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Abstract: The implementation of artificial intelligence into the research and development of (cur-
rently) the most economically relevant classes of engineering hard and soft magnetic materials
is addressed. Machine learning is nowadays the key approach utilized in the discovery of new
compounds, physical–chemical properties prediction, microstructural/magnetic characterization,
and applicability of permanent magnets and crystalline/amorphous soft magnetic alloys. Future
opportunities are envisioned on at least two fronts: (a) ultra-low losses materials, as well as pro-
cesses that enable their manufacturing, unlocking the next step for higher efficiency electrification,
power conversion, and distribution; (b) additively manufactured magnetic materials by predicting
and developing novel powdered materials properties, generative design concepts, and optimal
processing conditions.

Keywords: artificial intelligence; amorphous alloys; hard magnetic materials; soft magnetic materials;
machine learning

1. Introduction

Artificial intelligence (AI) has become a common keyword used across disciplines.
The popularization of connected consumer components (e.g., smartphones and home
appliances) and availability of smart (manufacturing) industrial components such as ma-
chinery sensors [1] have unlocked data quantity and quality previously unreachable that,
associated with existing computing capabilities, has supported current AI significance
growth. The use of AI in the area of materials science and engineering (MSE—exemplified
by [2,3]) is gaining momentum, similar to other (very distinct) fields such as healthcare [4],
smart cities/buildings [5,6], and transportation [7]. As a subset of the MSE universe with
applicability in power conversion/distribution/transmission, data storage/transmission,
and medicine, engineering hard and soft magnetic materials (HSMMs) are also facing
the influence of AI. This movement is an expected step since HSMMs are directly in-
volved in tackling growing challenges on more efficient electrification and mitigation of
carbon footprint.

Due to the multidisciplinary character associated with HSMM research, it becomes
relevant to address AI–HSMM status to understand current developments and to pave
the way to enhance the associated research ecosystem further. This document will focus
on addressing why AI has been implemented with engineering HSMMs—detailed in
Section 2—and which multidisciplinary opportunities are envisaged, as summarized in
Section 3; specifics on AI algorithms are discussed in [8–10].

2. AI—Hard/Soft Magnetic Materials: Why?

The driving forces for research combining AI–HSMM rely on at least three interrelated
pillars: discovery of materials and/or prediction of their (physical) properties, materials
characterization, and applications. Each one of them is discussed in further detail in the
next subsections.
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2.1. Discovery of Materials and/or Prediction of Properties

The first of the AI–HSMM pillars is the discovery of new compounds and/or pre-
diction of their physical properties. Advances in HSMMs, similar to almost all other
materials classes, have mainly occurred by trial-and-error cycles, impacting the time re-
quired to achieve milestones and increasing investments to accomplish them. Therefore,
AI is expected to strengthen faster developments of novel and/or optimized HSMMs.

In the scope of hard magnetic materials, permanent magnets (PMs) have been a
focus of AI utilization due to their unique role in enabling compactness and higher effi-
ciency of systems constituted by them. Efforts resulting in enhanced performance and
exploring the reduction of elemental criticality of some materials’ families are strong value
propositions to pursue. The combination of both features—performance and strategic
use of critical elements—has currently resulted in limited applications of AI into Alnico,
barium/strontium ferrites, and hybrid (bonded) magnets; conversely, for rare earth (RE)-
Fe-B-based materials, AI efforts have intensified.

The first example within such space has utilized AI to train machine learning (ML)
models, using a combinatorial high-throughput screening based on density functional
theory calculations, to predict properties of RE(Fe, X)12Y-type compounds, where X cor-
responds to a nonferrous alloying element [11]. Both intrinsic (e.g., uniaxial anisotropy
energy) and extrinsic (e.g., maximum energy product (BH)max) quantities have been scruti-
nized, indicating the possibility of bridging the gap of (BH)max existent among currently
available compounds, typically observed between ferrites and Nd-Fe-B. In addition, it
has enabled the creation of a respective RE-based hard magnetic phases database also
allowing the estimation of thermodynamic stability and raw materials cost via a user-
friendly interface [12]; in fact, it is worth noting that the number of databases that compile
distinct materials classes and/or properties is continuously increasing [13]. In addition,
potentially formable crystal structures of Nd-Fe-B-based alloys have also been assessed
evaluating the elemental substitution of lanthanides, transition metals, and light elements.
From a universe of 5967 samples, 20 of them were found to be potentially stable via high-
throughput first-principle calculations. Based on (un)supervised learning, the average
atomic coordination number and coordination number of iron sites have a major influence
on the phase stability for novel Nd-Fe-B-based crystal structures [14].

Addressing the mitigation in the use of (heavy) RE elements, a growing challenge
faced in such PM class for at least a decade, diffraction data have been used in high-
throughput experimentation assessing a combination of structural evolution and chemical
composition variations [15]; as a result, a novel magnetic phase has been reported based
on Fe-Co-Mo synthesized as a thin film whose magnetic results are illustrated in Figure 1.
In a complementary way, along the same high-throughput line, the search of RE-free
PMs has also been executed based on the combination of the Inorganic Crystal Structure
Database with data mining/filtering. Applying boundary conditions considering, but
not limited to, 3D and 5D elements, the magnetic moment per unit cell >0.5 µB/f.u., and
compounds with hexagonal and tetragonal crystalline structures, Pt2FeNi, Pt2FeCu, and
W2FeB2 have been proposed, as illustrated in Figure 2, as suitable phases to be further
explored experimentally [16].
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Figure 1. Maps (structural and magnetic) of Fe-Co-Mo: (a) hysteresis loops; (b) typical out-of-plane (red) and in-plane
(black) hysteresis loop of Fe78.4Co10.8Mo10.8; (c) out-of-plane Hc map of Fe-Co-Mo alloys; (d) diffraction data of Fe-Co-Mo;
(e) intensity plot of X-ray diffraction patterns grouped by cluster result; (f) synchrotron X-ray results of Fe78Co11Mo11 and
calculated diffraction pattern. Further information available in [15]. The work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-nc-sa/4.0/
accessed on 12 March 2021).

Figure 2. Magnetocrystalline anisotropy energy and saturation magnetization (polarization) of previously researched
(Pt2FeNi) of potential candidates for PM. Red line indicates the threshold for a potentially successful PM. Further information
available in [16]. This article or its components is available under the terms of the Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by-nc-sa/4.0/ accessed on 12 March 2021).

In the space of soft magnetic materials, where efforts are focused toward the mini-
mization of magnetic losses [17], it is surprising that activities have been concentrated on
amorphous and nanocrystalline alloys since, by volume, major market utilization occurs
with Fe-Si (e.g., industrial motors, generators, transformers), Fe-Ni (e.g., shielding), and Fe-
Co-V (e.g., aerospace) (macro)crystalline alloys. Such fact might be related to the technology
maturity of the former, as evidenced by [18], compared to that of amorphous/nano-based
counterparts. In this scenario, ML regression models have been trained to predict satu-

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
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ration polarization Js, intrinsic coercivity Hc, and magnetostriction λ of nanocrystalline
Finemet (Fe-Si-B)-based alloys utilizing data mined from technical literature combined
with experimental verification, as exemplified in Figure 3. Evaluations have considered
chemical compositions and correlated them to processing conditions such as annealing
temperature and time [19]. Discrepancies have also been noticed between predicted and
experimental results [19], which have been attributed to the possibility of using inadequate
data or limitations on the implemented (random forest) model(s).

Figure 3. Experimental versus predicted (via machine learning) values of magnetic saturation (polarization), coercivity, and
magnetostriction for Finemet-type soft magnetic alloys. Further information available in [19]. Reprinted with permission
from Elsevier.

In addition, efforts utilizing ML have also been employed to develop Fe-based metallic
glasses with an enhanced combination of Js and thermal stability (typically related to an
onset crystallization temperature Tx) as illustrated in Figure 4 [20]. The proposed model,
based on intrinsic elemental quantities such as atomic size and electronegativity, has
predicted and been verified comparing with experimental data with accuracies above 93%
for both Js and Tx, allowing the development of metallic glasses combining Js > 1.4 T and
Tx > 800 K.

Figure 4. (a) X-ray diffraction patterns, (b) differential scanning calorimetry curves, (c) hysteresis loops, and (d) saturation
polarization and Tx of designed (modeled via ML) and experimental Fe-based metallic glasses. Further information available
in [20]. This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.
org/licenses/by-nc-sa/4.0/ accessed on 12 March 2021).

https://creativecommons.org/licenses/by-nc-sa/4.0/
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2.2. Characterization

A second research front addresses the characterization of engineering HSMMs. Tradi-
tionally, a physical/chemical approach implementing diffraction/image/elemental, mag-
netic, thermal, and other techniques gathers information for the system under consideration,
and the combination of these results provides a path to tackle posted problems. In the
scope of AI–HSMM, the research method still makes use of such an approach, reusing data
for training purposes and adding to it AI-related contributions.

In the space of PMs, magnetic stability against temperature and/or demagnetizing
fields is always a major concern. The knowledge of switching fields and where they occur
provide valuable information on strategies to enhance Hc. Thus, the relevance of mi-
crostructural characteristics affecting the magnetization reversal process has been studied
focusing on Nd2Fe14B magnets [21]. Grains on the body edges have been recognized to
represent the “weakest links” of the bulk, as illustrated in Figure 5, with a minor influence
of other features including, but not limited to, the number of neighbors and sphericity. Con-
sequently, the recognition of these sites allows determining specifically where Hc should
be enhanced via, for instance, diffusion processes (already industrially implemented). In a
similar scope, AI has also enabled the assessment of the local magnetic nucleation fields,
now implementing electron backscatter diffraction data responsible for training supervised
learning algorithms, to generate hysteresis curves of Mn-Al-C magnets, as illustrated in
Figure 6 [22]. By using micromagnetic simulation of quasi-3D systems based on 2D images,
the influence of microstructural features such as crystallographic orientation and size of
grains have been assessed to identify “weak” regions of the magnet and identify partial
dependences on the relations of such features to predict magnetic results.

Figure 5. Representation of structure with identification of grain with lower switching fields (posi-
tioned on the edges) [21]. This article is licensed under a Creative Commons Attribution 3.0 License
(https://creativecommons.org/licenses/by/3.0/ accessed on 12 March 2021).

https://creativecommons.org/licenses/by/3.0/
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Figure 6. Examples of magnetization curves of Mn-Al-C PM implementing distinct models [22].
This article is licensed under a Creative Commons Attribution 4.0 International License (https:
//creativecommons.org/licenses/by/4.0/ accessed on 12 March 2021).

In the universe of soft magnetic materials, Finemet-based alloys have also received
attention in characterization-related efforts. From the structure-processing standpoint, ML
and the calculation of phase diagrams (CALPHAD) approach were combined to scrutinize
relationships between processing (e.g., composition, temperature, and annealing time)
and structural (mean radius and volume fraction of Fe3Si phase) parameters [23]. Models
implementing the k-nearest neighbor algorithm indicated that specific combinations of
temperatures and chemical compositions lead to nanocrystals of pre-determined mean
radius applying short annealing times (0.5 h), as exemplified in Figure 7, whereas volume
fractions above 70% can be obtained for a broader temperature window and annealing
times (>0.5 h), although it narrows the potential selection of chemical compositions.

Figure 7. Example of volume fractions of nanocrystalline phase predicted after distinct periods of annealing time ((a): 0.5 h;
(b): 1.0 h; (c): 1.5 h) as a function of different Fe and Si (x %) content [23]. Reprinted with permission from Elsevier.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Within the crystalline soft magnetic alloys space, ML has been explored with image
processing (a typical utilization of AI). As illustrated in Figure 8, 1.26% Si non-grain-
oriented steel photomicrographs have been classified considering crystallographic texture
and hysteresis curves data to assist in the identification of higher efficiency materials [24].
Implementing the concept of transfer learning, together with the convolutional neural
network used as feature extractors, it is shown that a specific architecture with k-nearest
neighbors classifiers enables 100% accuracy in identifying lower losses materials within a
fraction of a second. Results of comparable nature can also be found in the literature [25,26]
with reported accuracy (constantly) superior to 88%. Furthermore, it is also worth noting
that mechanical performance of stamped steels has been evaluated via nondestructive
magnetic data collection processes [27]. Due to variations among batches of industrial
coils (rolls), suppliers have a growing interest in real-time quality control. The use of a
“micromagnetic characterization system” is claimed to identify mechanical properties using
polynomial equations from magnetic properties, monitoring for instance yield strength
variation of steel strips from a single coil (roll).

Figure 8. Conventional forms of characterization typically implemented in the manufacturing of electrical steels. Mi-
crographs have been used to separate lower= and higher-efficiency materials [24]. This article is published under
the terms of the Creative Commons Attribution-Non-Commercial-No Derivatives License (CC BY NC ND) (https:
//creativecommons.org/licenses/by-nc-nd/4.0/ accessed on 12 March 2021).

2.3. Applications

The third front that explores interactions AI–HSMM addresses the implementation of
such materials. Different from the two previous pillars where data treatment/assessment
considers mainly a magnetic compound and its respective physical/chemical features,
this last front combines—directly or indirectly—material’s properties to end-use condi-
tions/performance. Despite specific results related to materials be apparently limited, it is
still possible to capture AI potential in relevant cases.

Dealing with electromagnetic applications, a fundamental quantity always involved
refers to a magnetic field. In this scope, the feasibility of predicting Maxwell’s equations
solutions for a coil, transformer, and interior permanent magnet motor has been investi-
gated and is illustrated in Figure 9 [28]. Based on empirical evidence data generated from
finite elements, a convolutional neural network was trained to map magnetic field distri-

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
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butions. The developed model was capable to approximate field distributions positively,
compared to finite element analysis results. In a similar way, AI is supporting the design of
geometries aiming at the minimization of losses of individual soft magnetic components.
In the example of inductors, it has been possible to verify several designs considering
inductance value restrictions and geometric dimensions, finding “automatically” a set of
optimal characteristics focusing on ferrite-based materials [29]. It is interesting to note that
this has reduced the time to complete such development, but also investments required for
prototyping (e.g., preparation and construction of molds for experimental trials).

Figure 9. (a) Geometrical definitions, (b) learning network, (c) field predictions, (d) finite element results [28]. Reprinted
with permission from IEEE.

3. AI—Engineering Hard and Soft Magnetic Materials: Summarizing the Present and
Future Directions

The implementation of AI in the discovery and/or properties prediction, characteriza-
tion, and applicability of engineering hard and soft magnetic materials has been addressed.
Value propositions and/or features for each front have been identified and summarized by
theoretical—often combined with experimental—results, illustrating AI–HSMM status.
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In the discovery/properties prediction space, two paths have been pursued imple-
menting (mainly) machine learning: (i) delineation of AI capabilities so that known results
can serve as the base to provide guidance and validate novel developments (e.g., presence
of weakest grains on the surface of hard magnets) and (ii) (full) anticipation of novel phases.
Thermodynamic stability, combined with magnetic performance, also constitutes examples
of typical information able to be acquired. The (material) characterization context currently
brings interesting opportunities for enhancing quality control: training algorithms with
microstructures representing materials with different features, as in the case of magnetic
losses for electrical steels, but potentially applicable to others as intrinsic coercivity of
permanent magnets (as exemplified in [30]) has the potential to support industry in further
refinements of process control. Lastly, in the space of applications, there is apparently a
limited implementation of AI linked to magnetic materials per se, although it is already pos-
sible to confirm its value in predicting results in both individual components, as inductors,
and (sub)systems such as industrial motors.

The progress of AI–HSMM might be envisaged to be driven by exploring some specific
fronts. The first one refers to the development of ultra-low coercivity materials, combined
with saturation polarization above 1.8 T and processes that enable their mass manufactur-
ing. This topic will continue to gain industrial relevance considering that requirements for
higher energy efficiency have become more demanding from governmental agencies as
well as from end users. Here, if AI can be used to explore combinations of cost-accessible
materials, comparable to silicon steels, and manufacturing conditions monitoring power
losses as main output (in a faster and more predictive in nature that commonly imple-
mented with the (factorial) design of experiments), technoeconomic impacts will be unique.
Within such scope, signs of progress could also be envisaged when additive manufacturing
is considered: by now, the development of systems dedicated for the processing of soft
magnetic materials (and especially products manufactured by them) are still very limited.

In the space of applications, convergence between finite element analysis and AI
has the potential to be disruptive: results from the former constitute today the base of
traditional designs of novel developments (e.g., industrial motors); however, if associated
with AI rising capabilities, such combination might build a faster new normal in exploring
electromagnetic phenomena and their engineering.

Lastly, it is worth noting that although the focus of this text is mainly on engineering
hard and soft magnetic materials, AI has also been implemented in activities scrutinizing
other relevant topics, such as chiral magnets [31], 2D magnets [32], and ferromagnetic
compounds [33].
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