the Néel vector s = s1e1 + s2e2 :

d2s
dt2 + γeff

ds
dt
− 2ωH(l0 · eH) · Θ̂ ·

ds
dt

+
(
Ω̂−

(
l0 · Ω̂l0

)
Î
)
· s = Θ̂ · γ dhAC

dt
, (6)

where matrices Θ̂, Î, Ω̂ can be expressed as follows:

Θ̂ =

(
0 1
−1 0

)
, Î =

(
1 0
0 1

)
, (7)

Ω̂ = −ωexωEAeEA ⊗ eEA + ωexωHAeHA ⊗ eHA + ω2
HeH ⊗ eH. (8)

Linear vectorial Equation (6) describes the small-amplitude dynamics of the AFM
Néel vector. The formal solution s(ω) of Equation (6) for a harmonic driving signal
hAC = ωACeACeiωt (here ωAC = γhAC) has the following form:

s(ω) = iωωACD̂−1(ω) · Θ̂ · eAC, (9)

where D̂(ω) is the matrix

D̂(ω) =
[(
−ω2 + iγeffω

)
Î − 2iωωH(l0 · eH)Θ̂ + (Ω̂− (l0 · Ω̂l0) Î)

]
. (10)

We can rewrite expression (9) in the form:(
s1
s2

)
=

iωωAC

det
[
D̂(ω)

](ω2
2 −ω2 + iωγeff 2iωωH(eH · l0)
−2iωωH(eH · l0) ω2

1 −ω2 + iωγeff

)
·
(

eAC,2
−eAC,1

)
, (11)

where eAC,1,2 = 1/
√

2 for LP and eAC,1 = i/
√

2, eAC,1 = 1/
√

2 for CP, and

ω2
1,2 = ωex(ωEA + ωHA(e1,2 · eHA)) + ω2

H ·
(
(e1,2 · eH)

2 − (e3 · eH)
2
)

. (12)

Now, we can find a general expression for the AFM eigenfrequencies ω± in the case
of zero effective damping γeff . These eigenfrequencies are found from the condition of
the vanishing of the determinant of the matrix (10) in the following form (here we take
ωH = ωH : (eH · l0)):

ω2
± =

1
2

(
ω2

1 + ω2
2

)
+ 2 ·ω2

H ±
√

1
4
(
ω2

1 −ω2
2
)2

+ 2 ·ω2
H
(
ω2

1 + ω2
2
)
+ 4ω4

H (13)

Let us consider several particular cases for the orientation of the external bias magnetic
field H0 relative to the axes e1,2,3 in the uniaxial and biaxial AFM crystals.

(a) Easy-axis uniaxial AFM (HHA = 0).

For the case of a zero DC bias magnetic field, two eigenfrequencies ω± are degenerate,
and equal to ω± =

√
ωexωEA = ω0

AFMR. The dynamic vector s(ω) has, in this case, the
simplest form: (

s1
s2

)
=

iωωAC(
−ω2 + (ω0

AFMR)
2 + iωγeff

) ·( eAC,2
−eAC,1

)
. (14)

This is a standard expression for the amplitude–frequency characteristic of an oscilla-
tory system with one degree of freedom FM modes are (two AFM modes s1,2 are degenerate
and uncoupled).
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In the case when H0 ‖ eEA, the resonance frequencies from (13) can be found in the
following form:

ω± = ω0
AFMR ±ωH for H0 < Hs f , (15)

and
ωQFMR =

√
(ωH)2 − (ω0

AFMR)
2 for H0 > Hs f , (16)

where Hsf =
√

Hex · HEA is the spin-flop field, at which the Néel vector changes its di-
rection from the parallel to the external bias magnetic field to the perpendicular to it.
The dependences of the resonant frequencies defined by the expressions (15) and (16) are
shown in Figure 1b. Such dependences were obtained experimentally for different easy-axis
AFMs (see, e.g., [15,16]). Since the rectification of the modes having “quasi-ferromagnetic”
frequency requires a bias field higher than the field of a spin-flop transition (which for
MnF2 is 9.4 T, and for Cr2O3 is 6 T), and, therefore, requires the use of sources of rather
large magnetic fields, in the following we shall restrict our attention to the rectification of
signals in bias fields below the spin-flop transition.

In the case when H0 ⊥ eEA, the AFMR frequencies are:

ω+ =

√(
ω0

AFMR
)2

+ ω2
H, ω− = ω0

AFMR, (17)

The upper frequency quadratically increases with the increase of the DC bias magnetic
field, while the lower mode frequency is constant and equal to ω0

AFMR.

(b) Easy-plane biaxial AFM (HHA 6= 0).

For the zero DC bias magnetic field two AFM frequencies ω± are non-degenerate
and equal to

√
ωexωEA and

√
ωex(ωHA + ωEA). Most often, the hard-axis field HHA is

much larger than the easy-axis field HEA (see Table 1 for the nickel oxide), and the effect of
the easy-plane anisotropy variation on the higher resonance frequency can be neglected.
Qualitatively, the nature of the dependences shown in Figure 1b coincides for the easy-axis
and the easy-plane cases.

In the particular case when H0||eEA and eHA = e1 the resonance frequencies are equal
to (before the spin-flop field [29]):

ω+ ≈
√

ωexωHA + 3ω2
H, ω− ≈

√
ωexωEA −ω2

H. (18)

For the H0 ⊥ eEA one of the AFMR frequencies does not depend on the magnetic field,
and the second one grows quadratically.

Let us now study the influence of the driving AC signal polarization on the rectified
DC voltage in AFM obtained as a result of the spin pumping for various relative orientations
between the direction of the external bias DC magnetic field and the anisotropy axes.

4. Rectification of THz-Frequency Electromagnetic Signals

Let us derive an expression for the inverse spin Hall DC voltage VOUT induced by
the spin pumping from the AFM into the adjacent HM layer. Using (1) and (4) we get this
expression in the following form:

VOUT = κ〈s1
ds2

dt
− s2

ds1

dt
〉 = 2iωκ[s∗1s2 − s∗2s1], (19)

where κ is the proportionality coefficient

κ =
LgrθSHeλPtρ

2πdPt
tanh

(
dPt

2λPt

)
, (20)

L is the distance between output electrodes, θSH is the spin-Hall angle, e is the elec-
tron charge, λPt is the spin-diffusion length, while ρ and dPt are the electrical resistivity
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and thickness of the Pt layer, respectively. For the input AC power of the EM signal
PAC = c

2µ0
S · (hAC)

2, where c is the speed of light, µ0 is the magnetic permeability, S is
the AFM layer cross-section, one can find the detector sensitivity defined as:

R(ω) =
|VOUT(ω)|

PAC
(21)

For the cases of linear and circular polarizations of the driving AC signal we get the
detector sensitivities as:

RLP(ω) = R0 ·
ωexω3|(ω2

1 −ω2)(ωγeff + 2ωωH)− (ω2
2 −ω2)(ωγeff − 2ωωH)|

|det(D̂(ω))|2
, (22)

RCP(ω) = R0 ·
ωexω3|(ω2

1 −ω2 − 2ωωH)(ω
2
2 −ω2 − 2ωωH) + (ωγeff)

2|
|det(D̂(ω))|2

, (23)

where R0 = 4κγ2µ0/(Sωexc).
Now, let us analyze the above obtained expressions (22) and (23) for detector sensitivity

in two different cases of uniaxial and biaxial AFM crystals.

(a) Easy-axis uniaxial AFM (HHA = 0).

The rectified output DC voltage is equal to zero due to the fact, that the modes s1,2 are
uncoupled for the LP in both cases H0 = 0 and H0 ⊥ eEA. When H0 ‖ eEA, two modes
s1,2 are mutually coupled due to the gyroscopic terms in Equation (2), and a non-zero
sensitivity can be obtained from (22):

RLP(ω) =
4R0ωexω4|ω2

1 −ω2|ωH

|det D̂(ω)|2
. (24)

One can see from the expression (24) that the detector sensitivity is proportional to
the bias DC magnetic field H0 = 0. Figure 2a shows the resonance-type dependence of
the sensitivity on the frequency ω for the upper branch ω+ of the resonance curve shown
in Figure 1a in the case of a non-zero external DC bias magnetic field. In our numerical
calculations, we assumed that the AFM layer is made of MnF2, and used the following
coefficients taken from [16]: αeff = 0.5× 10−3, θSH = 0.08, λPt = 1.4 nm, dPt = 5 nm,
ρ = 2.5 × 10−7 Ω ·m, gr = 2.86 × 1018 m−2, dAFM = 10 nm, L = 100 µm. As can
be seen from Figure 2a and Equation (18), the resonance sensitivity increases with the
increase of the the bias magnetic field H0. Note, that the input AC power of the EM
signal is defined as PAC = c

2µ0
S · (hAC)

2, so for the AC signal amplitude hAC = 0.1 mT

and the AFM cross-section S = 100× 100 nm2 we get the value of PAC = 12 nW. The
dependence of the detector sensitivity on the bias magnetic field for linearly polarized (LP)
and circularly polarized (CP) signals is shown in Figure 2b for the above given parameters
and nano-scale sizes of the AFM/HM heterostructure. When the magnitude of the DC
magnetic field is varied, the resonance frequency shifts, as it is shown in Figure 1b, while
the spectral linewidth of a resonance curve remains unchanged, as it is equal to αeff ·ωex.
In the recent experiment [15,16] performed in bulk mm-size AFM samples the observed
detector sensitivity was near 10−5 − 10−6 V/W, which is quite small compared to our
above presented theoretical estimation made for a nano-sized AFM sample. We believe that
the main reason for this huge difference is the relatively large size of the AFM layer used
in [15,16]. It has been also theoretically demonstrated recently [11,13] that the sensitivity
of an AFM detector can reach several kV/W for detectors using nanometer-thick AFM
layers. As follows from expressions (19) and (20), the output voltage of an AFM detector
is inversely proportional to the AFM thickness. As it was shown in [11], when the AFM
thickness decreases, there is an optimal AFM thickness at which the sensitivity reaches the
maximum value. With a further decrease of the AFM thickness, the sensitivity decreases.
To correctly calculate the sensitivity at thicknesses of the order of several nanometers, it is
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necessary to use the modified sigma model (2), in which the additional spatial derivatives
are included. This calculation was presented in [11], and it is not repeated in our current
work. Thus, we come to the obvious conclusion that the nano-sized sensitive AFM elements
should be used in the future design of the spintronic AFM detectors of THz-frequency
EM signals. Another possible way to increase the detector sensitivity is to use several
nano-scale detectors mutually coupled through a common HM layer, or to use magnetic
tunnel junctions to extract the output voltage [10].

For a circularly polarized EM signal in both cases H0 ‖ eEA and H0 ⊥ eEA, one can
get a non-zero diode sensitivity described by the equation:

RCP(ω) =
R0ωexω3|(ω2

1 −ω2 − 2ωωH)
2 + (ωγeff)

2|
|det D̂(ω)|2

. (25)

The rectification of a THz signal at a zero bias magnetic field was studied earlier in [13],
where the driving THz-frequency signal had the form of a spin-polarized current. However,
the presence of an external bias DC magnetic field removes the degeneracy of the eigen-
frequencies of the system, and increases the magnitude of the rectified voltage. Additionally,
the use of a driving signal with circular polarization makes possible the observation of the
rectified spin-pumping voltage both in the presence, and in the absence of an external bias
magnetic field. In contrast, in the case of a linear polarization of the driving signal, such
an observation is realized only for H0 ‖ eA. As can be seen from Figure 2, the sensitivity
for CP signals is larger than for the LP signals at the same value of the DC magnetic field.
In the CP case, the expression (25) consists of two terms: one is linearly proportional to the
DC magnetic field, while the other one is independent of it. In contrast, in the LP case the
sensitivity expression (24) contains only one term proportional to the DC magnetic field.
The summary for the calculation of eigen-frequencies ω± and sensitivity at different ratios
between the orientation of the external magnetic field is presented in Table 2.

Table 2. Expressions for the eigen-frequencies ω± and AFM diode sensitivity R at different orien-
tations of the external bias magnetic field H0 relative to the easy axis eEA of the AFM layer and
polarizations (LP or CP) of the external EM signal for the uniaxial AFM crystal. The numbers in
parentheses (·) correspond to the equation numbers in the main text of the paper.

Parameter H0 = 0 H0 ‖ eEA H0 ⊥ eEA

ω±
√

ωexωEA
√

ωexωEA ±ωH
√

ωexωEA,
√

ωexωEA + ω2
H

RLP 0 (24) 0
RCP (25) (25) (25)

(b) Easy-plane biaxial AFM (HHA 6= 0).

It was shown previously [11] that a biaxial AFM can be used to rectify a linearly
polarized AC spin current in the case when the AFM easy plane is oriented perpendicular
to the plane of the AFM sample. The maximum value of the rectified voltage is achieved
when the angle between the direction of the spin-current polarization and the directions
of the AFM anisotropy axes is 45 degrees. In this case, it is possible to obtain a non-zero
rectified voltage even in a zero bias DC magnetic field.

At the same time, from the technological point of view, it is easier to fabricate biaxial
AFM crystal in the case when the easy plane coincides with the plane of the sample, or is
inclined to the sample plane at a small angle. In this work, we consider only the situation
when the AFM easy plane coincides with the plane of the AFM sample.

For the determination of sensitivity in the case of a biaxial AFM one needs to use
the general expressions (22) and (23). The analysis presented above for the uniaxial non-
degenerate case is applicable to the biaxial case as well. The resonance curve for the NiO
is shown in Figure 2c, and is characterized by two resonance eigen-frequencies even in
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a zero DC magnetic field. The dependence of the diode sensitivity on the bias magnetic
field obtained in such a case is shown in Figure 2d. The sensitivity of the lowest-frequency
mode in a zero bias magnetic field and at a linear polarization of the external AC signal
is much smaller than for the case of a circular polarization (0.1 V/W for LP and 27 V/W
for CP), but it is, in general, non-zero. In our numerical calculations we used the physical
parameters for the NiO crystal taken from [28]. It is easy to see that in the case of a biaxial
AFM (similar to the above discussed case of a uniaxial AFM), the increase of the DC bias
magnetic field leads to the increase of the diode sensitivity.

Figure 2. AFM detector sensitivity as a function of the external signal frequency (a,c) and bias
magnetic field (b,d) for the AFM-HM heterstructures containing uniaxial (MnF2) and biaxial (NiO)
AFM crystals. Calculation were performed for the lowest-frequency AFMR modes).

5. Conclusions

We demonstrated theoretically that nanometer-size AFM/HM heterostructures can be
used for the development of sensitive and tunable resonance detectors of THz frequency
signals. We found that: (i) Using uniaxial AFM crystals the detection of linearly polarized
electromagnetic signals is possible only for a non-zero DC bias magnetic field, while the
signals having circular (or elliptical) polarization could be detected even in a zero bias
magnetic field; (ii) using biaxial AFM crystals it is possible to detect both linearly and
circularly polarized EM signals in a zero bias magnetic field, but in the presence of a bias
magnetic field field the detector sensitivity increases with the increase of the bias field for
both uniaxial and biaxial AFM crystals; (iii) to increase the sensitivity of an AFM detector
it is necessary to decrease the thickness of the sensitive AFM element, since the detection
mechanism is based on the interface spin-Hall effect. We believe that our results will be
useful for the development of tunable and highly sensitive THz-frequency AFM devices
controlled by an applied bias DC magnetic field, such as spectrum analyzers [31] or/and
neuromorphic signal processors [28,32].



Magnetochemistry 2022, 8, 26 10 of 11

Author Contributions: Conceptualization, A.S. (Ansar Safin), S.N., A.K., V.T. and A.S. (Andrei Slavin);
mathematical model, A.S. (Andrei Slavin) and V.T., data curation, A.S. (Andrei Slavin); formal analysis,
A.S. (Ansar Safin), A.S. (Andrei Slavin) and V.T.; writing original draft preparation, A.S. (Ansar Safin);
writing review and editing, A.S. (Ansar Safin), S.N., A.K., V.T. and A.S. (Andrei Slavin). All authors have
read and agreed to the published version of the manuscript.

Funding: This work was partially funded by the Russian Science Foundation (Grant No. 21-79-10396),
U.S. National Science Foundation (Grant # EFMA-1641989), the Air Force Office of Scientific Research
under the MURI grant # FA9550-19-1-0307, from the DARPA TWEED grant # DARPA-PA-19-04-05-
FP-001, and from the Oakland University Foundation.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The study did not report any data.

Conflicts of Interest: The authors declare no conflict of interests. The funders had no role in the design
of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Dhillon, S.S.; Vitiello, M.S.; Linfield, E.H.; Davies, A.G.; Hoffmann, M.C.; Booske, J.; Paoloni, C.; Gensch, M.; Weightman, P.;

Williams, G.P.; et al. The 2017 terahertz science and technology roadmap. J. Phys. Appl. Phys. 2017, 50, 043001. [CrossRef]
2. Jiang, S.L.; Jia, X.Q.; Jin, B.B.; Kang, L.; Xu, W.W.; Chen, J.; Wu, P.H. Superconducting detectors for terahertz imaging. In

Proceedings of the 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Hong Kong,
China, 23–28 August 2015. [CrossRef]

3. Spirito, D.; Coquillat, D.; Bonis, S.L.D.; Lombardo, A.; Bruna, M.; Ferrari, A.C.; Pellegrini, V.; Tredicucci, A.; Knap, W.; Vitiello,
M.S. High performance bilayer-graphene terahertz detectors. Appl. Phys. Lett. 2014, 104, 061111. [CrossRef]

4. Viti, L.; Cadore, A.R.; Yang, X.; Vorobiev, A.; Muench, J.E.; Watanabe, K.; Taniguchi, T.; Stake, J.; Ferrari, A.C.; Vitiello, M.S.
Thermoelectric graphene photodetectors with sub-nanosecond response times at terahertz frequencies. Nanophotonics 2020,
10, 89–98. [CrossRef]

5. Sanchez-Martin, H.; Sanchez-Martin, S.; de-la Torre, I.I.; Perez, S.; Novoa, J.A.; Ducournau, G.; Grimbert, B.; Gaquiere, C.;
Gonzalez, T.; Mateos, J. GaN nanodiode arrays with improved design for zero-bias sub-THz detection. Semicond. Sci. Technol.
2018, 33, 095016. [CrossRef]

6. Baltz, V.; Manchon, A.; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y. Antiferromagnetic spintronics. Rev. Mod. Phys. 2018, 90,
015005. [CrossRef]

7. Cheng, R.; Xiao, D.; Brataas, A. Terahertz Antiferromagnetic Spin Hall Nano-Oscillator. Phys. Rev. Lett. 2016, 116, 207603.
[CrossRef]

8. Khymyn, R.; Lisenkov, I.; Tiberkevich, V.; Ivanov, B.A.; Slavin, A. Antiferromagnetic THz-frequency Josephson-like Oscillator
Driven by Spin Current. Sci. Rep. 2017, 7, 43705. [CrossRef]

9. Sulymenko, O.; Prokopenko, O.; Tiberkevich, V.; Slavin, A.; Ivanov, B.; Khymyn, R. Terahertz-Frequency Spin Hall Auto-oscillator
Based on a Canted Antiferromagnet. Phys. Rev. Appl. 2017, 8, 064007. [CrossRef]

10. Sulymenko, O.R.; Prokopenko, O.V.; Tyberkevych, V.S.; Slavin, A.N. Terahertz-Frequency Signal Source Based on an Antiferro-
magnetic Tunnel Junction. IEEE Magn. Lett. 2018, 9, 1–5. [CrossRef]

11. Khymyn, R.; Tiberkevich, V.; Slavin, A. Antiferromagnetic spin current rectifier. AIP Adv. 2017, 7, 055931.
[CrossRef]

12. Gomonay, O.; Jungwirth, T.; Sinova, J. Narrow-band tunable terahertz detector in antiferromagnets via staggered-field and
antidamping torques. Phys. Rev. B 2018, 98, 104430. [CrossRef]

13. Safin, A.; Puliafito, V.; Carpentieri, M.; Finocchio, G.; Nikitov, S.; Stremoukhov, P.; Kirilyuk, A.; Tyberkevych, V.; Slavin, A.
Electrically tunable detector of THz-frequency signals based on an antiferromagnet. Appl. Phys. Lett. 2020, 117, 222411. [CrossRef]

14. Ross, P.; Schreier, M.; Lotze, J.; Huebl, H.; Gross, R.; Goennenwein, S.T.B. Antiferromagentic resonance detected by direct current
voltages in MnF2/Pt bilayers. J. Appl. Phys. 2015, 118, 233907. [CrossRef]

15. Li, J.; Wilson, C.B.; Cheng, R.; Lohmann, M.; Kavand, M.; Yuan, W.; Aldosary, M.; Agladze, N.; Wei, P.; Sherwin, M.S.; et al. Spin
current from sub-terahertz-generated antiferromagnetic magnons. Nature 2020, 578, 70–74. [CrossRef]

16. Vaidya, P.; Morley, S.A.; van Tol, J.; Liu, Y.; Cheng, R.; Brataas, A.; Lederman, D.; del Barco, E. Subterahertz spin pumping from
an insulating antiferromagnet. Science 2020, 368, 160–165. [CrossRef]

17. Boventer, I.; Simensen, H.; Anane, A.; Kläui, M.; Brataas, A.; Lebrun, R. Room-Temperature Antiferromagnetic Resonance and
Inverse Spin-Hall Voltage in Canted Antiferromagnets. Phys. Rev. Lett. 2021, 126, 187201. [CrossRef]

http://doi.org/10.1088/1361-6463/50/4/043001
http://dx.doi.org/10.1109/irmmw-thz.2015.7327514
http://dx.doi.org/10.1063/1.4864082
http://dx.doi.org/10.1515/nanoph-2020-0255
http://dx.doi.org/10.1088/1361-6641/aad766
http://dx.doi.org/10.1103/RevModPhys.90.015005
http://dx.doi.org/10.1103/PhysRevLett.116.207603
http://dx.doi.org/10.1038/srep43705
http://dx.doi.org/10.1103/PhysRevApplied.8.064007
http://dx.doi.org/10.1109/LMAG.2018.2852291
http://dx.doi.org/10.1063/1.4977974
http://dx.doi.org/10.1103/PhysRevB.98.104430
http://dx.doi.org/10.1063/5.0031053
http://dx.doi.org/10.1063/1.4937913
http://dx.doi.org/10.1038/s41586-020-1950-4
http://dx.doi.org/10.1126/science.aaz4247
http://dx.doi.org/10.1103/PhysRevLett.126.187201


Magnetochemistry 2022, 8, 26 11 of 11

18. Lebrun, R.; Ross, A.; Gomonay, O.; Baltz, V.; Ebels, U.; Barra, A.L.; Qaiumzadeh, A.; Brataas, A.; Sinova, J.; Kläui, M. Long-
distance spin-transport across the Morin phase transition up to room temperature in ultra-low damping single crystals of the
antiferromagnet α-Fe2O3. Nat. Commun. 2020, 11, 6332. [CrossRef]

19. Cheng, R.; Xiao, J.; Niu, Q.; Brataas, A. Spin Pumping and Spin-Transfer Torques in Antiferromagnets. Phys. Rev. Lett. 2014, 113,
057601. [CrossRef]

20. Popov, P.; Safin, A.; Kirilyuk, A.; Nikitov, S.; Lisenkov, I.; Tyberkevich, V.; Slavin, A. Voltage-Controlled Anisotropy and
Current-Induced Magnetization Dynamics in Antiferromagnetic-Piezoelectric Layered Heterostructures. Phys. Rev. Appl. 2020,
13, 044080. [CrossRef]

21. Consolo, G.; Valenti, G.; Safin, A.R.; Nikitov, S.A.; Tyberkevich, V.; Slavin, A. Theory of the electric field controlled antiferromag-
netic spin Hall oscillator and detector. Phys. Rev. B 2021, 103, 134431. [CrossRef]

22. Meshcheryakov, A.A.; Safin, A.R.; Kalyabin, D.V.; Nikitov, S.A.; Mednikov, A.M.; Frolov, D.A.; Kirilyuk, A.I. Temperature tunable
oscillator of THz-frequency signals based on the orthoferrite/heavy metal heterostructure. J. Phys. Appl. Phys. 2021, 54, 195001.
[CrossRef]

23. Baryakhtar, I.V.; Ivanov, B.A. About nonlinear waves of magnetization of antiferromagnet. Sov. J. Low Temp. Phys. 1979,
5, 759–770.

24. Zvezdin, A.K. Dynamics of domain walls in weak ferromagnets. Pis’ma Zh. Exp. Teor. Fiz. 1979, 29, 605–610.
25. Andreev, A.F.; Marchenko, V.I. Symmetry and the macroscopic dynamics of magnetic materials. Sov. Phys. Uspekhi 1980, 23, 21–34.

[CrossRef]
26. Ohlmann, R.C.; Tinkham, M. Antiferromagnetic Resonance in FeF2 at Far-Infrared Frequencies. Phys. Rev. 1961, 123, 425–434.

[CrossRef]
27. Hutchings, M.T.; Rainford, B.D.; Guggenheim, H.J. Spin waves in antiferromagnetic FeF2. J. Phys. Solid State Phys. 1970,

3, 307–322. [CrossRef]
28. Khymyn, R.; Lisenkov, I.; Voorheis, J.; Sulymenko, O.; Prokopenko, O.; Tiberkevich, V.; Akerman, J.; Slavin, A. Ultra-fast artificial

neuron: Generation of picosecond-duration spikes in a current-driven antiferromagnetic auto-oscillator. Sci. Rep. 2018, 8, 15727.
[CrossRef]

29. Machado, F.L.A.; Ribeiro, P.R.T.; Holanda, J.; Rodríguez-Suárez, R.L.; Azevedo, A.; Rezende, S.M. Spin-flop transition in the
easy-plane antiferromagnet nickel oxide. Phys. Rev. B 2017, 95, 104418. [CrossRef]

30. Baierl, S.; Mentink, J.; Hohenleutner, M.; Braun, L.; Do, T.M.; Lange, C.; Sell, A.; Fiebig, M.; Woltersdorf, G.; Kampfrath, T.; et al.
Terahertz-Driven Nonlinear Spin Response of Antiferromagnetic Nickel Oxide. Phys. Rev. Lett. 2016, 117, 197201. [CrossRef]

31. Artemchuk, P.Y.; Sulymenko, O.R.; Louis, S.; Li, J.; Khymyn, R.S.; Bankowski, E.; Meitzler, T.; Tyberkevych, V.S.; Slavin, A.N.;
Prokopenko, O.V. Terahertz frequency spectrum analysis with a nanoscale antiferromagnetic tunnel junction. J. Appl. Phys. 2020,
127, 063905. [CrossRef]

32. Sulymenko, O.; Prokopenko, O.; Lisenkov, I.; Åkerman, J.; Tyberkevych, V.; Slavin, A.N.; Khymyn, R. Ultra-fast logic devices
using artificial “neurons” based on antiferromagnetic pulse generators. J. Appl. Phys. 2018, 124, 152115. [CrossRef]

http://dx.doi.org/10.1038/s41467-020-20155-7
http://dx.doi.org/10.1103/PhysRevLett.113.057601
http://dx.doi.org/10.1103/PhysRevApplied.13.044080
http://dx.doi.org/10.1103/PhysRevB.103.134431
http://dx.doi.org/10.1088/1361-6463/abe441
http://dx.doi.org/10.1070/PU1980v023n01ABEH004859
http://dx.doi.org/10.1103/PhysRev.123.425
http://dx.doi.org/10.1088/0022-3719/3/2/013
http://dx.doi.org/10.1038/s41598-018-33697-0
http://dx.doi.org/10.1103/PhysRevB.95.104418
http://dx.doi.org/10.1103/PhysRevLett.117.197201
http://dx.doi.org/10.1063/1.5140552
http://dx.doi.org/10.1063/1.5042348

	Introduction
	Physical Structure
	Magnetization Precession Induced by a Polarized THz EM Signal
	Rectification of THz-Frequency Electromagnetic Signals
	Conclusions
	References

