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Abstract: Lanthanide-oxo/hydroxo clusters (LOCs) in this mini-review refer to polynuclear com-
plexes featuring a polyhedral metal-oxo/hydroxo cluster core of lanthanide ions exclusively or with
coexisting 3d metal ions. We summarize herein the recent works using this unique family of cluster
complexes for catalysis; this aspect of research stands in stark contrast to their extensively studied
synthetic and structural chemistry as well as the much-researched magnetic properties. Following
a brief introduction of the synthetic strategies for these clusters, pertinent results from available
literature reports are surveyed and discussed according to the types of catalyzed reactions. Particular
attention was paid to the selection of a cluster catalyst for a specific type of reactions as well as the
corresponding reaction mechanism. To the end, the advantages and challenges in utilizing LOCs as
multifunctional catalysts are summarized, and possible future research directions are proposed.

Keywords: lanthanide; clusters; synthesis; catalysis

1. Introduction

Polynuclear lanthanide (Ln) complexes are of interest because of their attractive
molecular structures, interesting luminescence and magnetic properties, and potentially
useful applications [1–3]. Starting from the late 1990s, a unique class of polynuclear Ln
complexes characterized with well-defined polyhedral Ln-oxo/hydroxo cluster (LOC) core
motifs appeared in the literature [4,5]. Reports of heterometallic LOCs with coexisting
Ln and 3d metal ions followed shortly after [6,7]. In the past decades, research on LOCs
has been primarily concerned with the development of high-nuclearity Gd-containing
clusters because of their potential applications for magnetic refrigeration, which is an
energy-efficient and environment-friendly cooling technology [8]. Studies have shown
that Gd3+-containing clusters possess high magnetic density and weak magnetic exchange
coupling and are ideal for achieving large magnetocaloric effects [9]. Not surprisingly,
most LOCs have been researched for the purpose of identifying materials with promising
magnetic properties for cooling applications [8,10,11].

In contrast with the flourishing research on the magnetic properties of LOCs, the
unique catalytic properties of such clusters due largely to the Lewis acidity of Ln ions
are largely overlooked, although catalytically interesting Ln-containing complexes [12],
coordination polymers (CPs) [13], metal–organic frameworks (MOFs) [14], perovskites [15],
and nanoparticles [16] have been reported. A number of obstacles may be responsible
for the lack of catalytic studies using LOCs. First of all, despite an increasing number of
LOCs appearing in the literature, systematic and reproducible synthesis of LOCs remains a
great challenge. Second, little is known about the solution behavior or stability of LOCs;
maintaining their structural integrity in solution is essential for their catalytic applications
and more fundamentally for the understanding of the catalytic mechanism. Lastly, corre-
lation of their catalytic performance with their molecular structures is a challenge due to
the presence of multiple metal sites within an LOC. Nevertheless, LOCs promise catalytic
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potentials due to the unique electronic properties inherent to Ln ions. Adding to their
traits propitious to catalysis is the rich redox chemistry of a number of Ln ions (Ce4+/Ce3+,
Sm3+/Sm2+, Eu3+/Eu2+) [17] as well as the flexible coordination characteristics due to the
primarily ionic interactions between an Ln ion and a ligand [18]. Moreover, the presence of
multiple adjacent metal sites offers the possibility for synergistic catalysis; this structural
feature is unavailable in mononuclear or low-nuclearity Ln complexes or Ln MOFs. With
the recognition of the unique electronic and structural features of LOCs, a small number of
groups have conducted research on the catalytic properties of LOCs. These exciting results
are surveyed in this mini-review.

Herein, following a brief introduction of the synthetic strategies and the character-
ization developments, catalytically useful LOCs available in the literature are surveyed
according to the types of catalyzed reactions. Particular attention is paid to the selection of
an LOC for a target reaction. A brief summary is provided toward the end, together with
some personal thoughts regarding where future research in this vein may take us.

2. Developments on Synthetic Strategies and Characterizations
2.1. Synthetic Strategies

Since the first report in 1994 of an unexpected LOC featuring a cubane-like core of
[Ln4(µ3-OH)4]8+ (Figure 1a) [4], a large number of LOCs have appeared in the literature.
This synthetic advance can be attributed to the development of the now well-adopted
approach of ligand-controlled Ln hydrolysis, which was developed first by our group [19].
In such an approach, certain judiciously selected organic ligands are used to occupy part
of the Ln coordination sphere, leaving only a small number of coordination sites for aqua
coordination. As such, the degree of hydrolysis is limited, producing compositionally and
structurally definitive LOCs (Figure 1b); without such a control, only intractable polymeric
Ln oxides and oxo/hydroxides are obtained.

Additionally, the anion template is another approach for obtaining sophisticated LOCs.
A particularly significant aspect in the synthesis of LOCs is the participation of small-
unit anions that serve to template the self-assembly of higher-nuclearity LOCs wherein
structurally well-defined subunits are frequently identified [20]. For example, wheel-like
LOCs composed of 4 (Ln12) and 5 (Ln15) vertex-sharing [Ln4(µ3-OH)4]8+ subunits were
obtained with the assistance of I− and Cl−/Br−, respectively (Figure 1c) [21]. Using
CO3

2− in a similar capacity led to the formation of the hexagonal wheel structure of Ln18
(Figure 1c) [22].

Magnetochemistry 2021, 7, x FOR PEER REVIEW 2 of 12 
 

 

presence of multiple metal sites within an LOC. Nevertheless, LOCs promise catalytic po-
tentials due to the unique electronic properties inherent to Ln ions. Adding to their traits 
propitious to catalysis is the rich redox chemistry of a number of Ln ions (Ce4+/Ce3+, 
Sm3+/Sm2+, Eu3+/Eu2+) [17] as well as the flexible coordination characteristics due to the pri-
marily ionic interactions between an Ln ion and a ligand [18]. Moreover, the presence of 
multiple adjacent metal sites offers the possibility for synergistic catalysis; this structural 
feature is unavailable in mononuclear or low-nuclearity Ln complexes or Ln MOFs. With 
the recognition of the unique electronic and structural features of LOCs, a small number 
of groups have conducted research on the catalytic properties of LOCs. These exciting 
results are surveyed in this mini-review. 

Herein, following a brief introduction of the synthetic strategies and the characteri-
zation developments, catalytically useful LOCs available in the literature are surveyed 
according to the types of catalyzed reactions. Particular attention is paid to the selection 
of an LOC for a target reaction. A brief summary is provided toward the end, together 
with some personal thoughts regarding where future research in this vein may take us. 

2. Developments on Synthetic Strategies and Characterizations 
2.1. Synthetic Strategies 

Since the first report in 1994 of an unexpected LOC featuring a cubane-like core of 
[Ln4(μ3-OH)4]8+ (Figure 1a) [4], a large number of LOCs have appeared in the literature. 
This synthetic advance can be attributed to the development of the now well-adopted ap-
proach of ligand-controlled Ln hydrolysis, which was developed first by our group [19]. 
In such an approach, certain judiciously selected organic ligands are used to occupy part 
of the Ln coordination sphere, leaving only a small number of coordination sites for aqua 
coordination. As such, the degree of hydrolysis is limited, producing compositionally and 
structurally definitive LOCs (Figure 1b); without such a control, only intractable poly-
meric Ln oxides and oxo/hydroxides are obtained. 

Additionally, the anion template is another approach for obtaining sophisticated 
LOCs. A particularly significant aspect in the synthesis of LOCs is the participation of 
small-unit anions that serve to template the self-assembly of higher-nuclearity LOCs 
wherein structurally well-defined subunits are frequently identified [20]. For example, 
wheel-like LOCs composed of 4 (Ln12) and 5 (Ln15) vertex-sharing [Ln4(μ3-OH)4]8+ subunits 
were obtained with the assistance of I− and Cl−/Br−, respectively (Figure 1c) [21]. Using 
CO32− in a similar capacity led to the formation of the hexagonal wheel structure of Ln18 
(Figure 1c) [22]. 

 
Figure 1. (a) The structures of building units [Ln4(μ3-OH)4]8+. (b) The key step of ligand-controlled 
hydrolysis of Ln3+ ions [19]. (c) Templated anions I−, Cl−, and CO32− in Ln12, Ln15, and Ln18, respec-
tively. Color legends: Ln, lavender; O, red; I, dark yellow; H, light turquoise; Cl, green; C, gray 
[21,22]. 

Figure 1. (a) The structures of building units [Ln4(µ3-OH)4]8+. (b) The key step of ligand-controlled
hydrolysis of Ln3+ ions [19]. (c) Templated anions I−, Cl−, and CO3

2− in Ln12, Ln15, and Ln18,
respectively. Color legends: Ln, lavender; O, red; I, dark yellow; H, light turquoise; Cl, green; C,
gray [21,22].



Magnetochemistry 2021, 7, 161 3 of 12

The successful application of the ligand-controlled hydrolysis in combination with
anion templates has led to the production of LOCs with diverse and pleasing molecular
structures that are otherwise synthetically elusive or impossible. The use of other types
of hydrolysis-limiting ligands, including metal complexes as ligands or the so-called
metalloligand [23] and mixtures of ligands [24] has also been reported. Moreover, the
use of a combination of different anions as mixed templates has led to the production of
gigantic and structurally sophisticated LOCs [25].

2.2. Characterizations

Techniques typically used for the characterization of crystalline compounds, includ-
ing single-crystal and powder X-ray diffraction, thermogravimetric analysis, Brunauer–
Emmett–Teller (BET) surface area measurement, and infrared spectroscopy, have been used
in most of the LOC studies. As catalytic applications in solution, however, understanding
the solution behavior or stability of LOCs is critical to correlate any observed catalytic
properties with their molecular structures. As most of these LOCs are ionic compounds
composed of a polynuclear cationic cluster and counteranions, dissociation into the com-
ponent ions is suspected in solution. Maintaining the structural integrity of the cationic
cluster unit is critical, as otherwise, metal-containing subunits may be produced due to the
decomposition of the original cluster. In other words, a “solution-stable” cluster should
be one that keeps the same cationic cluster structure as in its crystalline state. Therefore,
the applied solvent should be carefully optimized to obtain this stability, which can be
verified by using spectroscopic and electron microscopic techniques. For example, a single
peak shown in the MALDI-TOF-MS of the Ni36Gd102 cluster in methanol corresponds to
the unaltered cationic cluster complex unit; the broadness is due to the distribution of
the large number of atoms with isotopes (Figure 2a) [26]. In another example, imaging
a sample prepared by dissolving the Gd140 cluster in ethanol using high-angle annular
dark-field scanning transmission electron microscopy (HAADF-STEM) revealed the overall
wheel-like molecular structure of the cluster (Figure 2b) [27]. Direct visualization of the
nanoscopic structure of a cluster provides the most convincing evidence for its solution
stability. Other techniques have provided additional supporting evidence. For example,
dynamic light-scattering (DLS) measurement produced a hydrodynamic diameter that
matches with its molecular structure (Figure 2c) [27]. During catalysis, techniques such
as extended X-ray-absorption final structure (EXAFS) and X-ray absorption near-edge
structure (XANES) have been used to monitor the stability of the cluster in situ (vide infra).
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3. LOCs as Catalysts for CO2 Transformation into Value-Added Products

CO2, as the stable combustion product and greenhouse gas, is one of the main causes
of global warming. Finding an economical and efficient carbon cycle process involving
CO2 conversion could relieve the accumulation of CO2 in nature.
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3.1. Catalytic Cycloaddition of CO2 and Epoxides

Along this line of thought, one of the reactions receiving arguably the most attention
is the production of cyclic carbonates, which is a valuable stock for the preparation of
polymeric materials, by the catalytic reaction of CO2 with epoxides [28–30]. The commonly
accepted mechanism involves the activation of both an epoxide and CO2. The hard Lewis
acidity and oxophilicity of Ln3+ are particularly attractive for the activation of epoxide by
way of strong Ln-O coordination; thus, a variety of catalysts including those Ln-based have
been developed for this reaction [30–32].

LOCs have also been explored in this capacity. For example, Zhang et al. reported two
series of heterometallic LOCs, namely Ln2Zn2(µ3-OH)2(L1)4(NO3)4 (Ln2Zn2, Ln = Eu, Tb,
Er, Yb, Nd, HL1 = Methyl-3-methoxysalicylate, Figure 3) and Ln2Zn4(µ3-OH)2(L1)4(OAc)6(NO3)2
(Ln2Zn4, Ln = Tb, Nd), and studied their applications for the CO2 and epoxide cycload-
dition (Figure 4) [33]. All these cluster complexes have been shown to heterogeneously
catalyze the reaction with Tb2Zn2 being most effective, producing a turnover number
(TON) of 9260 and a turnover frequency (TOF) of 661 h−1 in a 12 h reaction. This per-
formance is significantly better than that of using other Ln-based catalysts under similar
reaction conditions [33,34]. Moreover, high tolerance for a wide variety of epoxides was
also demonstrated. The authors rationalized the high activity under the mild conditions
using the bimetallic activation of both substrates (Figure 4c): Both CO2 and the epoxide
are activated upon coordination by the polynuclear cluster core. The intramolecular attack
of CO2 by the ring-opened epoxide O afforded an alcoholate intermediate, leading even-
tually to the carbonate product. What distinguishes such a heterometallic catalyst from
homometallic ones is that the metal with stronger Lewis acidity, Ln in this case, would
enhance epoxide coordination, while the other metal center would activate the CO2 [35].
This selective activation might enhance the chance of these two different reactant molecules
being activated nearby, which would accelerate the interaction between them, instead of the
same reactants being activated closely. Moreover, the establishment of the heterometallic
activation arrangement could be easily realized through the unique polynuclear LOCs.
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3.2. Catalytic Reduction of CO2

In addition to the above chemical fixation of CO2, catalytic reductions of CO2 have
also been extensively explored to produce value-added products including CO, HCHO,
HCOOH, CH3OH, and CH4 [36]. Various catalysts have been developed for photochemical
and electrochemical CO2 reduction [37]. The non-noble metal nickel-based catalysts possess
high CO selectivity [38]; therefore, LOCs with abundant bare Ni centers make it a promising
candidate for CO production.
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In this vein, Zheng et al. have reported a 138-metal LOC [Ni36Gd102(µ3-OH)132(L2)18(L3)
18(H2L3)24(OAc)84(SO4)18(NO3)18(H2O)30]Br6·(NO3)6·(H2O)x·(CH3OH)y (Ni36Gd102, HL2

= 2-Mercapto-5-methyl-1,3,4-thiadiazide, H3L3 = 2,2-Dimethylol propionic acid, x ≈ 130,
y ≈ 60)] and studied its use in the photocatalytic homogeneous CO2 reduction (Figure 5a) [26].
The gigantic “star-of-David”-like cluster (Figure 5b) showed a remarkable reactivity
(TON = 29,700 (10 h), TOF = 1.2 s−1) and selectivity (90.2%) for CO formation. This
performance is better than most of the photocatalytic homogeneous CO2 reduction cata-
lysts reported [26,39]. The stability of the cluster framework in solution was verified by
MALDI-TOF-MS and high-resolution transmission electron microscopy (HR-TEM) results
(Figure 5c). The simulation using periodic density functional theory (PDFT) indicated
correspondence between the catalytic performance and the strong CO2-Ni binding at the
initial stage of the reaction. This binding is profoundly influenced by the coordination
environment of Ni2+ that is characterized with a number of triply bridging µ3-OH groups.
Furthermore, a possible hydrogen bond was proposed between the µ3-OH group and the
O atom of the Ni-CO2 intermediate in the optimized structure. Thus, it is reasonable to
suspect that the large number of µ3-OH groups in this LOC not only helps stabilize the
intermediate but also provides protons to promote the breaking of the C-O bond in CO2
(Figure 5d). The durability of Ni36Gd102 was also evaluated. The catalytic performance
remained essentially unchanged using samples recovered from the five consecutive runs of
experiments. This stable catalytic performance manifests the stability of the cluster species
in solution. Under low pressure of CO2 (0.1 atm), Ni36Gd102 still exhibited decent catalytic
activity (TOF = 0.49 s−1) and selectivity (74.4%) for CO formation. Previous work sug-
gested that Lewis acidic functionalities help modulate the electronic structure of catalytic
Ni2+ centers and thus enhance the photocatalytic activity under low CO2 pressures [40].
In this regard, although Ln3+ was not directly involved in the proposed catalytic cycle,
we suspect, based on literature argument, that they are indispensable not only for the
stable LOC structure but also for tuning the electronic structure of Ni2+ to modulate the
catalytic property.
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4. LOCs as Electrochemical Catalysts for Water Splitting

Water splitting is the conversion of water molecules into H2 and O2. This reaction is
of significant ramifications in our effort to address current and future energy and environ-
mental challenges.

4.1. LOCs as Homogeneous Catalysts for Water Oxidation

Being a half reaction in the overall water splitting scheme, the oxidation of H2O to
O2 involves the concerted removal of four protons and four electrons from two water
molecules [41]. Thus, this reaction is both energetically demanding and kinetically limited.
Catalysts based on both precious and earth-abundant metals have been investigated for
water oxidation. Although some Ru-based catalysts produced excellent catalytic results [42],
any industrial-scale applications is not yet forthcoming due to the scarcity of the precious
metal and associated high costs [43]. Inspired by the structure of cuboidal CaMn4O5—
the oxygen-evolving center (OEC) of photosystem II—earth-abundant metal-oxo species
have been investigated as potential catalysts for water oxidation. Recently, Yao et al.
reported that the Ca2+ in CaMn4O5 structure can be replaced by Ln3+, providing a robust
mimic for the structure−function correlation study in the OEC. The impact of the Lewis
acidity of the redox-inactive ions (Ca2+, Ln3+) on the Mn redox potentials were studied
by comparing the Mn redox potentials in different analogues containing different Ln3+

ions with different Lewis acidity. Therefore, LOCs could provide an analytical platform
for structure−function correlation studies by investigating the properties of isomorphous
LOCs containing different Ln3+ ions with different properties such as Lewis acidity, ionic
size, redox properties, and magnetic properties.

Recently, Chen et al. isolated three LOCs [Ln36Co12(µ4-O)6(µ3-OH)84(OAc)18(Cl)2(NO3)]33+

(La36Co12, Ln = Eu, Gd, and Dy) (Figure 6a) featuring 22 heterometallic cubane unis of
[Ln3Co(µ3-OH)4]7+ in a tubular core structure [44]. At pH = 5.8, Eu36Co12 exhibited the
highest activity for homogeneous water oxidation, producing a TOF of 1.5 s−1 at 1.8 V
(vs. NHE). Comparative studies using Eu36Co12 against Co(Ac)2 and Eu(NO3)3 revealed a
significant difference in the catalytic performance; the decreasing activity order of Eu36Co12
> Co(Ac)2 >> Eu(NO3)3 indicates that the catalytic activity origin of Eu36Co12 is not simply
individual behaviors of Co2+ and Eu3+ ions but a synergy between them in the heterometal-
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lic LOC. The overpotential of 1 mA cm−2 observed for Eu36Co12 is 700 mV, which is close
to the cluster-based homogeneous electrocatalysts. Of particular note is the unmitigated
performance of Eu36Co12 after 10 h of reaction, suggesting its stability in solution. Provid-
ing support of its stability are results from the comparative studies using DLS, XANES,
and EXAFS on samples before and after catalytic studies. Electrochemical measurements
by differential pulse voltammetry (DPV) and cyclic voltammetry (CV) under different
pH conditions were used to rationalize the high electrocatalytic activities, and a possi-
ble mechanism for the observed water oxidation was proposed (Figure 6b), wherein the
synergy between Eu3+ and Co2+ ions was elaborated in terms of the cooperative aqua
coordination on both Eu3+ and Co2+ sites. The one on the Co2+ site undergoes dehydro-
genation to produce CoIV=O. Then, the aqua ligand on the Eu3+ site dehydrogenates to
afford the Co3+-hydroperoxyl-Eu3+ intermediate. Finally, one molecule of O2 is released
upon decomposition of this intermediate, and the re-capping of one aqua ligand onto both
metal sites completes the catalytic cycle. As suggested by this study, heterometalic LOCs
may represent a new family of water oxidation catalysts due to the synergy between the
different metal sites.
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permission from Ref. [44]. Copyright 2021 Royal Society of Chemistry.

4.2. LOCs as Heterogeneous Catalysts for Water Oxidation

Since the report by Fujishima and Honda in 1972 of the photoelectrochemical catalytic
activity of Pt/TiO2 for water splitting [46], extensive research has been devoted to the
research of Ti-containing catalysts/materials [47–49]. However, TiO2-based semiconductors
are with wide bandgaps, and the corresponding photocatalytic reactions utilize only an
ultraviolet portion of the solar energy [50]. Bandgap engineering can be achieved with the
doping of an extraneous metal to expand the light window so that the full wavelength
range of sunlight may be used, and the photocatalysis efficiency can be enhanced [50].
In this regard, a Ti-containing LOC may be viewed alternatively as an Ln-doped Ti-oxo
semiconductor with a definitive structure and already tuned bandgap.

In a recent report, Kong et al. prepared three isomorphous Ti-containing LOCs of
the general formula [Ln8Ti10(µ3-O)14(L4)34(OAc)2(H2O)4(THF)2]·2HL4 (Ln8Ti10, Ln = Eu,
Sm, Gd, HL4 = 4-tert-Butylbenzoic acid) [45] and applied them for photoelectrochemical
heterogeneous water oxidation (Figure 6c). Interestingly, with the only difference being
the type of Ln3+ in these Ti-containing LOCs, quite different catalytic activities for water
oxidation were observed. These results suggest a possible correlation between the catalytic
performance and the engineered bandgaps—2.90, 2.95, and 2.96 eV for Eu8Ti10, Sm8Ti10,
and Gd8Ti10, respectively. These bandgaps are much lower than that of TiO2 (3.2 eV),
which might lead to a red shift of UV-Vis absorption and thus an enhancement of sunlight
usage in the catalytic process. The best results (a TON of 7581.0 and a TOF of 2527.0 h−1)
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achieved with the use of Eu8Ti10 are sizably better than that of anatase, which is one of
the classical Ti-based photoelectrochemical catalysts for water oxidation [45]. For Eu8Ti10,
16.29 C of charge was passed under the electrolysis at 1.4 V (vs. Ag/AgCl) for 3 h, and the
measured stable photocurrent densities were 1.43 mA·cm−2. In analyzing the structure of
these Ti-containing LOCs, the authors found that the bridging µ3-O groups are perfectly
suited for hydrogen bond formation with Ti4+-bound aqua ligands; such a setup is expected
to facilitate O-H bond cleavage during the water–oxidation process. In addition, cycle
experiments, PXRD, and ICP-MS results verify the durability of Eu8Ti10. In this case, LOCs
may be a good platform for investigating bandgap engineering of Ti-oxo semiconductors
and promoting the all-important water oxidation by photocatalysis.

4.3. LOCs as Catalysts for Hydrogen Production

The other half-reaction in the scheme of water splitting is the hydrogen evolution
reaction (HER). Numerous semiconductors have been developed for the photocatalytic
production of H2, among which CdS has been extensively studied due to its suitable
electronic structure for visible light absorption, suitable bandgap, and electronic charge
transfer [51]. However, the photocatalytic HER performance of pristine CdS is far from
satisfactory, which is primarily due to the rapid recombination of photogenerated charge
carriers [51]. As a solution, heterojunctures featuring a cocatalyst loaded onto the surface
of a parent CdS have been developed to accelerate the separation and transportation
of the photogenerated electrons and holes [52]. Researchers have shown that Ln3+ ions
could accelerate the electron transfer from a semiconductor host, but reports of CdS surface
modification by Ln3+ are scarce, which is possibly due to the synthetic difficulties associated
with the charge difference between the component metal ions and the mismatch of ionic
size [53].

In 2018, Chen et al. reported a series of high-nuclearity LOCs of the general for-
mula [Ln52Ni56−xCdx(L5)48(µ3-OH)154(H2O)38]18+ (Ln52Ni56−xCdx, Ln = Eu, Pr, Nd, Gd,
H2L5 = Iminodiacetic acid) by substituting some of the Ni2+ ions in Ln52Ni56 with Cd2+

(Figure 7a) [54]. This synthetic goal was achieved by reacting Ln52Ni56 with Cd(NO3)2
under hydrothermal conditions, and the resulting Ln52Ni56−xCdx possesses the same four-
shell nesting doll-like core structure as its parent Ln52Ni56. These Cd-doped heterometallic
LOCs can be readily loaded onto the surface of CdS, yielding the corresponding nanocom-
posites of Ln52Ni56−xCdx/CdS. These nanocomposites were subsequently applied for
heterogeneous photocatalytic HER; the best performance of 25353 µmol·h−1·g−1 (7.8 times
higher than that of pristine CdS) was achieved with 1.26 wt % loading of Eu52Ni56−xCdx. A
mechanism entailing a putative synergy between the different metal centers was proposed
(Figure 7b) according to the results of electron paramagnetic resonance (EPR) spectra,
UV/Vis diffuse reflectance spectrum (DRS), and Mott–Schottky measurements. The author
concluded that charge separation is responsible for the observed difference in catalytic
activity between Eu52Ni56−xCdx and its cognates of Nd, Gd, and Pr. Specifically, along a
path common to all Ln52Ni56−xCdx co-catalysts, photoexcited electrons from the surface
of CdS could fall into the suitable LUMO energy level of Ln52Ni56−xCdx for the reduction
of protons into hydrogen. However, in the case of Eu52Ni56−xCdx, photoinduced electrons
may transfer from the conduction band (CB) of CdS to a suitable electronic level of Eu3+,
resulting in the formation of Eu2+ and a secondary catalytic site. This possibility is only
available for Eu52Ni56−xCdx as the energy of the CdS conduction band matches the reduc-
tion potential of Eu3+. The ready loading of LOCs onto the surface of CdS offers an easy
route to the preparation of semiconducting materials functionalized with different Ln ions.
As such, the electronic properties of the resulting catalysts can be tuned for optimal HER
catalytic performance.
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5. LOCs as Catalysts for Hydroboration Reaction

Hydroboration of carbonyl-containing compounds is important for obtaining value-
added products from unsaturated organic molecules. Organometallic compounds of
lanthanides have been investigated as catalysts for the selective hydroboration of alkenes,
carbonyls, imines, and nitriles [55]. However, other types of Ln-based catalysts are still
rare. In a recent study, Findlater et al. studied the catalytic applications of a number of
LOCs including La4(µ4-O)(L6)10 (La4, HL6 = Acetylacetone), Ln4(µ3-OH)2(L6)10 (Ln4, Ln =
Gd, Eu), and Ln6(µ3-OH)6(L6)12 (Ln6, Ln = Y, Er) for selective hydroboration (Figure 8) [56].
The hydroboration of N,N-dimethylbenzamide with pinacolborane (HBpin) catalyzed by
1.5 mol% of La4 afforded the targeted amine product in 95% yield. High tolerance for a
great variety of substrates was subsequently established. In the meantime, the reduction
of easter catalyzed by La4 led to alcohol products with concomitant C-O cleavage. A
preliminary mechanism study of its kinetic behavior and intermediate through initial rates
studies and NMR spectra was preformed, respectively. The unique catalytic properties
for the deoxygenation of 1◦ carboxamides and esters are stimulating, which suggests the
yet-to-be explored catalytic potentials of LOCs. The profound dependence of the cluster
structure on the nature of the Ln ions offers another dimension of research on which many
new catalytic applications of LOCs may be anticipated [21].
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6. Conclusions and Perspectives

In this mini-review, the recent advances in the catalytic applications of LOCs with
exclusive Ln ions or coexisting 3d metal ions are surveyed. Although small in number,
selective examples of LOCs for specific types of reaction catalyzed including chemical,
electrochemical, and photochemical transformation of CO2 into value-added products,
conversion, water oxidation, and hydrogen production in the overall scheme of water
splitting, and hydroboration reaction to generate synthetically valuable products such as
amines and alcohols are discussed. The results presently available in the literature portend
the great catalytic potential of this unique family of Ln-containing species.

Future research efforts should probably be directed toward (1) the preparation and
characterization of LOCs with sufficient stability in solution; (2) studies that may reveal
mechanistic details of intermediate formation, the identification of the active sites, and any
possible synergy between the component metals within the same LOC cluster core; and
(3) catalytically capable LOCs with special structural features for efficient and selective
catalysis. For example, clusters with cage-like structures characterized with accessible
pores may be useful for stereospecific catalysis with enhanced reaction kinetics [23].
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