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Abstract: Octahedral nickel(II) complexes are among the simplest systems that exhibit zero-field
splitting by having two unpaired electrons. For the purpose of clarifying the relationship between
structure and zero-field splitting in a low-symmetric system, distorted octahedral nickel(II) complexes
were prepared with a tetradentate ligand, 2-[bis(2-methoxyethyl)aminomethyl]-4-nitrophenolate(1−)
[(onp)−]. The complex [Ni(onp)(dmso)(H2O)][BPh4]·2dmso (1) (dmso = dimethyl sulfoxide) was
characterized as a bulk sample by IR, elemental analysis, mass spectrometry, electronic spectra, and
magnetic properties. The powder electronic spectral data were analyzed based on the angular overlap
model to conclude that the spectra were typical of D4-symmetric octahedral coordination geometry
with a weak axial ligand field. Simultaneous analysis of the temperature-dependent susceptibility
and field-dependent magnetization data yielded the positive axial zero-field splitting parameter
D (H = guβSuHu + D[Sz

2 − S(S + 1)/3]), which was consistent with the weak axial ligand field.
Single-crystal X-ray analysis revealed the crystal structures of [Ni(onp)(dmso)(H2O)][BPh4]·dmso (2)
and [Ni(onp)(dmf)2][BPh4] (3) (dmf = N,N-dimethylformamide). The density functional theory (DFT)
computations based on the crystal structures indicated the D4-symmetric octahedral coordination
geometries with weak axial ligand fields. This study also showed the importance of considering
g-anisotropy in magnetic analysis, even if g-anisotropy is small.

Keywords: octahedral nickel(II) complex; crystal structure; density functional theory (DFT); zero-field
splitting; magnetic analysis; g-anisotropy; ligand field; algebraic expression

1. Introduction

Octahedral nickel(II) complexes are among the simplest systems that exhibit zero-field
splitting by having two unpaired electrons. (Please note that octahedral complexes do
not necessarily have ideal octahedral symmetry [1], and zero-field splitting is affected
by the slight symmetry reduction in the ligand field [2]). However, since the nickel(II)
complex is an S = 1 non-Kramers system with an even number of unpaired electrons, high-
frequency and high-field electron paramagnetic resonance (HFEPR) is required to observe
the electron-paramagnetic-resonance (epr) signals to precisely determine the zero-field
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splitting parameters, D and E [3]. Here, the axial zero-field-splitting parameter D and the
rhombic zero-field-splitting parameter E are defined as the phenomenological Hamiltonian
H = guβSuHu + D[Sz

2 − S(S + 1)/3] + E(Sx
2 − Sy

2) [4], which can also be derived from the
formal spin-Hamiltonian [2]. Then, in the S = 1 system, the three originally degenerate
microstates are split into −2D/3, D/3 − E, and D/3 + E energy levels without an external
magnetic field. On the other hand, attempts to determine the zero-field-splitting parameters
from magnetic data analysis have been successful [2,5], although not as accurate as HFEPR.
The relationship between the coordination geometry around the nickel(II) ion and the sign
of the axial zero-field splitting parameter D has been studied [2], and the result indicates
that D is negative when the axial ligand field is strong (ez > ex,y) and positive when the
axial ligand field is weak (ez < ex,y), where eu represents the metal-ligand interaction in the
u direction. Since the sign of the D parameter is related to magnetic anisotropy and the
conditions for the single molecule magnets [2,6–9], even if there are exceptions [10], it is
important to clarify the relationship between the sign of D and structure and to control the
sign of D.

To determine the zero-field splitting parameters from the magnetic analysis, simul-
taneous fitting of the temperature dependence of magnetic susceptibility and the field
dependence of magnetization is preferable [2]. For this purpose, it is, of course, essential to
simulate magnetic susceptibility and magnetization. First, in the days when the cryomag-
netic susceptibility was measured only down to about 5 K, it was not necessary to consider
the effect of saturation by the applied magnetic field. However, now that it is common
to measure magnetic susceptibility down to 2 K, a magnetic-field-dependent magnetic
susceptibility equation is required to simulate the effect that the magnetic susceptibility is
not proportional to the magnetic field at low temperatures. In addition, the eigenvalues
are often series expanded with respect to the magnetic field to simplify the equation [2,4];
however, this should be avoided whenever possible, as it may reduce the accuracy of
the calculation when |D| is small. The field-dependent magnetic susceptibility equation
without using series expansion was reported for the S = 1 system [11]. In recent years,
magnetization measurements have also become more common, and magnetization in the
principal directions can be expressed in the same way as the magnetic field-dependent
susceptibility equation. However, with powder samples, although the methodology is well
established, it is not easy to express the powder average magnetization algebraically. In
this study, we derive an algebraic expression for the exact powder average magnetization
for the S = 1 system.

On the other hand, it is not easy to predict the sign of D when the symmetry of the
ligand field around the central metal is not clear. (Please note that the symmetry of the ligand
field [1] includes not only the position of the donor atoms but also their ligand-field strengths
and the orientation of the donor π-orbitals.) In this study, nickel(II) complexes were prepared
with a ligand, 2-[bis(2-methoxyethyl)aminomethyl]-4-nitrophenolate(1−) [(onp)−] (Figure 1),
giving low-symmetric ligand fields to investigate the relationship between the structure and
zero-field splitting parameters of low-symmetric nickel(II) complexes.
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In the ligand (onp)−, the bis(2-methoxyethyl)aminomethyl motif is introduced at the
2-position of 4-nitrophenol, while the 4-chloro derivative was reported [12]. To our knowl-
edge, the introduction of bis(2-methoxyethyl)aminomethyl motif into a phenol-based lig-
and was first conducted by Sakiyama to obtain 2,6-bis[bis(2-methoxyethyl)aminomethyl]-
4-methylphenolate(1−) [(bomp)−] [13]. Subsequently, 4-chlorophenol and 4-nitrophenol
derivatives were also synthesized [14]. In a series of syntheses, the more electron-withdrawing
the 4-substituent is, the slower the reaction proceeds, but the cleaner the synthesis. Es-
pecially with 4-nitrophenol, which was used as the ligand in this study with a large
electron-withdrawing property, the 2-substituted (onp)− can be made easily and cleanly
without 2,6-substituted (bonp)− contamination. In synthesis, it is desirable to follow the
raw materials and products in the reaction mixture chromatographically (e.g., by thin-layer
chromatography) because slight differences in conditions can cause the reaction to proceed
differently. Since formaldehyde, which has been used in past papers, is carcinogenic and
volatile, it is better to use paraformaldehyde, which is not volatile. Great care should be
taken when handling reactants.

2. Materials and Methods
2.1. Measurements

Elemental analyses (C, H, and N) were performed at the Elemental Analysis Service
Centre of Kyushu University. Powder IR spectra were recorded on a Nicolet iS50 FTIR
spectrometer and liquid IR spectra on a Jasco FT/IR-4000 using NaCl plates. Electrospray
ionization (ESI) mass spectra were measured on a Waters Quattro micro-API mass spec-
trometer in mixed solvents (acetonitrile:dimethyl sulfoxide:H2O = 4:1:1). Powder electronic
spectra were measured on a Shimadzu UV-2600. Magnetic susceptibility measurements
were performed with a Quantum Design MPMS-XL7 SQUID magnetometer. Temperature
dependence of the susceptibility was measured in the temperature range from 1.9 to 300 K
with a static field of 5 kOe. Field dependence of the magnetization was measured in the
field range from 0 to 70 kOe at 2 K and 4 K. All data were corrected for the diamagnetism
of the capsule and the samples by means of Pascal’s constants [15].

2.2. Materials

Methanol, ethanol, paraformaldehyde, p-nitrophenol, nickel(II) nitrate—water (1/6),
N,N-dimethylformamide (dmf), dimethyl sulfoxide (dmso), and 2-propanol were supplied
by Nacalai Tesque Inc., Kyoto, Japan. Bis(2-methoxyethyl)amine was supplied by Tokyo
Chemical Industry Co., Ltd., Tokyo, Japan, Sodium tetraphenylborate was supplied by
FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan. H(onp) was prepared by
refluxing the ethanolic solution (10 mL) of paraformaldehyde (1.51 g, 50.3 mmol), bis(2-
methoxyethyl)amine (6.66 g, 50.0 mmol), and p-nitrophenol (7.01 g, 50.4 mmol) for 29 h
(yield 12.02 g, 42.28 mmol, 84.6%), based on the literature method [16]. The IR spectra of
H(onp) are shown in Figure S1.

2.3. Preparations

[Ni(onp)(dmso)(H2O)][BPh4]·2dmso 1. To a methanolic solution (20 mL) of Ni(NO3)2·6H2O
(0.31 g, 1.1 mmol) was added H(onp) (0.28 g, 0.98 mmol) and refluxed for 15 min. To this
was added sodium tetraphenylborate (0.69 g, 2.0 mmol). After cooling, green precipitates
were collected by filtration to obtain crude product (0.24 g). The crude product is considered
to be mainly [Ni(onp)(H2O)2][BPh4] with minor nitrate byproducts. Recrystallized from
dmso/2-propanol to obtain green microcrystals. Yield 0.11 g (11%) (Found: C, 56.20; H,
6.25; N, 3.05; Ni, 7.1%. Calc. for C43H59BN2NiO9S3: C, 56.50; H, 6.50; N, 3.05; Ni, 6.4%).
Selected IR data [
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2.4. Crystallography

Single-crystal X-ray diffraction data were obtained with a Rigaku XtaLAB AFC11
diffractometer with graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). A single
crystal was mounted with a cryoloop and flash-cooled with a cold N2 gas stream. Data were
processed using the CrysAlisPro 1.171.39.43a (Rigaku OD, 2018) software packages. The
structure was solved by intrinsic phasing methods using the SHELXT 2018/2 (Sheldrick,
2018) [17] software packages and refined on F2 (with all independent reflections) using
the SHELXL 2018/3 (Sheldrick, 2018) [18] software packages. The non-hydrogen atoms
were refined anisotropically, and hydrogen atoms, except for those of water molecules,
were refined using the riding model. Hydrogen atoms for water molecules were located
by Fourier difference map and fixed at the appropriate positions for hydrogen-bonding
interactions during the refinement.

2.5. Computation

DFT computations were performed using the GAMESS [ver. 20 April 2017(R1)]
program [19,20] on Fujitsu PRIMERGY CX2550/CX2560 M4 (ITO supercomputer system)
at Kyushu University. Calculations were performed with LC-BOP/6-31G** [21] based on
the restricted open-shell Hartree–Fock (ROHF). Angular overlap model (AOM) calculation
was performed using the AOMX program on an Intel Celeron computer. Magnetic analyses
were conducted by MagSaki(B) ver. W0.11.9 in MagSaki software series [22–25].

3. Results and Discussion

In this study, the nickel(II) complex [Ni(onp)(dmso)(H2O)][BPh4]·2dmso (1), obtained
as a green powder, was characterized as a bulk sample by IR, elemental analysis, mass
spectrometry, electronic spectra, and magnetic properties. The single-crystal sample
[Ni(onp)(dmso)(H2O)][BPh4]·dmso (2), prepared similarly to 1, but slowly, was obtained
only in small quantities and was used only for single-crystal X-ray structural analysis.
The related single-crystal sample [Ni(onp)(dmf)2][BPh4] (3) was also used only for X-ray
structural analysis.

3.1. Crystal Structures of Complexes 2 and 3

Single crystals of [Ni(onp)(dmso)(H2O)][BPh4]·dmso (2) and [Ni(onp)(dmf)2][BPh4]
(3), suitable for single-crystal X-ray analysis, were obtained by slow diffusion of 2-propanol
into a dmso solution or a dmf solution of the crude product. Crystallographic data of 2 and
3 are summarized in Table 1 with the Cambridge Crystallographic Data Centre (CCDC)
deposition numbers.

Table 1. Crystallographic data and refinement parameters of 2 and 3.

Compound Complex 2 Complex 3

Empirical Formula C41H53BN2NiO8S2 C43H53BN4NiO7
Formula Weight 835.49 807.41
Crystal system monoclinic monoclinic

Space group P21/n P21/c
a/Å 11.5855 (3) 12.6151 (2)
b/Å 16.3220 (4) 16.2543 (2)
c/Å 22.1213 (5) 20.7114 (3)
β/◦ 99.695 (2) 106.906 (2)

V/Å3 4123.36 (18) 4063.33 (11)
Z 4 4

Crystal Dimensions/mm 0.164 × 0.114 × 0.057 0.138 × 0.098 × 0.064
T/K 100 100
λ/Å 0.71073 0.71073

ρcalcd/g cm−3 1.346 1.320



Magnetochemistry 2024, 10, 32 5 of 17

Table 1. Cont.

Compound Complex 2 Complex 3

µ/mm−1 0.625 0.533
F(000) 1768 1712

2θmax/◦ 55 60
No. of Reflections Measured 28,549 60,987

No. of independent reflections 9416 (Rint = 0.0298) 10,822 (Rint = 0.0320)
Data/restraints/parameters 9416/3/518 10,822/0/511

R1 (I > 2.00σ(I)) 1 0.0409 0.0297
wR2 (All reflections) 2 0.1093 0.0852

Goodness of Fit Indicator 1.045 1.044
Highest peak, deepest hole/e Å−3 1.001, −0.539 0.413, −0.416

CCDC deposition number 2335894 2335893
1 R1 = Σ||Fo| − |Fc||/Σ|Fo|, 2 wR2 = [Σ(w(Fo2 − Fc2)2)/Σw(Fo2)2]1/2.

3.1.1. Crystal Structure of [Ni(onp)(dmso)(H2O)][BPh4]·dmso (2)

Crystals of 2 consists of [Ni(onp)(dmso)(H2O)]+ complex cations and tetraphenylbo-
rate anions ([BPh4]−) in a 1:1 molar ratio. The crystal structure of [Ni(onp)(dmso)(H2O)]+

complex cation is depicted in Figure 2. The selected bond distances and angles are summa-
rized in Tables 2 and 3. In the complex cation, the (onp)− ligand worked as a tetradentate
ligand, and the dmso and aqua ligands worked as monodentate ligands. The dmso ligand
coordinated to the central nickel(II) ion through the oxygen atom, and the sulfur atom
was disordered [occupancies: S(1), 0.7757(19); S(1B), 0.2243(19)]. This is a typical phe-
nomenon for an oxygen-coordinating dmso ligand due to the sulfur inversion [26,27]. The
coordination geometry around the central nickel(II) ion was octahedral with NO5 donor
atoms. The bond distances around the nickel(II) ion are normal for the related nickel(II)
complexes [28,29], but the coordination geometry was slightly elongated along the O(3)-
Ni(1)-O(6) direction. When the (onp)− ligand acts as a tetradentate ligand in an octahedral
nickel(II) complex, the remaining two vacant sites should be in the cis-positions due to the
steric requirement of the (onp)− ligand. Furthermore, the space of the vacant sites is not
enough for the coordination of two dmso ligands. Therefore, the coordination of the aqua
ligand with the dmso ligand is considered inevitable.
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Table 2. Selected bond distances for 2.

Atom–Atom Distance/Å Atom–Atom Distance/Å

Ni(1)–O(1) 1.9957(14) Ni(1)–O(2) 2.1199 (14)
Ni(1)–O(3) 2.1121(15) Ni(1)–O(6) 2.0708 (14)
Ni(1)–O(7) 2.0261(16) Ni(1)–N(1) 2.0583 (17)

Table 3. Selected bond angles for 2.

Atom–Atom–Atom Angle/◦ Atom–Atom–Atom Angle/◦

O(1)–Ni(1)–O(2) 176.09 (6) O(1)–Ni(1)–O(3) 93.37 (6)
O(1)–Ni(1)–O(6) 91.60 (6) O(1)–Ni(1)–O(7) 95.30 (7)
O(1)–Ni(1)–N(1) 93.15 (6) O(2)–Ni(1)–O(3) 87.02 (6)
O(2)–Ni(1)–O(6) 87.68 (6) O(2)–Ni(1)–O(7) 88.54 (7)
O(2)–Ni(1)–N(1) 83.07 (6) O(3)–Ni(1)–O(6) 172.88 (6)
O(3)–Ni(1)–O(7) 94.28 (7) O(3)–Ni(1)–N(1) 80.59 (6)
O(6)–Ni(1)–O(7) 90.33 (6) O(6)–Ni(1)–N(1) 94.06 (6)
O(7)–Ni(1)–N(1) 170.36 (7)

3.1.2. Crystal Structure of [Ni(onp)(dmf)2][BPh4] (3)

Crystals of 3 consist of [Ni(onp)(dmf)2]+ complex cations and [BPh4]− anions in a 1:1
molar ratio. The crystal structure of [Ni(onp)(dmf)2]+ complex cation is shown in Figure 3.
The selected bond distances and angles are summarized in Tables 4 and 5. In the complex
cation, the (onp)− ligand worked as a tetradentate ligand, and the two dmf ligands worked
as monodentate ligands. The coordination geometry around the central nickel(II) ion
was octahedral with NO5 donor atoms. The bond distances around the nickel(II) ion are
normal for the related nickel(II) complexes [28,29], but the coordination geometry is slightly
elongated along the O(5)-Ni(1)-O(6) direction. In both 2 and 3, the distortion patterns for
the octahedral geometry are very similar to each other, although the exogenous ligands are
different. In the case of the dmf ligand, the space required for coordination is smaller than
that of the dmso ligand, allowing two dmf ligands to bind to the central nickel(II) ion.
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Table 4. Selected bond distances for 3.

Atom–Atom Distance/Å Atom–Atom Distance/Å

Ni(1)–O(1) 1.9906 (8) Ni(1)–O(2) 2.1330 (8)
Ni(1)–O(4) 2.0295 (8) Ni(1)–O(5) 2.0709 (8)
Ni(1)–O(6) 2.1240 (8) Ni(1)–N(2) 2.0643 (9)

Table 5. Selected bond angles for 3.

Atom–Atom–Atom Angle/◦ Atom–Atom–Atom Angle/◦

O(1)–Ni(1)–O(2) 177.10 (3) O(1)–Ni(1)–O(4) 93.97 (3)
O(1)–Ni(1)–O(5) 93.28 (3) O(1)–Ni(1)–O(6) 94.85 (3)
O(1)–Ni(1)–N(2) 94.22 (3) O(2)–Ni(1)–O(4) 88.85 (3)
O(2)–Ni(1)–O(5) 86.00 (3) O(2)–Ni(1)–O(6) 85.53 (3)
O(2)–Ni(1)–N(2) 83.01(3) O(4)–Ni(1)–O(5) 91.61 (3)
O(4)–Ni(1)–O(6) 94.96 (3) O(4)–Ni(1)–N(2) 170.58 (3)
O(5)–Ni(1)–O(6) 169.17 (3) O(5)–Ni(1)–N(2) 92.55 (3)
O(6)–Ni(1)–N(2) 79.72 (3)

3.2. Density Functional Theory (DFT) Computations for Complexes 2 and 3

To gain a better understanding of the ground state, density functional theory (DFT)
computations were conducted for the crystallographically identified complex cations in 2
and 3. The energy diagrams and d-orbital-related molecular orbitals for 2 and 3 are shown
in Figures 4 and 5, respectively. The results for the two complex cations were very similar,
and we will first discuss the [Ni(onp)(dmso)(H2O)]+ complex cation in 2. Judging from the
splitting pattern of the five d-orbital-related molecular orbitals, the coordination geometry
can be well approximated as the D4 rotation group. (Please note that the D4 rotation
group [30] is a subgroup of the D4h point group but is defined as a group considering only
rotation operations. The D4 rotation group is the simplest group suitable for reproducing
the splitting pattern and the phase of the orbitals based on the coordination geometry).
The five orbitals can be approximately assigned to b2, e, a1, and b1 from the lower energy,
where the e orbital set is doubly degenerate. The three lower orbitals (b2 and e) are each
filled with two electrons, but the two upper orbitals (a1 and b1) are each singly occupied
and are magnetic orbitals. One important point is that the b1 (dx

2−y
2) orbital is above the

a1 (dz
2) orbital in the magnetic orbitals, indicating that the ligand field in the z direction is

weaker than those in the x and y directions, which is consistent with the elongation along
the O(3)-Ni(1)-O(6) direction (z direction) in the crystal structure. The other important point
is the degenerate e orbital set. Although not completely degenerate due to the mixing of
the ligand orbitals, the spread of the two orbitals shows linear combinations of the dxz and
dyz orbitals. This indicates that the magnitudes of the ligand fields in the x and y directions
are approximately the same. The characteristics of the energy diagram and molecular
orbitals for 3 are basically the same as those of 2. The ligand field in the z direction is
weaker than those in the x and y directions, but the ligand fields in the x and y directions
are approximately the same.
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3.3. Electronic Spectra of 1

The powder electronic spectra were measured for 1 by the diffuse reflection method
at room temperature, as shown in Figure 6a. The spectra were typical of an octahedral
nickel(II) complex with two spin-allowed bands from near-infrared to visible range. As-
suming the O symmetry, the first spin-allowed band at around 10,000 cm−1 was assigned
to 3A2(3F) → 3T2(3F), a small shoulder band at around 13,000 cm−1 to 3A2 → 1E(1D), the
second spin-allowed band at around 16,000 cm−1 to 3A2 → 3T1(3F). The expected third
spin-allowed band [3A2 → 3T1(3P)] was hidden in the bands originating from the ligand.
Focusing on the band shapes of the first and the second spin-allowed bands, the first band
is slightly inclined toward the lower energy (the lower-energy side is steeper than the
other), but the second band is slightly inclined toward the higher energy (higher energy
side is steeper than the other). This feature was clearly reaffirmed by Gaussian curve fitting,
assuming three spectral components of equal height and width. (Please note that while
these restrictions may not be strictly correct, the ability to uniquely determine the solution
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in the initial process of fitting is an advantage.) The obtained spectral components are also
shown in Figure 6a, and the sum of the spectral components fits the observed data very
well. This splitting pattern is typical of tetragonally elongated octahedral geometry with a
weak axial ligand field [31].
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Next, angular overlap model (AOM) calculations were performed assuming D4 sym-
metry to reproduce the obtained spectral components. The best-fitting parameter set was
obtained as (B, C, eσ ,ax, eσ ,eq) = (920 cm−1, 3200 cm−1, 2690 cm−1, 3550 cm−1), where B and
C are the Racah parameters, and eσ ,ax and eσ ,eq are the axial (z direction) and the equatorial
(x, y direction) AOM parameters, corresponding to the metal-ligand σ interactions [1]. The
π interactions were not considered in the calculation. The resulting energy levels of the
states are shown in Figure 6b, together with the assignment of states in the D4 symmetry.
The AOM parameters obtained from the spectral analysis show that the ligand field of
complex 1 is D4 symmetric and axially weak (eσ ,ax < eσ ,eq), which is consistent with the
DFT results for 2 and 3. The D4 symmetry and the axially weak ligand field around the
central nickel(II) ion may be due to the nature of the (omp)− ligand. Furthermore, it is
reasonable to assume that the structure of the complex cation in 1 is the same as that in
2 since the steric requirements of the (omp)− ligand prevent the two dmso ligands from
binding to the nickel(II) ion, as discussed in Section 3.1.1.

3.4. Theory and Magnetic Equations

Prior to magnetic analysis, the equations necessary for magnetic analysis are orga-
nized and summarized here. In particular, closed-form algebraic equations describing the
magnetization in any field direction in the S = 1 system will be derived in this study. This
allows the powder magnetization to be expressed in terms of algebraic equations.

In molecular magnetism, the following procedure is generally used to simulate mag-
netization and magnetic susceptibility [4,32]. First, the Hamiltonian is defined, and then
the energy matrix is obtained from the Hamiltonian and the appropriate set of basis func-
tions. Solving the secular equation yields the energy of the microstates as eigenvalues.
Furthermore, partial differentiation of the obtained eigenvalues with respect to the mag-
netic field yields the microscopic magnetization of the microstates. Then, by considering
the Boltzmann distribution, the equations for magnetization and magnetic susceptibility
can be obtained. In the process of solving the secular equation to obtain eigenvalues, the
dimension of the matrix is often too large to obtain an exact solution, but in the present
S = 1 system, the dimension of the matrix is only 3 × 3, so the exact solution can be
obtained algebraically.
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Since powder samples were used for magnetic measurements, the powder average in
Equation (1) [2,4] must be used for simulations in magnetic susceptibility data analysis for
magnetically anisotropic compounds.

χav =
1

4π

∫ π

0

∫ 2π

0
χ(θ, φ)sin θdφ dθ (1)

However, since the magnetic susceptibility in weak magnetic fields is additive, the
powder average is the same as the arithmetic average. When the symmetry is axial,
the susceptibility is written as in Equation (2), which is the same as Equation (A1) in
Appendix A.

χav =
χz + 2χx

3
(2)

To calculate the principal magnetic susceptibilities χz and χx in Equation (2), previ-
ously derived Equations (A2) and (A3) [11] in Appendix A are useful for the S = 1 system.
Considering the axial anisotropic g-factors (gz and gx), the axial zero-field splitting (D),
temperature-independent paramagnetism (χtip,z and χtip,x), and intermolecular interac-
tion (zJ), the atomic magnetic susceptibility, χA, and its components are expressed as
Equations (A4)–(A7) [11] in Appendix A.

The problem here is the magnetization with anisotropy. While the principal magnetiza-
tion (Mx, My, and Mz) can be easily expressed, the powder average can be expressed as the
arithmetic average of the principal magnetization only in weak magnetic fields where the
magnetization is proportional to the field. The principal magnetization Mz and Mx in axial
symmetry can be expressed as Equations (A8) and (A9) in Appendix B. The powder average
magnetization required for magnetization simulation in high magnetic fields can be written
as in Equation (3). In Equation (3), the function M(θ, φ) represents the magnetization in
the u(θ, φ) direction of the polar coordinates when the magnetic field is applied along the
direction u(θ, φ). To calculate the exact powder average of the magnetization, we first need
to express the function M(θ, φ).

Mav =
1

4π

∫ π

0

∫ 2π

0
M(θ, φ)sin θ dφ dθ (3)

In the axial symmetry, the Hamiltonian H = guβSuHu + D[Sz
2 − S(S + 1)/3] can be

rewritten as H = gzβSzHucosθ + gxβSxHusinθ + D[Sz
2 − S(S + 1)/3] [33], and the energy

matrix can be written below. Here, |1 ⟩, |0 ⟩, and |−1 ⟩ represent the microstates of the
S = 1 state.

|1 ⟩ |0 ⟩ |−1 ⟩

gz β Hu cosθ + D/3
(√

2/2
)

gx β Hu sinθ 0(√
2/2

)
gx β Hu sinθ −2D/3

(√
2/2

)
gx β Hu sinθ

0
(√

2/2
)

gx β Hu sinθ −gz β Hu cosθ + D/3

Fortunately, this matrix can be solved algebraically to obtain three eigenvalues, Eu,1,
Eu,2, and Eu,3, as closed-form expressions. Hence, the eigenvalues are partially differentiable
with respect to the magnetic field, and the microscopic magnetization [µu,n = −∂Eu,n⁄∂Hu
(n = 1, 2, 3)] can also be expressed algebraically. Thus, in axial symmetry, the magnetization
in any u(θ) direction, Mθ(θ), can be expressed as a closed-form algebraic expression. The
obtained expressions are given as Equations (A10)–(A27) in Appendix C, i.e., the magnetic
anisotropy is expressed as the θ-dependent (orientation-dependent) magnetization affected
by the zero-field splitting (D) and g-anisotropy.

Now the function M(θ, φ) in Equation (3) has been obtained as the function Mθ(θ) in
the axial symmetry (Equation (A27)), and the powder average can be approximated, using
numerical integration [11,34]. In Equation (4), exact integration is conducted with respect to
φ, and numerical integration is conducted with respect to θ in 1.0◦ steps from 0.5◦ to 89.5◦.
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This equation gives a highly accurate approximation of the powder average. However, if
more precision is needed, Equation (5) can be used instead of Equation (4), for example.

Mav ≈
90

∑
j=1

Mθ(j − 0.5)
[

cos
(
(j − 1)π

180

)
− cos

(
j π

180

)]
(4)

Mav ≈
900

∑
j=1

Mθ(j/10 − 0.05)
[

cos
(
(j − 1)π

1800

)
− cos

(
j π

1800

)]
(5)

3.5. Magnetic Properties of Complex 1

As discussed in Section 3.3, the structure of the complex cation in 1 is considered to be
the same as that in 2. Temperature dependence of magnetic susceptibility (χA) and field
dependence of magnetization (M) were measured for 1. The χAT versus T and the M versus
H plots for 1 is shown in Figure 7. The χAT value at 300 K was 1.43 cm3 K mol−1, which was
slightly larger than the spin-only value (1.00 cm3 K mol−1) for the S = 1 system assuming
g = 2. When decreasing the temperature, the χAT value was almost constant, but below
15 K, the value dropped to show the minimum (0.62 cm3 K mol–1) at 1.9 K. This dropping
behavior can be explained by very small antiferromagnetic intermolecular interaction, but
also by the zero-field splitting of the ground state. As the magnetic field increases, the
M/Nβ value is going to saturate to ~2.0, which is consistent with the S = 1 system.
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Figure 7. The χAT versus T plot and M versus H plot (insertion) for 1. The observed data (#) and the
theoretical curves (—) with the best-fitting parameter set (gz, gx, D, zJ, χtip) = (2.13, 2.31, +5.9 cm−1,
−0.70 cm−1, 534 × 10−6 cm3 mol−1).

In this study, the field-dependent magnetic susceptibility equations (Equations (A1)–(A7)
in Appendix A) [11] were used for simulating magnetic susceptibility, and magnetization
equations (Equations (A10)–(A27) in Appendix C and Equation (4)) for simulating magneti-
zation, considering the axial anisotropic g-factors (gz and gx), the axial zero-field splitting
(D), temperature-independent paramagnetism (χtip), and intermolecular interaction (zJ). In
the magnetic analysis, the χtip-anisotropy was not considered.

As the result of simultaneous analysis, the best-fitting parameter set was obtained as
(gz, gx, D, zJ, χtip) = (2.13, 2.31, +5.9 cm−1, −0.70 cm−1, 534 × 10−6 cm3 mol−1) at 5 kOe.
When χAT decreases at very low temperatures (below 15 K), separating zJ and D is not
easy, but it should be possible to separate them because their temperature dependencies
are generally different. This time, we were able to find the best combination of zJ and D by
simultaneous fitting of magnetic susceptibility and magnetization due to the fact that the
difference between the theoretical magnetization curves for 2 K and 4 K is larger for larger
−zJ. Determining the sign of D is also difficult, but reversing the sign of D worsens the
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fitting of the theoretical magnetization curve to the measured values. The positive D value
suggests that the axial ligand field is weaker than the equatorial ligand field [2], which is
concordant with the result of powder electronic spectra for 1 (Section 3.3) and also with the
DFT result for 2, whose cation structure is considered to be the same (Section 3.2). Although
it is difficult to obtain precise g-values from magnetic data, considering g-anisotropy
improves the fitting of magnetization in the high-field region. The resulting anisotropic
g-factor relationship (gz < gx) agreed with the positive D value [2]. The magnetization
curves are highly dependent on g-anisotropy, and this study shows the importance of
considering g-anisotropy in the analysis, even if g-anisotropy is small.

Based on the obtained magnetic parameters, the three-dimensional magnetic anisotropy
can be represented in the image using Equation (A27). First, the spatial distribution of
magnetization in the xz cross section when the magnetic field is increased from 5 kOe
to 100 kOe is shown in Figure 8a, where the z direction corresponds to θ = 0◦, and the
x-direction to θ = 90◦. When the magnetic field is weak (5–20 kOe), magnetization occurs in
the xy-plane (easy magnetization plane) direction, and when the magnetic field becomes
stronger (60–100 kOe), magnetization increases also in the z-axis (hard magnetization axis)
direction. This is consistent with the relatively stronger equatorial ligand field originating
from the tetradentate ligand. Next, a three-dimensional representation of magnetization at
5 kOe, the magnetic field in magnetic susceptibility measurement, is depicted in Figure 8b.
The shape is a biconcave disk with a depressed center in the z direction, which is different
from the shape of the thermal ellipsoid in crystallography. Thus, the observed magnetic
anisotropy is characterized as easy-plane anisotropy.
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Figure 8. Magnetic anisotropy at 2 K with the parameter set (gz, gx, D, zJ, χtip) = (2.13, 2.31, +5.9 cm−1,
−0.70 cm−1, 534 × 10−6 cm3 mol−1): (a) cross-sectional view of the spatial distribution of mag-
netization in the xz plane at 5 kOe (red), 10 kOe (orange), 20 kOe (yellow-green), 40 kOe (green),
60 kOe (light blue), 80 kOe (blue), and 100 kOe (violet); (b) three-dimensional representation of
magnetization at 5 kOe.

3.6. Powder Average Magnetization and Arithmetic Average Magnetization

For future reference, the present study compares the powder average magnetization
Mav,p and the arithmetic average magnetization Mav,a for the S = 1 system. The theoretical
magnetization curves are drawn in Figures 9 and 10, using the equations in Appendices B
and C and Equation (4). In both cases in Figure 9, gz = gx = 2.00 is assumed in axial
symmetry, and Mz and Mx are drawn together. In Figure 9a, D is assumed to be +10 cm−1,
and in Figure 9b, D is assumed to be −10 cm−1. (Please note that at D = 0 cm−1, Mz, Mx,
Mav,a, and Mav,p are all equal to the Brillouin function). In both Figure 9a,b, each Mav,a
curve is close to each Mav,p curve in the low field region. This is concordant with the fact
that the arithmetic average magnetic susceptibility is equal to the powder average as long
as the magnetic field is weak enough to maintain additivity.
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Figure 9. Comparison of powder average magnetization (Mav,p) and arithmetic average magneti-
zation (Mav,a) in the g-isotropic cases (g = 2.00) at 2 K. Mz and Mx curves are also drawn: (a) when
D = +10 cm−1; (b) when D = −10 cm−1.
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Figure 10. Comparison of powder average magnetization (Mav,p) and arithmetic average magneti-
zation (Mav,a) when g-anisotropy is significant at 2 K. Mz and Mx curves are also drawn: (a) when
D = +10 cm−1, gz = 1.41, and gx = 2.24; (b) when D = −10 cm−1, gz = 2.83, and gx = 1.41.

The significant g-anisotropy cases are simulated, as shown in Figure 10. In the weak
magnetic field region, the arithmetic average magnetization is equal to the powder average,
as in the g-isotropic case. The difference from the g-isotropic cases is the behavior in
the high-field region where the magnetization approaches saturation, i.e., the difference
between the arithmetic average and the powder average is larger at high magnetic fields
when the g-anisotropy is large. The effect of the g-factor on the magnetization curves can
be understood by the additivity of the square of the g-value. In terms of the g-value, the
g-value is not additive, but the square of the g-value is additive. The slope of magnetization
(magnetic susceptibility) in a weak magnetic field, where magnetization is proportional to
the magnetic field, is proportional to the square of the g-value, and is additive, meaning
that the arithmetic average and the powder average are equal. However, since saturation
magnetization is proportional to the g-value, it is no longer additive, and the arithmetic
average is not a good approximation for a strong magnetic field. It is important to consider
g-anisotropy in the simulation because it affects the powder average, especially at high
magnetic fields.
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4. Conclusions

In this study, octahedral nickel(II) complexes were prepared with (omp)− ligand.
Complex 1 was characterized as a bulk sample, and its powder electronic spectra were
analyzed based on the AOM calculation, which concluded that the spectra were typical of
D4-symmetric octahedral coordination geometry with a weak axial ligand field. Crystal
structures were determined for 2 and 3, and the DFT computations based on the crystal
structures indicated that the octahedral coordination geometry around the nickel(II) ions in
2 and 3 are both approximated as the D4 rotation group and the weak axial ligand field
(ez < ex,y) was suggested. The D4 symmetry and the axially weak ligand field around the
central nickel(II) ion may be due to the nature of the (omp)− ligand and the complex cation
structure in 1 is considered to be the same as that in 2. The temperature dependence of
magnetic susceptibility and field dependence of magnetization were measured for 1, and
the obtained data were simultaneously analyzed, considering the axial g-factors (gz and
gx), the axial zero-field splitting (D), temperature-independent paramagnetism (χtip), and
intermolecular interaction (zJ). The complex exhibited positive D value and the gz < gx
relationship, which are both consistent with the weak axial ligand field (ez < ex,y) found by
the electronic spectra for 1 and also by the DFT computations based on the crystal structure
of 2.

This study also derived exact algebraic expressions for magnetization in the axial
symmetry for the S = 1 system (Appendix C), and the magnetic anisotropy was expressed
as the orientation-dependent magnetization caused by the zero-field splitting (D) and
g-anisotropy. In addition, the importance of g-anisotropy in magnetization fitting was also
demonstrated.
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Appendix A

The magnetic susceptibility equations for the mononuclear S = 1 system can be ex-
pressed as Equations (A1)–(A7) [11], considering the axial anisotropic g-factors (gz and
gx), the axial zero-field splitting (D), temperature-independent paramagnetism (χtip,z and
χtip,x), and intermolecular interaction (zJ).

χav =
χz + 2χx

3
(A1)

χz =
N
(

gzβ exp
(
−D+gz βH

kT

)
− gzβ exp

(
−D−gz βH

kT

))
H
(

1 + exp
(
−D+gz βH

kT

)
+ exp

(
−D−gz βH

kT

)) + χtip,z (A2)

χx =

N
(

−2gx
2β2√

4gx2β2 H2+D2
exp

(√
4gx2β2 H2+D2−D

2kT

)
+ 2gx

2β2√
4gx2β2 H2+D2

exp
(

−
√

4gx2β2 H2+D2−D
2kT

))
H
(

exp
(
−D
kT

)
+ exp

(√
4gx2β2 H2+D2−D

2kT

)
+ exp

(
−
√

4gx2β2 H2+D2−D
2kT

)) + χtip,x (A3)

χA =
χav T

T − χav zJ/(Ngav2β2)
(A4)

χA,z =
χz T

T − χav zJ/(Ngav2β2)
(A5)

χA, x =
χx T

T − χav zJ/(Ngav2β2)
(A6)

gav =
√
(gz2 + 2gx2)/3 (A7)

Appendix B

The principal magnetization equations for the mononuclear S = 1 system can be
expressed as Equations (A8) and (A9) based on Appendix A.

Mz =
N
(

gzβ exp
(

−D+gz βH
kT(1−χav zJ/(Ngav2β2))

)
− Ngzβ exp

(
−D−gz βH

kT(1−χav zJ/(Ngav2β2))

))
1 + exp

(
−D+gz βH

kT(1−χav zJ/(Ngav2β2))

)
+ exp

(
−D−gz βH

kT(1−χav zJ/(Ngav2β2))

) + χtip,zH (A8)

Mx =

N
(

−2gx
2β2√

4gx2β2 H2+D2
exp

( √
4gx2β2 H2+D2−D
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( √
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)
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(
−
√

4gx2β2 H2+D2−D
2kT(1−χav zJ/(Ngav2β2))

) + χtip,x H (A9)

Appendix C

In this study, the magnetization Mθ(θ) in the axial symmetry has been derived as closed-
form algebraic expressions (Equations (A10)–(A27)), considering the axial anisotropic
g-factors (gz and gx), the axial zero-field splitting (D), temperature-independent paramag-
netism (χtip), and intermolecular interaction (zJ). Here, i is the imaginary unit and i2 = −1.

a = gz
2 β2 H2 cos2 θ (A10)

b = gx
2 β2 H2 sin2θ (A11)

A = −39366 D3 + 354294 a D − 177147b D (A12)

B = −729 D2 − 2187 (a + b) (A13)

C =
3
√

A +
√

4 B3 + A2 (A14)
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√

2 B
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+
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81 3
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2
(A15)
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√
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√
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√
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√
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√
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C

162 3
√

2
(A17)

F = −2 D2 + 18 A − 9 B (A18)

K = D2 + 3 A + 3 B (A19)

L =
√
−4 K3 + D2F2 (A20)

U = 3
√

D F + L (A21)

P = 6 A3/H + B2
(

D2 + 6 B
)

/H + A2
(
−8 D2 + 18 B/H

)
/H + 2 A

(
D4 + 10 BD2 + 9 B2

)
/H (A22)

Q = 708588 A D/H − 354294 B D/H − 1062882 P/L (A23)

µθ,1 = −2 3
√

2 (a + b)
U H
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3
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2 K Q
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√
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(A24)
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√
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(A25)

µθ,3 =

3
√

2
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√

3 i
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(a + b)

U H
−

(
1 −

√
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)
K Q

177147 3
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(A26)

Mθ(θ) =
N∑n µθ,nexp

(
−Eθ,n/

(
kT

(
1 − χav zJ/

(
Ngav

2β2))))
∑n exp(−Eθ,n/(kT(1 − χav zJ/(Ngav2β2))))

+ χtipH(n = 1, 2, 3) (A27)
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