
magnetochemistry

Article

Insights into Nature of Magnetization Plateaus
of a Nickel Complex [Ni4(µ-CO3)2(aetpy)8](ClO4)4
from a Spin-1 Heisenberg Diamond Cluster
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Abstract: Magnetic and magnetocaloric properties of a spin-1 Heisenberg diamond cluster with
two different coupling constants are investigated with the help of an exact diagonalization based
on the Kambe’s method, which employs a local conservation of composite spins formed by
spin-1 entities located in opposite corners of a diamond spin cluster. It is shown that the spin-1
Heisenberg diamond cluster exhibits several intriguing quantum ground states, which are manifested
in low-temperature magnetization curves as intermediate plateaus at 1/4, 1/2, and 3/4 of the
saturation magnetization. In addition, the spin-1 Heisenberg diamond cluster may also exhibit
an enhanced magnetocaloric effect, which may be relevant for a low-temperature refrigeration
achieved through the adiabatic demagnetization. It is evidenced that the spin-1 Heisenberg diamond
cluster with the antiferromagnetic coupling constants J1/kB = 41.4 K and J2/kB = 9.2 K satisfactorily
reproduces a low-temperature magnetization curve recorded for the tetranuclear nickel complex
[Ni4(µ-CO3)2(aetpy)8](ClO4)4 (aetpy = 2-aminoethyl-pyridine) including a size and position of
intermediate plateaus detected at 1/2 and 3/4 of the saturation magnetization. A microscopic
nature of fractional magnetization plateaus observed experimentally is clarified and interpreted
in terms of valence-bond crystal with either a single or double valence bond. It is suggested that
this frustrated magnetic molecule can provide a prospective cryogenic coolant with the maximal
isothermal entropy change −∆SM = 10.6 J·K−1·kg−1 in a temperature range below 2.3 K.

Keywords: quantum Heisenberg model; diamond spin cluster; tetranuclear nickel complex;
magnetization plateaus; magnetocaloric effect

1. Introduction

Molecular-based magnetic materials have attracted a considerable research interest over the past
few decades because they provide perspective building blocks for a development of new generation
of nanoscale devices with a broad application potential [1–4]. Small magnetic molecules composed a
few exchange-coupled spin centers might, for instance, serve for the rational design of high-density
storage devices [5] and various spintronic devices [6–8]. Another intriguing feature of a special class
of molecular magnetic materials with an extremely slow magnetic relaxation, which are commonly
referred to as single-molecule magnets, is their possible implementation for developing novel platform
for a quantum computation and quantum information processing [9–15].

Appearance of plateaus in low-temperature magnetization curves of molecular magnetic materials
at rational values of the magnetization represents another fascinating topical issue of current research
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interest, which can be experimentally easily validated due to a recent development of high-field
facilities [16–23]. The magnetization plateaus often bear evidence of unconventional quantum states
of matter theoretically predicted by the respective quantum Heisenberg spin models (see Ref. [24]
and references cited therein). It should be pointed out, however, that the underlying mechanism for
formation of intermediate magnetization plateau does not necessarily need to be of a purely ‘quantum’
origin, but it may sometimes have ‘classical’ character. The ‘classical’ plateau is a simple adiabatic
continuation of a commensurate classical spin state realized in the Ising limit, that is, of course,
subject to a quantum reduction of the local magnetization caused by quantum fluctuations, while the
purely ‘quantum’ plateau relates to a massive quantum spin state with an energy gap that does not
have any classical counterpart [24–28].

Naturally, the most comprehensively understood are nowadays rational magnetization plateaus
of the simplest molecular materials, which consist of well isolated magnetic molecules involving just a
few spin centers coupled through antiferromagnetic exchange interactions. High-field measurements
performed at sufficiently low temperatures have for instance proved the presence of an intermediate
magnetization plateau(s) for the dinuclear nickel complex {Ni2} as an experimental realization of the
spin-1 Heisenberg dimer [29–31], the dinuclear nickel-copper complex {NiCu} as an experimental
realization of the mixed spin-(1,1/2) Heisenberg dimer [32], the trinuclear copper {Cu3} and nickel
{Ni3} complexes as experimental realizations of the spin-1/2 and spin-1 Heisenberg triangles [33–35],
the oligonuclear compound {Mo12Ni4} as an experimental realization of the spin-1 Heisenberg
tetrahedron [36–39], the pentanuclear copper complex {Cu5} as an experimental realization of
the spin-1/2 Heisenberg hourglass cluster [40,41], the hexanuclear vanadium compounds {V6} as
experimental realizations of two weakly coupled spin-1/2 Heisenberg triangles [42,43], the hexanuclear
copper compounds {Cu6} as experimental realizations of the spin-1/2 Heisenberg edge-shared
tetrahedra [44–46], etc.

Recently, significant advances have also been achieved in the design of molecular magnets
providing prospective coolants for the magnetic refrigeration technology in a low- and ultra
low-temperature range, where they offer a more energy-efficient, cost-effective and environmentally
friendly alternative with respect to traditional refrigeration technologies based on vapor-compression
technique or 3He-4He dilution-refrigerator method [47–51]. The magnetic cooling takes advantage
of a thermal response of magnetic materials with respect to the variation of external magnetic field,
which is traditionally denoted as the magnetocaloric effect (MCE). A decrease in temperature caused
by the adiabatic demagnetization of a magnetic material is referred to as the conventional MCE,
while an increase in temperature during the adiabatic demagnetization is contrarily referred to
as the inverse MCE. The adiabatic temperature change and the isothermal change of entropy are
the two most important characteristics of the magnetic coolants, which basically depend on the
magnetic-field change and the initial temperature [47–51]. Although all magnetic substances display a
certain magnetocaloric response, only a few molecular-based compounds possess sufficiently large
isothermal change of the entropy and the adiabatic temperature change in order to be regarded as
prospective magnetic refrigerants such as the molecular nanomagnets with the spin-enhanced [52,53]
or frustration-enhanced [54–57] magnetocaloric features. It should be nevertheless mentioned that the
isothermal entropy change of molecular nanomagnets composed exclusively from transition-metal ions
other than Mn2+ and/or Fe3+ [50,58] just rarely exceeds the value ∆SM = 10 J·K−1·kg−1, which may
be regarded as a benchmark for the enhanced MCE. Although the molecular nanomagnets based
on transition-metal ions cannot be competitive with the high-nuclear Gd3+ clusters affording much
larger isothermal entropy change [59–62], they may be of practical relevance for high-temperature
applications due to much stronger exchange couplings.

In the present work, we will examine in particular magnetic and magnetocaloric properties
of the spin-1 Heisenberg diamond spin cluster, which is inspired by a magnetic structure of
butterfly-tetrameric nickel complex [Ni4(µ-CO3)2(aetpy)8](ClO4)4 (aetpy = 2-aminoethyl-pyridine) [63]
hereafter abbreviated as {Ni4}. The original study of structural and magnetic properties has shown a
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spin-frustrated character of the tetranuclear complex {Ni4}, which arises from a competition between
two different antiferromagnetic exchange interactions between constituent spin-1 Ni2+ magnetic
ions [63]. The posterior high-field magnetization measurements have corroborated a highly frustrated
character of the tetranuclear magnetic molecule {Ni4}, which gives rise to a peculiar low-temperature
magnetization curve involving two rational magnetization plateaus located at 1/2 and 3/4 of the
saturation magnetization [64]. An exact nature of the experimentally observed magnetization plateaus
along with basic magnetocaloric characteristics of the underlying spin-1 Heisenberg diamond spin
cluster will be the main subject of the present article.

The organization of this paper is as follows. The spin-1 Heisenberg diamond cluster will be
introduced together with basic steps of its exact analytical treatment based on the exact diagonalization
method in Section 2. The most interesting theoretical results for the ground-state phase diagram,
magnetization process, and magnetocaloric properties of the spin-1 Heisenberg diamond cluster will
be comprehensively investigated in Section 3. The available experimental magnetization data for the
tetranuclear complex {Ni4} will be thoroughly interpreted in Section 4 within the framework of the
studied model, which will be additionally used for obtaining respective theoretical implications for its
magnetocaloric properties not reported experimentally hitherto. Finally, the most important findings
and future outlooks will be presented in Section 5.

2. Spin-1 Heisenberg Diamond Cluster

Let us consider the spin-1 Heisenberg diamond cluster in a magnetic field, which is schematically
illustrated in Figure 1 and mathematically defined through the Hamiltonian:

Ĥ = J1Ŝ1 · Ŝ2 + J2
(
Ŝ1 + Ŝ2

)
·
(
Ŝ3 + Ŝ4

)
− h

4

∑
i=1

Ŝz
i . (1)

The model Hamiltonian (1) aims at describing the magnetochemistry of tetranuclear nickel
complex {Ni4} with a magnetic structure of the butterfly tetramer [63,64], which can be alternatively
viewed as a diamond spin cluster involving two different exchange interactions J1 and J2 along
its shorter diagonal and sides schematically shown in Figure 1 by thick solid and thin broken
lines, respectively. The last term h = gµBB is the standard Zeeman’s term associated with the
external magnetic field B, which directly incorporates in its definition the Landé g-factor and the Bohr
magneton µB.

J
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Figure 1. A schematic illustration of the spin-1 Heisenberg diamond cluster, which involves two
different exchange interactions J1 and J2 along a shorter diagonal and sides of a diamond spin cluster
depicted by thick solid and thin broken lines, respectively.

By introducing two composite spin operators Ŝ12 = Ŝ1 + Ŝ2 and Ŝ34 = Ŝ3 + Ŝ4 within the Kambe
coupling scheme [65,66] together with the total spin operator ŜT = Ŝ12 + Ŝ34 and its z-component
Ŝz

T = ∑4
i=1 Ŝz

i , one can rewrite the Hamiltonian (1) into the following equivalent form:

Ĥ =
J1

2

(
Ŝ2

12 − 4
)
+

J2

2

(
Ŝ2

T − Ŝ2
12 − Ŝ2

34

)
− hŜz

T . (2)
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It can be easily verified that all spin operators Ŝ2
12, Ŝ2

34, Ŝ2
T and Ŝz

T entering on the right-hand side of
Equation (2) commute with the Hamiltonian, which allows one to express energy eigenvalues in terms
of the respective quantum spin numbers:

E(ST , S12, S34, Sz
T) =

J1 − J2

2
S12 (S12 + 1)− J2

2
S34 (S34 + 1) +

J2

2
ST (ST + 1)− 2J1 − hSz

T . (3)

A full energy spectrum can be obtained from Equation (3) after considering all available
combinations of the quantum spin numbers S12 = 0, 1, 2 and S34 = 0, 1, 2 together with the
composition rules for the total spin angular momentum ST = |S12− S34|, |S12− S34|+ 1, · · · , S12 + S34

and its z-component Sz
T = −ST ,−ST + 1, . . . , ST according to the Kambe coupling scheme [65,66].

For completeness, all energy eigenvalues assigned to allowed combinations of the quantum spin
numbers ST , S12, S34 and Sz

T are listed in Table 1.

Table 1. A complete energy spectrum of the spin-1 Heisenberg diamond cluster. Each energy eigenvalue
is assigned to a given set of the quantum spin numbers ST , S12, S34, Sz

T .

ST S12 S34 Sz
T Energy ST S12 S34 Sz

T Energy

0 0 0 0 −2J1 3 2 1 ±3 J1 + 2J2 ∓ 3h
1 1 0 0 −J1 1 1 2 0 −J1 − 3J2
1 1 0 ±1 −J1 ∓ h 1 1 2 ±1 −J1 − 3J2 ∓ h
1 0 1 0 −2J1 2 1 2 0 −J1 − J2
1 0 1 ±1 −2J1 ∓ h 2 1 2 ±1 −J1 − J2 ∓ h
0 1 1 0 −J1 − 2J2 2 1 2 ±2 −J1 − J2 ∓ 2h
1 1 1 0 −J1 − J2 3 1 2 0 −J1 + 2J2
1 1 1 ±1 −J1 − J2 ∓ h 3 1 2 ±1 −J1 + 2J2 ∓ h
2 1 1 0 −J1 + J2 3 1 2 ±2 −J1 + 2J2 ∓ 2h
2 1 1 ±1 −J1 + J2 ∓ h 3 1 2 ±3 −J1 + 2J2 ∓ 3h
2 1 1 ±2 −J1 + J2 ∓ 2h 0 2 2 0 J1 − 6J2
2 2 0 0 J1 1 2 2 0 J1 − 5J2
2 2 0 ±1 J1 ∓ h 1 2 2 ±1 J1 − 5J2 ∓ h
2 2 0 ±2 J1 ∓ 2h 2 2 2 0 J1 − 3J2
2 0 2 0 −2J1 2 2 2 ±1 J1 − 3J2 ∓ h
2 0 2 ±1 −2J1 ∓ h 2 2 2 ±2 J1 − 3J2 ∓ 2h
2 0 2 ±2 −2J1 ∓ 2h 3 2 2 0 J1
1 2 1 0 J1 − 3J2 3 2 2 ±1 J1 ∓ h
1 2 1 ±1 J1 − 3J2 ∓ h 3 2 2 ±2 J1 ∓ 2h
2 2 1 0 J1 − J2 3 2 2 ±3 J1 ∓ 3h
2 2 1 ±1 J1 − J2 ∓ h 4 2 2 0 J1 + 4J2
2 2 1 ±2 J1 − J2 ∓ 2h 4 2 2 ±1 J1 + 4J2 ∓ h
3 2 1 0 J1 + 2J2 4 2 2 ±2 J1 + 4J2 ∓ 2h
3 2 1 ±1 J1 + 2J2 ∓ h 4 2 2 ±3 J1 + 4J2 ∓ 3h
3 2 1 ±2 J1 + 2J2 ∓ 2h 4 2 2 ±4 J1 + 4J2 ∓ 4h

At this stage, it is quite straightforward to obtain from the full energy spectrum quoted in Table 1
an exact result for the partition function of the spin-1 Heisenberg diamond cluster Z = Tr e−βĤ =

∑81
i=1 e−βEi with β = 1/(kBT) (kB is Boltzmann’s constant, T is the absolute temperature), which is

explicitly given by the following lengthy expression:
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Z = e−β(J1+2J2) [1+2 cosh (βh)+2 cosh (2βh)+2 cosh (3βh)] + eβ(J1+2J2) + e−β(J1−6J2)

+ eβ(J1+J2) [2+4 cosh (βh)+2 cosh (2βh)] + e−β(J1−J2) [1+2 cosh (βh)+2 cosh (2βh)]

+ e2βJ1 [3+4 cosh (βh)+2 cosh (2βh)] + e−β(−J1+J2) [1+2 cosh (βh)+2 cosh (2βh)]

+ e−β(−J1+2J2) [1+2 cosh (βh)+2 cosh (2βh)+2 cosh (3βh)] + eβJ1 [1+2 cosh (βh)]

+ e−βJ1 [2+4 cosh (βh)+4 cosh (2βh)+2 cosh (3βh)] + eβ(J1+3J2) [1+2 cosh (βh)]

+ e−β(J1−3J2) [2+4 cosh (βh)+2 cosh (2βh)] + e−β(J1−5J2) [1+2 cosh (βh)]

+ e−β(J1+4J2) [1+2 cosh (βh)+2 cosh (2βh)+2 cosh (3βh)+2 cosh (4βh)] .

(4)

The magnetization per one spin can be subsequently obtained from the associated Gibbs free
energy G = −kBT lnZ by making use of the following formula:

m = −1
4

∂G
∂B

=
gµB

4
∂ lnZ
∂(βh)

=
gµB

4
Zh
Z , (5)

whereas the expression Zh ≡ ∂Z/∂(βh) is defined as follows:

Zh = 2e−β(J1+2J2) [sinh (βh)+2 sinh (2βh)+3 sinh (3βh)]

+ 4eβ(J1+J2) [sinh (βh)+sinh (2βh)] + 2e−β(J1−J2) [sinh (βh)+2 sinh (2βh)]

+ 4e2βJ1 [sinh (βh)+sinh (2βh)] + 2e−β(−J1+J2) [sinh (βh)+2 sinh (2βh)]

+ 2e−β(−J1+2J2) [sinh (βh)+2 sinh (2βh)+3 sinh (3βh)] + 2eβJ1 sinh (βh)

+ 2e−βJ1 [2 sinh (βh)+4 sinh (2βh)+3 sinh (3βh)] + 2eβ(J1+3J2) sinh (βh)

+ 4e−β(J1−3J2) [sinh (βh)+sinh (2βh)] + 2e−β(J1−5J2) sinh (βh)

+ 2e−β(J1+4J2) [sinh (βh)+2 sinh (2βh)+3 sinh (3βh)+4 sinh (4βh)] .

(6)

The magnetic molar entropy of the spin-1 Heisenberg diamond cluster can be similarly obtained
from the exact result (4) for the partition function according to the formula:

Sm = −NA
∂G
∂T

= R
(

lnZ +
T
Z

∂Z
∂T

)
, (7)

where NA and R stand for Avogadro’s and universal gas constant, respectively. It should be mentioned
that the final formula for a temperature derivative of the partition function is too lengthy in order to
write it down here explicitly.

3. Theoretical Results

In this part, we will proceed to a comprehensive analysis of the most interesting results for
the ground state, magnetization curves, and magnetocaloric properties of the spin-1 Heisenberg
diamond cluster. The ground-state phase diagram of the spin-1 Heisenberg diamond cluster is
displayed in Figure 2 in the J2/|J1| − h/|J1| plane for two particular cases, which differ from one
another in antiferromagnetic (J1 > 0) vs. ferromagnetic (J1 < 0) character of the coupling constant
along a shorter diagonal of the diamond spin cluster. One finds by inspection eight different ground
states unambiguously given by the eigenvectors |ST = Sz

T , S12, S34〉, which are classified through
a set of the quantum spin numbers determining the total spin and its z-component being equal
ST = Sz

T within all ground states, as well as two composite spins S12 and S34 formed by spin-1 entities
from opposite corners of the diamond spin cluster. Within the framework of the Kambe’s coupling
scheme [65,66], it is convenient to express first the relevant ground states as a linear combination over a
tensor product of eigenvectors of two considered spin pairs |ST , S12, S34〉 = ∑i ai|S12, Sz

12〉 ⊗ |S34, Sz
34〉

before writing them more explicitly as a linear combination over spin states of the usual Ising basis
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|ST , S12, S34〉 = ∑i bi|Sz
1, Sz

2, Sz
3, Sz

4〉. The exact formulas for the eigenvectors |S12, Sz
12〉 and |S34, Sz

34〉
of the spin-1 Heisenberg dimers are not quoted here explicitly because they can be found in our
preceding work [30]. It is also worth noticing that the ground states should manifest themselves in a
respective zero-temperature magnetization curve as intermediate plateaus, whereas the size of the
relevant magnetization plateau can be directly inferred from the respective value of the quantum
spin number Sz

T = ST . In the following, we will therefore refer to each ground state as to a fractional
magnetization plateau, which will be determined according to the quantum spin number ST scaled
with respect to its maximal value Smax

T = 4.
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Figure 2. The ground-state phase diagram of the spin-1 Heisenberg diamond cluster in the
J2/|J1| − h/|J1| plane for two particular cases with: (a) the antiferromagnetic interaction J1 > 0;
(b) the ferromagnetic interaction J1 < 0. The eigenvectors |ST = Sz

T , S12, S34〉 are specified according
to the quantum spin numbers determining the total spin and its z-component ST = Sz

T , as well
as two composite spins S12 and S34 formed by spin-1 entities from opposite corners of a diamond
spin cluster.

The spin-1 Heisenberg diamond cluster of course shows at high enough magnetic fields a classical
ferromagnetic state with fully saturated magnetic moment of all four constituent spins:

|4, 2, 2〉 = |2, 2〉⊗|2, 2〉 = |1, 1, 1, 1〉, (8)

which changes below the saturation field to one of two eigenvectors |3, 1, 2〉 or |3, 2, 2〉 with character
of the one-magnon deviation from the fully polarized ferromagnetic state:

|3, 1, 2〉 = |1, 1〉⊗|2, 2〉 = 1√
2
(|1, 0, 1, 1〉−|0, 1, 1, 1〉) , (9)

|3, 2, 2〉 = 1√
2
(|2, 1〉⊗|2, 2〉−|2, 2〉⊗|2, 1〉)

= 1
2 (|1, 1, 1, 0〉+|1, 1, 0, 1〉−|1, 0, 1, 1〉−|0, 1, 1, 1〉).

(10)

Although the ground states |3, 1, 2〉 and |3, 2, 2〉 essentially lead in a zero-temperature
magnetization curve to the intermediate 3/4-plateau with the same value of the total magnetization,
it is quite clear from Equations (9) and (10) that the underlying mechanism for formation of the relevant
intermediate magnetization plateau is very different. While in the former ground state |3, 1, 2〉 the
further-distant spins 〈Sz

3〉 = 〈Sz
4〉 = 1 from the ’wings’ of the butterfly tetramer contribute to the

total magnetization twice as large as the near-distant counterparts 〈Sz
1〉 = 〈Sz

2〉 = 1/2 from its ’main
body’, all four spins contribute equally to the total magnetization 〈Sz

1〉 = 〈Sz
2〉 = 〈Sz

3〉 = 〈Sz
4〉 = 3/4

in the latter ground state |3, 2, 2〉. It could be thus concluded that the spin density is homogeneously
distributed over the whole diamond spin cluster in the eigenstate |3, 2, 2〉 what is in sharp contrast
with the eigenstate |3, 1, 2〉, which has character of the valence-bond crystal with a singlet bond
formed within the near-distant spin pair (see Figure 3a for a schematic illustration). Note that the
valence–bond–solid representation exploits a symmetric decomposition of each spin-1 particle into two



Magnetochemistry 2020, 6, 59 7 of 21

spin-1/2 entities, which may consequently form under certain conditions singlet (valence) bonds [67].
The similar situation is encountered also in other two eigenvectors |2, 0, 2〉 and |2, 2, 2〉:

|2, 0, 2〉 = |0, 0〉⊗|2, 2〉 = 1√
3
(|1,−1, 1, 1〉+|−1, 1, 1, 1〉−|0, 0, 1, 1〉) , (11)

|2, 2, 2〉 =
√

2
7 (|2, 2〉⊗|2, 0〉+|2, 0〉⊗|2, 2〉)−

√
3
7 (|2, 1〉⊗|2, 1〉)

=
√

2
7

1√
6
(|−1, 1, 1, 1〉+|1,−1, 1, 1〉+|1, 1,−1, 1〉+|1, 1, 1,−1〉+2|1, 1, 0, 0〉

+ 2|0, 0, 1, 1〉)−
√

3
7

1
2 (|1, 0, 1, 0〉+|1, 0, 0, 1〉+|0, 1, 1, 0〉+|0, 1, 0, 1〉),

(12)

S2

S1

S3 S4

(b) |2,0,2S2

S1

S3 S4

(a) |3,1,2

Figure 3. A schematic representation of two valence–bond–crystal ground states given by the
eigenvectors: (a) |3, 1, 2〉; (b) |2, 0, 2〉. Each spin-1 particle (large green sphere) is symmetrically
decomposed within the valence–bond–solid picture into two spin-1/2 entities (small blue spheres),
which either form a singlet (valence) bond schematically demarcated by ovals or are polarized into the
magnetic-field direction as specified by up-pointing arrows.

which may eventually become the respective ground state at lower magnetic fields being
responsible for emergence of the intermediate 1/2-plateau in a zero-temperature magnetization
curve. The former ground state |2, 0, 2〉 can be regarded as another type of a valence-bond crystal
with an inhomogeneous distribution of the spin density; the near-distant spins 〈Sz

1〉 = 〈Sz
2〉 = 0

do not contribute anyhow to the total magnetization due to formation of double-singlet bonds in
contrast with the further-distant spins 〈Sz

3〉 = 〈Sz
4〉 = 1 providing the highest possible contribution

owing to their fully polarized nature (see Figure 3b for a schematic illustration). Contrary to this,
the ground state |2, 2, 2〉 can be characterized through a homogeneous distribution of the spin density
〈Sz

1〉 = 〈Sz
2〉 = 〈Sz

3〉 = 〈Sz
4〉 = 1/2 spanned over the whole diamond spin cluster. The inhomogeneous

vs. homogeneous distribution of the spin density can be also encountered in other two ground states
|1, 1, 2〉 and |1, 2, 2〉:

|1, 1, 2〉 = − 1√
10
(|1, 1〉⊗|2, 0〉)+

√
3

10 (|1, 0〉⊗|2, 1〉)+
√

6
10 (|1,−1〉⊗|2, 2〉)

= − 1√
10

1√
12
(|1, 0, 1,−1〉+|1, 0,−1, 1〉+2|1, 0, 0, 0〉−|0, 1, 1,−1〉

− |0, 1,−1, 1〉−2|0, 1, 0, 0〉)+
√

3
10

1
2 (|1,−1, 1, 0〉+|1,−1, 0, 1〉

− |−1, 1, 1, 0〉−|−1, 1, 0, 1〉)+
√

6
10

1√
2
(|−1, 0, 1, 1〉−|0,−1, 1, 1〉),

(13)

|1, 2, 2〉 = 1√
5
(|2, 2〉⊗|2,−1〉−|2,−1〉⊗|2, 2〉)−

√
3

10 (|2, 1〉⊗|2, 0〉+|2, 0〉⊗|2, 1〉)
= 1√

10
(|1, 1,−1, 0〉+|1, 1, 0,−1〉−|−1, 0, 1, 1〉−|0,−1, 1, 1〉)

−
√

3
10

1√
12
(|1, 0, 1,−1〉+|1, 0,−1, 1〉+2|1, 0, 0, 0〉+|0, 1, 1,−1〉+|0, 1,−1, 1〉

+ 2|0, 1, 0, 0〉)+
√

3
10

1√
12
(|1,−1, 1, 0〉+|1,−1, 0, 1〉+|−1, 1, 1, 0〉+|−1, 1, 0, 1〉

+ 2|0, 0, 1, 0〉+2|0, 0, 0, 1〉),

(14)

which are responsible for appearance of the intermediate 1/4-plateau in a zero-temperature
magnetization curve. Although the former ground state |1, 1, 2〉 cannot be classified as a
valence–bond–crystal state, the spin density is inhomogeneously distributed within this eigenstate as
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convincingly evidenced by an opposite sign of the local magnetizations of the near- and further-distant
spin pairs 〈Sz

1〉 = 〈Sz
2〉 = −1/4 and 〈Sz

3〉 = 〈Sz
4〉 = 3/4, respectively. On the contrary, the spin density

is homogeneously distributed over the whole diamond spin cluster in the latter ground state |1, 2, 2〉,
which has identical local magnetizations of all four spins 〈Sz

1〉 = 〈Sz
2〉 = 〈Sz

3〉 = 〈Sz
4〉 = 1/4. Finally,

the last ground state |0, 2, 2〉 can be characterized by the eigenvector:

|0, 2, 2〉 = 1√
5
(|2, 2〉⊗|2,−2〉+|2,−2〉⊗|2, 2〉)− 1√

5
(|2, 1〉⊗|2,−1〉+|2,−1〉⊗|2, 1〉)

+ 1√
5
(|2, 0〉⊗|2, 0〉)= 1√

5
(|1, 1,−1,−1〉+|−1,−1, 1, 1〉)− 1√

5
1
2 (|1, 0,−1, 0〉

+ |1, 0, 0,−1〉+|0, 1,−1, 0〉+|0, 1, 0,−1〉+|−1, 0, 1, 0〉+|−1, 0, 0, 1〉+|0,−1, 0, 1〉
+ |0,−1, 1, 0〉)+ 1√

5
1
6 (|1,−1, 1,−1〉+|1,−1,−1, 1〉+2|1,−1, 0, 0〉+|−1, 1, 1,−1〉

+ |−1, 1,−1, 1〉+2|−1, 1, 0, 0〉+2|0, 0, 1,−1〉+2|0, 0,−1, 1〉+4|0, 0, 0, 0〉),

(15)

which implies a complete absence of the local magnetization for all four constituent spins 〈Sz
1〉 =

〈Sz
2〉 = 〈Sz

3〉 = 〈Sz
4〉 = 0 and is thus responsible for the onset of zero magnetization plateau.

It is worthwhile to remark that the critical magnetic fields, which determine a
magnetic-field-driven transition between two ground states with a homogeneous distribution of
the spin density, can be obtained according to the following formula:

• |n− 1, 2, 2〉 → |n, 2, 2〉: hc,n = nJ2 for n = 1, 2, 3, 4,

whereas the critical magnetic fields determining a phase coexistence of the ground states with an
inhomogeneous distribution of the spin density are explicitly given by:

• |3, 1, 2〉 → |4, 2, 2〉: hc,5 = 2J2 + 2J1,
• |2, 0, 2〉 → |3, 1, 2〉: hc,6 = 2J2 + J1,
• |1, 1, 2〉 → |2, 0, 2〉: hc,7 = 3J2 − J1,
• |0, 2, 2〉 → |1, 1, 2〉: hc,8 = 3J2 − 2J1.

It should be also mentioned that the ground states |n, 2, 2〉 (n = 0, 1, 2, 3, 4) with the homogeneous
spin density are realized predominantly in the parameter region where the antiferromagnetic coupling
constant along sides of a diamond spin cluster overwhelms over the antiferromagnetic coupling
constant along its shorter diagonal J2/J1 > 1, J1 > 0 (see Figure 2a) or alternatively the coupling
constant along the shorter diagonal becomes ferromagnetic J1 < 0 (see Figure 2b).

The ground-state phase diagrams displayed in Figure 2 also shed light on a diversity of
zero-temperature magnetization curves. It follows from Figure 2a that the spin-1 Heisenberg diamond
cluster with the antiferromagnetic coupling constant J1 > 0 along sides of a diamond spin cluster
exhibits six different magnetization profiles depending on a relative strength of the coupling constants
J2/J1. The zero-temperature magnetization curve of the spin-1 Heisenberg diamond cluster should
accordingly reflect four field-induced transitions |0, 2, 2〉 → |1, 2, 2〉 → |2, 2, 2〉 → |3, 2, 2〉 → |4, 2, 2〉
for J2/J1 > 1, other four field-driven transitions |0, 2, 2〉 → |1, 1, 2〉 → |2, 0, 2〉 → |3, 1, 2〉 → |4, 2, 2〉
for J2/J1 ∈ (2/3, 1), three field-induced transitions |1, 1, 2〉 → |2, 0, 2〉 → |3, 1, 2〉 → |4, 2, 2〉 for
J2/J1 ∈ (1/3, 2/3), two field-driven transitions |2, 0, 2〉 → |3, 1, 2〉 → |4, 2, 2〉 for J2/J1 ∈ (−1/2, 1/3),
the single field-induced transition |3, 1, 2〉 → |4, 2, 2〉 for J2/J1 ∈ (−1,−1/2) or is without any
field-driven transition for J2/J1 < −1. For comparison, the zero-temperature magnetization process of
the spin-1 Heisenberg diamond cluster with the ferromagnetic coupling constant J1 < 0 along sides
of a diamond spin cluster is much less diverse, since it either shows a sequence of four field-induced
transitions |0, 2, 2〉 → |1, 2, 2〉 → |2, 2, 2〉 → |3, 2, 2〉 → |4, 2, 2〉 for J2 > 0 or is without any field-driven
transition for J2 < 0. Since both of these magnetization scenarios can be also found in the former case
with the antiferromagnetic coupling constant J1 > 0, we will henceforth restrict our attention to this
particular case.

Typical isothermal magnetization curves of the spin-1 Heisenberg diamond cluster are plotted in
Figure 4 for the antiferromagnetic interaction J1 > 0 and a few selected values of the interaction ratio
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J2/J1 in order to provide an independent check of all possible magnetization profiles and field-driven
phase transitions. It should be emphasized that the magnetization curves calculated at the lowest
temperature kBT/J1 = 0.01 are strongly reminiscent of zero-temperature magnetization curves with
discontinuous jumps of the magnetization, which take place at the aforementioned critical magnetic
fields in agreement with the ground-state phase diagram shown in Figure 2a. Note, furthermore, that
the rising temperature causes just a gradual melting of the relevant magnetization curves. The first
particular case, which is shown in Figure 4a for the interaction ratio J2/J1 = −1.25 with the dominant
ferromagnetic interaction along the sides of a diamond spin cluster, illustrates a smooth magnetization
curve without any intermediate plateau. The second particular case with the weaker ferromagnetic
interaction J2/J1 = −0.75 shows an abrupt rise of the magnetization in the vicinity of a zero magnetic
field, which is subsequently followed by the intermediate 3/4-plateau ending up just at the saturation
field (see Figure 4b). It is noteworthy that the intermediate 3/4-plateau as well as a steep rise of the
magnetization close to the saturation field is gradually smeared out upon increasing of temperature.
The magnetization curves with a steep rise of the magnetization followed by the intermediate 1/2-
and 3/4-plateaus are depicted in Figure 4c for the specific value of the interaction ratio J2/J1 = 0.25.
The magnetization curves of the spin-1 Heisenberg diamond cluster displayed in Figure 4d for the
higher value of the interaction ratio J2/J1 = 0.5 indicate the presence of the intermediate 1/4-,
1/2-, and 3/4-plateaus, which follow-up on the initial abrupt rise of the magnetization observable
near the zero magnetic field. It should be stressed, moreover, that the most narrow 1/4-plateau
becomes already indiscernible at relatively low temperature kBT/J1 ≈ 0.1 due to its tiny energy gap.
The magnetization curves of the spin-1 Heisenberg diamond cluster for the last two values of the
interaction ratio J2/J1 = 0.75 and 1.25, which are plotted in Figure 4e,f, respectively, imply existence of
four intermediate plateaus at 0, 1/4, 1/2, and 3/4 of the saturation magnetization. In spite of their
similarity, the underlying mechanism for formation of the magnetization plateaus is preserved just for
a zero plateau, while the microscopic nature of all other magnetization plateaus is completely different
as evidenced by the ground-state phase diagram shown in Figure 2a.

The isothermal entropy change of the spin-1 Heisenberg diamond cluster invoked by the change
of magnetic field ∆h = hi − h f is plotted in Figure 5 as a function of temperature for four different
values of the interaction ratio J2/J1, whereas hi 6= 0 stands for the initial magnetic field and h f = 0 is
the final magnetic field during the isothermal demagnetization. It is noteworthy that the isothermal
change of the overall molar entropy can be directly calculated from a magnetic contribution to the
molar entropy change −∆Sm = Sm(T, h f = 0) − Sm(T, hi 6= 0) because the lattice contribution to
the molar entropy is independent of the magnetic field [i.e., Sl(T, hi) = Sl(T, h f )] and the respective
isothermal change of the lattice part therefore cancels out −∆Sl = Sl(T, h f = 0)− Sl(T, hi 6= 0) = 0.
Within the proposed notation the conventional MCE occurs for positive values of the isothermal
entropy change of its magnetic part −∆Sm > 0, while the inverse MCE is manifested through its
negative values −∆Sm < 0. It should be pointed out, moreover, that the zero-temperature asymptotic
value of the molar entropy change −∆Sm = R ln Ω0 can be simply related to a degeneracy Ω0 of
the zero-field ground state whenever the magnetic-field change does not coincide with any critical
magnetic field ∆h 6= hc,n. In the reverse case ∆h = hc,n, the molar entropy change converges in the
zero-temperature limit to the smaller asymptotic value −∆Sm = R(ln Ω0 − ln 2) due to a two-fold
degeneracy of two coexistent ground states at a critical magnetic field hc,n.

The temperature dependences of the molar entropy change of the spin-1 Heisenberg diamond
cluster is shown in Figure 5a,b for a few different values of the magnetic-field change and the fixed value
of the interaction ratio J2/J1 = 0.25, which is consistent with presence of the valence–bond–crystal
ground state |2, 0, 2〉 in the zero-field limit. It is worthwhile to remark that the singlet state of
the near-distant spin pair emergent within the ground state |2, 0, 2〉 effectively decouples all spin
correlations of two further-distant spins. Owing to this fact, the further-distant spins behave at the zero
magnetic field as free paramagnetic entities and the respective degeneracy of the zero-field ground-state
is Ω0 = 9. It can be seen from Figure 5a,b that the molar entropy change actually tends to the specific
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value −∆Sm = R ln 9 ≈ 18.3 J·K−1·mol−1 for all magnetic-field changes except those being equal to
the critical magnetic fields ∆h/J1 = 1.5 and 2.5. In this latter case, the molar entropy change acquires
in zero-temperature limit smaller asymptotic value −∆Sm = R(ln 9− ln 2) ≈ 12.5 J·K−1·mol−1 in
accordance with the previous argumentation (see the curves for ∆h/J1 = 1.5 and 2.5 in Figure 5a,b).
Although the isothermal entropy change generally diminishes upon increasing of temperature, it is
quite evident from Figure 5a,b that the reverse may be true in a range of moderate temperatures
whenever the magnetic-field change is chosen sufficiently close to one of the critical magnetic fields.
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Figure 4. Isothermal magnetization curves of the spin-1 Heisenberg diamond cluster with the
antiferromagnetic coupling constant J1 > 0 along its shorter diagonal for four different values of
temperature and a few selected values of the interaction ratio: (a) J2/J1 = −1.25; (b) J2/J1 = −0.75;
(c) J2/J1 = 0.25; (d) J2/J1 = 0.5; (e) J2/J1 = 0.75; (f) J2/J1 = 1.25. The magnetization is normalized with
respect to its saturation value ms.
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Figure 5. Temperature variations of the isothermal molar entropy change −∆Sm in J·K−1·mol−1 units
for several values of the magnetic-field change ∆h/J1 and four different values of the interaction ratio:
(a,b) J2/J1 = 0.25; (c,d) J2/J1 = 0.5; (e,f) J2/J1 = 0.75; (g,h) J2/J1 = 1.25.
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The isothermal entropy changes of the spin-1 Heisenberg diamond cluster are depicted in
Figure 5c,d for relatively small and moderate changes of the magnetic field by assuming the interaction
ratio J2/J1 = 0.5 supporting another zero-field ground state |1, 1, 2〉. It should be pointed out that
the conventional MCE with −∆Sm > 0 occurs for any magnetic-field change quite similarly as in
the previous case. In spite of this qualitative similarity, the molar entropy change converges in a
zero-temperature limit to completely different asymptotic values on account of a triply degenerate
(Ω0 = 3) ground state |1, 1, 2〉 realized in zero-field limit. As a matter of fact, it is obvious from Figure 5c,d
that the molar entropy change reaches either the asymptotic value −∆Sm = R ln 3 ≈ 9.1 J·K−1·mol−1

or −∆Sm = R(ln 3− ln 2) ≈ 3.4 J·K−1·mol−1 depending on whether or not the magnetic-field change
coincides with the critical magnetic field, whereas the latter smaller value of −∆Sm applies only if the
magnetic-field change corresponds to one of three critical magnetic fields ∆h/J1 = 0.5, 2.0 or 3.0. Under
these specific conditions, the isothermal entropy change starts from this lower asymptotic value, then it
increases with rising temperature to its local maximum before it finally tends to zero upon further
increase of temperature. The most interesting temperature dependences of the isothermal entropy
change can be found when the magnetic-field change is selected slightly below or above the critical
magnetic fields (e.g., ∆h/J1 = 0.4 or 0.6 in Figure 5c) because the molar entropy change then starts
from its higher zero-temperature asymptotic limit, then it shows a rapid decline to a local minimum
subsequently followed by a continuous rise to a local maximum upon increasing of temperature before
it finally decays to zero in the high-temperature region. If the magnetic-field change is sufficiently far
from the critical magnetic fields, one either finds a monotonic temperature decline of the isothermal
entropy change upon increasing of temperature (see curve for ∆h/J1 = 0.2 in Figure 5c) or one recovers
a non-monotonic temperature dependence with a single round maximum emerging at some moderate
temperature (see the curves for ∆h/J1 = 1.0 and 1.5 in Figure 5c or ∆h/J1 = 4.0 in Figure 5d).

The completely different magnetocaloric features of the spin-1 Heisenberg diamond cluster can
be traced back from temperature variations of the isothermal entropy change, which are shown in
Figure 5e–h for two selected values of the interaction ratio J2/J1 = 0.75 and 1.25. The common feature
of these two particular cases is that the zero-field ground state is the non-degenerate singlet state |0, 2, 2〉,
which is responsible for the existence of a zero magnetization plateau in the respective low-temperature
magnetization curves (see Figure 4e,f). Consequently, the molar entropy change asymptotically tends
in a zero-temperature limit either to zero or to the specific value −∆Sm = −R ln 2 ≈ −5.8 J·K−1·mol−1

depending on whether the magnetic-field change differs or equals the critical magnetic fields,
respectively. It can be seen from Figure 5g,h that the spin-1 Heisenberg diamond cluster with the
interaction ratio J2/J1 = 1.25 exhibits the inverse MCE with −∆Sm < 0 for most of the magnetic-field
changes in a relatively wide range of temperatures. The exceptions to this rule are just the isothermal
entropy changes, which are induced by sufficiently large change of the magnetic field exceeding the
saturation field (see the curve ∆h/J1 = 6.0 in Figure 5h). Contrary to this, the spin-1 Heisenberg
diamond cluster with the interaction ratio J2/J1 = 0.75 shows an outstanding crossover between the
inverse and conventional MCE. While the inverse MCE with −∆Sm < 0 prevails at lower temperatures
and magnetic-field changes, the conventional MCE with −∆Sm > 0 dominates at higher temperatures
and magnetic-field changes (see Figure 5e,f).

Last but not least, let us examine the adiabatic change of temperature as another basic
magnetocaloric property of the spin-1 Heisenberg diamond cluster. For this purpose, density plots
of a magnetic part of the molar entropy are displayed in Figure 6a–d in the magnetic field versus
temperature plane for four selected values of the interaction ratio J2/J1, which have been previously
used in order to demonstrate a diversity of the magnetization profiles. It should be emphasized
that black contour lines shown in Figure 6a–d correspond to isentropy lines, from which one can
easily deduce adiabatic changes of temperature achieved upon lowering of the external magnetic
field. However, it is worthwhile to remark that the respective changes of temperature represent just
an upper estimate for true temperature changes achieved by the adiabatic demagnetization because
the total entropy is at sufficiently low temperatures slightly lifted by a small but nonzero lattice
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contribution generally reducing the relevant temperature change. It is quite evident from Figure 6a–d
that the most notable changes of temperature occur in vicinity of all critical magnetic fields, whereas a
sudden drop (rise) in temperature occurs during the adiabatic demagnetization slightly above (below)
critical magnetic field. Hence, it follows that the abrupt magnetization jump manifest itself during the
adiabatic demagnetization as a critical fan spread over a respective critical magnetic field. Two critical
fans can be accordingly observed in Figure 6a, three critical fans are visible in Figure 6b and four critical
fans appear in Figure 6c,d. It can be seen from Figure 6a–d that most isentropes converge to some
nonzero temperature as the external magnetic field gradually vanishes. More specifically, all isentropes
of the spin-1 Heisenberg diamond cluster with the interaction ratio J2/J1 = 0.75 or 1.25 acquire
nonzero temperature as the external magnetic field goes to zero (see Figure 6c,d). This observation
can be related with presence of zero-field singlet ground state |0, 2, 2〉, which is responsible for the
zero magnetization plateau. On the other hand, the spin-1 Heisenberg diamond cluster with the
interaction ratio J2/J1 = 0.25 or 0.5 may exhibit during the adiabatic demagnetization a sizable drop of
temperature down to ultra-low temperatures due to the absence of a zero magnetization plateau [27].
To achieve this intriguing magnetocaloric feature, the molar entropy should be fixed to a smaller
value than the entropy corresponding to a degeneracy of the respective zero-field ground state, i.e.,
Sm < R ln 9 ≈ 18.3 J·K−1·mol−1 for the zero-field ground state |2, 0, 2〉 emergent for J2/J1 = 0.25
or Sm < R ln 3 ≈ 9.1 J·K−1·mol−1 for the zero-field ground state |1, 1, 2〉 emergent for J2/J1 = 0.5,
respectively. These findings could be of particular importance when the molecular compound {Ni4}
would be used for refrigeration at ultra-low temperatures.
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Figure 6. A density plot of a magnetic part of the molar entropy Sm in J·K−1·mol−1 units in the magnetic
field versus temperature plane for four different values of the interaction ratio: (a) J2/J1 = 0.25;
(b) J2/J1 = 0.5; (c) J2/J1 = 0.75; (d) J2/J1 = 1.25.

4. Theoretical Modeling of Tetranuclear Nickel Complex {Ni4}

In this part, we will interpret available experimental data for the magnetization and susceptibility
of the tetranuclear nickel complex {Ni4} [63,64], which can be theoretically modeled by the spin-1
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Heisenberg diamond cluster given by the Hamiltonian (1). It actually follows from Figure 7 that the
magnetic core of the tetranuclear coordination compound {Ni4} constitutes a ’butterfly tetrameric’
unit composed of four exchange-coupled Ni2+ ions, which is formally identical with the magnetic
structure of the spin-1 Heisenberg diamond cluster schematically illustrated in Figure 1. High-field
magnetization data of the nickel complex {Ni4} recorded in pulsed magnetic fields up to approximately
68 T at the sufficiently low temperature 1.3 K are presented in Figure 8a together with the respective
theoretical fit based on the spin-1 Heisenberg diamond cluster. It is evident from Figure 8a that the
measured magnetization data bear evidence of two wide intermediate plateaus roughly at 1.11 and
1.65 µB per Ni2+ ion, which are consistent with 1/2- and 3/4-plateaus when the total magnetization is
scaled with respect to its saturation value and the appropriate value of the gyromagnetic factor
g = 2.2 of Ni2+ ions is considered. The abrupt magnetization jumps detected at the critical
magnetic fields Bc,1 ≈ 40.5 T and Bc,2 ≈ 68.5 T clearly delimit a width of these intermediate
magnetization plateaus. The distinct magnetization profile with a sole presence of the intermediate
1/2- and 3/4-plateaus enables a simple estimation of the relevant coupling constants. First, it has
been argued by the ground-state analysis that the intermediate 1/2- and 3/4-plateaus emerge in
a zero-temperature magnetization curve as the only magnetization plateaus just if the interaction
ratio falls into the range J2/J1 ∈ (−1/2, 1/3). Second, one may take advantage of the fact that the
width of 3/4-plateau ∆B3/4 = Bc,2 − Bc,1 is independent of the interaction ratio J2/J1 in contrast with
the width of 1/2-plateau ∆B1/2 = Bc,1. Hence, the relative width of two magnetization plateaus
δr = ∆B3/4:∆B1/2 = 28 T:40.5 T ≈ 0.69 observed in the experiment can be straightforwardly exploited
for an unambiguous determination of a relative strength of the coupling constants:

δr =
∆B3/4

∆B1/2
=

Bc,2 − Bc,1

Bc,1
=

J1

2J2 + J1
=⇒ J2

J1
=

1− δr

2δr
=

2Bc,1 − Bc,2

2(Bc,2 − Bc,1)
≈ 2

9
. (16)

Once determined, the absolute values of the coupling constants J1 and J2 can be easily calculated
for instance from the first critical field Bc,1 = 40.5 T when taking into account knowledge of the
interaction ratio (16):

gµBBc,1 = J1 + 2J2 ≈
13
9

J1 =⇒ J1

kB
≈ 9gµB

13kB
Bc,1 = 41.4 K,

J2

kB
≈ 2J1

9kB
= 9.2 K. (17)

In accordance with this argumentation, the spin-1 Heisenberg diamond cluster with the coupling
constants J1/kB = 41.4 K, J2/kB = 9.2 K and the gyromagnetic factor g = 2.2 indeed satisfactorily
reproduce the high-field magnetization data of the butterfly-tetramer compound {Ni4} as convincingly
evidenced by the respective theoretical fit, which is shown in Figure 8a as a thin blue line running
through the experimental data. However, the magnetization curves of the tetranuclear nickel complex
{Ni4} measured in static magnetic fields up to 7 T at two different temperatures 2.0 K and 4.2 K are
slightly underestimated by the respective theoretical fit based on the spin-1 Heisenberg diamond
cluster with the assigned set (17) of the model parameters. It should be nevertheless mentioned that
any change of the coupling constants J1 and J2 does not significantly improve a theoretical fit of these
experimental data. It has been found in Ref. [64] that the significant improvement of the theoretical fit
can be achieved only when considering a weak ferromagnetic exchange coupling J3/kB = −0.66 K
between the further-distant spins S3 and S4, which allows a steeper uprise of the magnetization in a
low-field range. A consideration of the exchange coupling between the further-distant spins S3 and S4

is however beyond the scope of the present article.
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Ni
2+

O

C

N

Figure 7. A crystal structure of the tetranuclear nickel complex [Ni4(µ-CO3)2(aetpy)8](ClO4)4 (aetpy =
2-aminoethyl-pyridine) abbreviated as {Ni4} with a magnetic structure of ’butterfly tetramer’, which is
visualized according to crystallographic data reported in Ref. [63]. Crystallographic positions of
hydrogen atoms and perchlorate anions ClO−4 were omitted for better clarity.
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Figure 8. (a) high-field magnetization curve (red thick line) of the nickel complex {Ni4} recorded
in pulsed magnetic fields up to 68 T at the sufficiently low temperature 1.3 K and the respective
theoretical fit (thin blue line) based on the spin-1 Heisenberg diamond cluster with the coupling
constants J1/kB = 41.4 K, J2/kB = 9.2 K and the gyromagnetic factor g = 2.2; (b) magnetization
curves (red lines with filled circles) of the nickel complex {Ni4} in static magnetic fields up to 7 T at two
different temperatures 2.0 K and 4.2 K versus the respective theoretical predictions (blue lines) for the
spin-1 Heisenberg diamond cluster with the same set of the model parameters as specified in (a).

Next, we will employ the coupling constants (17) ascribed to the coordination compound {Ni4}
for a theoretical interpretation of a temperature dependence of the susceptibility times temperature
(χT) product. To this end, the available experimental data for the χT product of the tetranuclear nickel
complex {Ni4} are confronted in Figure 9a with the respective theoretical prediction based on the
spin-1 Heisenberg diamond cluster by assuming the model parameters (17) previously extracted from
the fitting procedure of the high-field magnetization data. Although a theoretical curve qualitatively
captures all essential features for temperature variations of the χT product including a local minimum
experimentally observed around 14 K, the good quantitative accordance between the experimental
and theoretical data are just found in a relatively narrow range of temperatures T ∈ (25, 80) K, while,
outside of this temperature range, the theoretical data generally underestimate the experimental ones.
We have therefore adapted the optimization technique based on a hill-climbing procedure in order to
find the best fitting set for the χT data. This procedure provided for the tetranuclear nickel compound
{Ni4} described by the spin-1 Heisenberg diamond cluster another fitting set of the model parameters
J1/kB = 54.3 K, J2/kB = 13.9 K and g = 2.31, which not only qualitatively but also quantitatively
captures the experimental data in a full range of temperatures as exemplified in Figure 9b.
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Figure 9. Temperature variations of the susceptibility times temperature product of the nickel complex
{Ni4} (a red line with filled circles) at the magnetic field B = 0.1 T versus the respective theoretical
prediction based on the spin-1 Heisenberg diamond cluster (a blue line) when considering two different
sets of the fitting parameters. The fitting set specified in the panel (a) is taken without any further
adjustment from the previously described fitting procedure of the high-field magnetization data,
whereas the fitting set specified in the panel (b) represents the best fit of the susceptibility data.

However, it should be pointed out that this latter fitting set of parameters is not consistent with
the high-field magnetization data, since it predicts much higher values of the critical fields Bc,1 = 52.9 T
and Bc,2 = 87.9 T than those observed experimentally. It could be thus concluded that it is not possible
to achieve by any means a satisfactory simultaneous fit of the magnetization and susceptibility data
using the unique set of the model parameters of the spin-1 Heisenberg diamond cluster even though
the magnetization and susceptibility data can be separately fitted with an extraordinary high accuracy.
While the rise of the gyromagnetic factor by a few percent (cca. 5 %) could be attributed to a substantial
temperature difference within the magnetization and susceptibility measurements, the relatively
large discrepancy in assessment of both coupling constants would suggest that the spin-1 Heisenberg
diamond cluster provides reasonable but somewhat oversimplified description of the tetranuclear
nickel complex {Ni4} with the need for further refinement through subleading interaction terms. It is
worthwhile to remark, moreover, that the fitting set reported for the high-field magnetization data are
much more reliable in comparison with the fitting set reported for the susceptibility data, which are
easily affected by small perturbations (e.g., further-neighbor pair interaction, biquadratic interaction,
Dzyaloshinskii–Moriya interaction, etc.) unlike the high-field magnetization data being quite robust
against such small perturbations. Moreover, it is quite reasonable to conjecture from nearly isotropic
character of the magnetization curves measured along two orthogonal crystallographic axes [64] that
the axial and/or rhombic zero-field-splitting parameters acting on Ni2+ ions are presumably negligible
and hence the discrepancies in the magnetization and susceptibility data could be presumably resolved
when taking into consideration the biquadratic interaction and/or the pair exchange interaction
between the further-distant spins S3 and S4.

Last but not least, the best fitting set (17) extracted for the spin-1 Heisenberg diamond-cluster
model from the high-field magnetization curve of the tetranuclear nickel complex {Ni4} will be used
for making a respective theoretical prediction of its basic magnetocaloric properties not reported
experimentally hitherto. More specifically, we will investigate in detail temperature variations of
the isothermal entropy change as well as field-induced changes of temperature during the adiabatic
demagnetization. It is worthwhile to recall that the isothermal change of the total entropy achieved
upon variation of the magnetic field is entirely determined by its magnetic part because the relevant
lattice contribution cancels out owing to its independence on the magnetic field. Note, furthermore,
that the respective theoretical prediction is based on the fitting set of magnetization data due to the
fact that the basic magnetocaloric features are strongly correlated with the magnetization changes,
whereas the fitting set of parameters for the susceptibility data largely overestimates both critical fields
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closely associated with the magnetization jumps and it is therefore much less reliable. It is evident
from Figure 10a that the isothermal mass entropy change of the nickel compound {Ni4} gradually
diminishes from its maximum value −∆SM ≈ 10.6 J·K−1·kg−1 upon an increasing of temperature
whenever the magnetic-field change is sufficiently small ∆B < 15 T. On the assumption that the
magnetic-field change is set ∆B = 7 T, the molecular compound {Ni4} provides an efficient refrigerant
below 2.3 K with the enhanced MCE −∆SM > 10 J·K−1·kg−1. It should be stressed that a subtle
rise of the isothermal entropy change −∆SM can be detected for the higher magnetic-field changes
(e.g., see the curve for ∆B = 20 T in Figure 10a), which is, however, of very limited applicability for the
cooling technologies.

On the other hand, the density plot of a magnetic contribution to the mass entropy in the magnetic
field versus temperature plane is displayed in Figure 10b with the aim to elucidate a parameter space
suitable for cooling purposes. The relevant contour lines with constant magnetic entropy bring insight
into magnetic-field driven changes of temperature during the process of adiabatic demagnetization.
A considerable drop and increase in temperature apparently occurs in the isentropes near the critical
magnetic fields, which correspond to the magnetic-field-driven magnetization jumps. If the magnetic
entropy is set sufficiently close to the particular value SM ≈ 10.6 J·K−1·kg−1, moreover, the adiabatic
demagnetization should cause a sizable drop of temperature of the molecular complex {Ni4} with up
to −∆T ≈ 10 K achieved due to the magnetic-field change ∆B = 7 T.
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Figure 10. (a) temperature variations of the isothermal mass entropy change −∆SM of the tetranuclear
nickel complex {Ni4} for a few selected values of the magnetic-field change. A dotted line, which serves
as a guide for eyes only, delimits the parameter space with the enhanced MCE −∆SM > 10 J·K−1·kg−1;
(b) a density plot of the magnetic contribution to the mass entropy in the field-temperature plane.
Displayed contour lines shed light on adiabatic changes of temperature achieved upon variation of the
magnetic field. All results presented in (a,b) were calculated for the spin-1 Heisenberg diamond cluster
with the coupling constants J1/kB = 41.4 K, J2/kB = 9.2 K and the gyromagnetic factor g = 2.2.

5. Conclusions

In the present article, we have investigated in detail magnetic and magnetocaloric properties
of the spin-1 Heisenberg diamond cluster with two different coupling constants through an exact
diagonalization based on the Kambe’s method, which takes advantage of a local conservation of
composite spins formed by spin-1 entities located in opposite corners of a diamond spin cluster.
It has been verified that the spin-1 Heisenberg diamond cluster exhibits several intriguing quantum
ground states, which come to light in low-temperature magnetization curves as intermediate 1/4-,
1/2-, or 3/4-plateau depending on a specific choice of the interaction ratio and the magnetic field.
We have demonstrated a substantial diversity of the magnetization curves, which may exhibit
different magnetization profiles with either a single 3/4-plateau, a sequence of two consecutive
1/2- and 3/4-plateaus, three consecutive 1/4-, 1/2- and 3/4-plateaus, four consecutive 0-, 1/4-, 1/2-,
and 3/4-plateaus, or is completely free of any plateau. In addition, the spin-1 Heisenberg diamond
cluster may also exhibit the enhanced MCE, which may be relevant for a low-temperature refrigeration
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achieved through the adiabatic demagnetization on assumption that a relative strength of the coupling
constants J2/J1 ∈ (−1, 2/3) is consistent with absence of the zero magnetization plateau.

It has been evidenced that the spin-1 Heisenberg diamond cluster with the antiferromagnetic
coupling constants J1/kB = 41.4 K, J2/kB = 9.2 K and the gyromagnetic factor g = 2.2 satisfactorily
captures low-temperature magnetization curves recorded for the tetranuclear nickel complex {Ni4}
including a size and position of the intermediate 1/2- and 3/4-plateaus [64]. Moreover, it turns out
that the fractional magnetization plateaus observed experimentally bear evidence of two remarkable
valence–bond–crystal ground states with either a single or double valence bond between the near-distant
spin-1 Ni2+ ions. It has also been suggested that the molecular compound {Ni4} may provide a
prospective cryogenic coolant with the maximal isothermal entropy change −∆SM = 10.6 J·K−1·kg−1

suitable for a low-temperature refrigeration below 2.3 K.
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