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Abstract: Pineapple is mainly grown in tropical regions and consumed fresh worldwide due to its
attractive flavor and health benefits. With increasing global production and trade volume, there is an
urgent need for nondestructive techniques for accurate and efficient detection of the internal quality
of pineapples. Therefore, this study is dedicated to developing a nondestructive method for real-
time determining the internal quality of pineapples by using VIS/NIR transmittance spectroscopy
technique and machine learning methodologies. The VIS/NIR transmittance spectrums ranging in
400–1100 nm of total 195 pineapples were collected from a dynamic experimental platform. The
maturity grade and soluble solids content (SSC) of individual pineapples were then measured as
indicators of internal quality. The qualitative model for discriminating maturity grades of pineapple
achieved a high accuracy of 90.8% by the PLSDA model for unknown samples. Meanwhile, the
quantitative model for determining SSC also reached a determination coefficient (R2

P) of 0.7596 and
a root mean square error of prediction (RMSEP) of 0.7879 ◦Brix by the ANN-PLS model. Overall,
high model performance demonstrated that using VIS/NIR transmittance spectroscopy technique
coupled with machine learning methodologies could be a feasible method for nondestructive and
real-time detection of the internal quality of pineapples.

Keywords: transmittance spectrum; maturity; soluble solids content; pineapple; nondestructive;
machine learning

1. Introduction

Pineapple (Ananas comosus [L.] Merr.) is a popular tropical fruit and consumed all over
the world owing to its unique flavor and odor, as well as substances beneficial to human
health, including minerals, vitamins, and dietary fibers [1,2]. Global pineapple production
amounted to approximately 28.65 million metric tons in 2021. It is reported that the world
exports of pineapple were about 3.3 million tons in 2021, an increase of 7% from 2020 [3].
China is one of the major producers of pineapple and has a large consumer market. It
produces about two million metric tons a year and imports more than 10% of its annual
production for domestic consumption [4,5]. Generally, pineapple is mainly consumed fresh
worldwide. In this case, taste quality becomes a crucial factor when evaluating the quality
of pineapple. As maturity is a comprehensive indicator that directly impacts the sensory
evaluation of pineapple [2,6], determining the maturity for harvesting, transportation, and
storage is important for growers, dealers, and consumers [7,8]. On the one hand, the times
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at which the pineapple florets open and the maturity times vary [9]. Hence, detecting the
maturity of pineapples and sorting pineapples for different consumer demands could help
growers reduce production loss and increase economic efficiency [10]. On the other hand,
accurate knowledge of the maturity of pineapples could provide better-quality monitoring
during transportation and shelf-life phase for dealers [11]. Ultimately, the good shelf-
life quality of pineapples ensures that consumers can enjoy high-quality pineapples at a
reasonable price.

As far as we know, the practical methods to determine the internal quality of pineap-
ples still rely on manual inspection, which might be subject to human judgment and
damage to fruits. Hence, there is an urgent need for nondestructive technologies and
automation equipment for detection of the internal quality of pineapples. Efforts have,
therefore, been exerted towards the development of novel technologies for rapid and non-
destructive detection of the internal quality of pineapples [12,13]. Generally, appearance
features, such as color and texture, would be first considered for detection of internal
quality because of the correlation between external characteristics and internal qualities.
According to the appearance images of pineapples, Bakar et al. [14] developed a fuzzy
logic classification algorithm, that could identify fully ripe pineapples at a 100% rate. The
features extracted from the appearance images could even be used to identify the pineapple
maturity in fields based on color images and deep learning methods [9,15]. However,
appearance features could not directly reflect the internal quality, and, therefore, could not
represent the real taste quality [16]. Sornsrivichai et al. [16] reported that the electronic
acoustic sensing technique and X-ray CT imaging showed significant correlation with the
pineapple maturities due to the different densities of pineapples. Since the compounds of
fruits, including soluble solids content (SSC), titratable acidity (TA), as well as the ratio of
SSC and TA, were generally measured to assess the internal quality of fruits [17,18], it has
garnered a great deal of attention of researchers on using spectroscopy-based techniques to
detect these indices of pineapples. Tantinantrakun et al. [3] reported that both reflectance
near-infrared hyperspectral image (935–1720 nm) and transmittance NIR spectroscopy
(665–955 nm) gave reliable performance in detecting pineapples maturity index (calculated
as the ratio between TSS and TA), and the optimal partial least squares regression (PLSR)
model generated an R2

CV of 0.72 and an RMSECV of 1.68. The SSC was also found to be the
relevant factor to maturity grades and further related to the taste quality [19]. Chia et al. [20]
trained a feedforward back-propagation artificial neural network (ANN) model based on
visible and shortwave near-infrared reflectance spectroscopy (650–1000 nm) for predicting
SSC values of pineapples and obtained a rP range of 0.68–0.74 and a RMSEP range of
0.87–1.03 ◦Brix. Rahim et al. [21] built predictive models for analyzing the SSC in pineap-
ples by using reflectance spectroscopy (650–1100 nm), which provided an rCV of 0.75 and an
RMSECV of 0.81 ◦Brix. Amuah et al. [22] used a portable NIR spectrometer (740–1070 nm)
to predict TSS with the results of RP = 0.854 and RMSEP = 0.842 ◦Brix by a PLSR model.
In recent years, transmittance spectroscopy techniques have been increasingly studied for
detection of the internal quality of fruits, including pomegranate [23], watermelon [24],
pomelo [25], pear [26], apple [27,28], which showed the potential application prospect of
such techniques coupled with appropriate modeling algorithms. Among these modeling
algorithms, the PLS, ANN, and support vector machine (SVM) have been commonly used
in spectral analyses for quantitative or qualitative analysis purposes. Particularly, the PLSR
method was more widely adopted for establishing a quantitative model of SSC content.
To sum up, the present studies suggest that spectroscopy-based techniques coupled with
machine learning methods possess the potential to achieve rapid, nondestructive, and accu-
rate detection of pineapple internal quality and addresses the problem of time-consuming,
laborious, and subjective bias of humans from conventional procedures.

To date, there are few reports on the study of real-time for detection of the internal
quality of pineapples based on spectroscopy-based techniques. In this study, we attempted
to establish detection models based on VIS/NIR transmittance spectroscopy data, which
would be embedded into a detection system for nondestructively and real-time determining
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the internal quality of pineapples. This research goal was mainly achieved through the
following four steps: (1) A platform system for acquiring VIS/NIR transmittance spec-
troscopy (400–1100 nm) of pineapple was built, (2) qualitative models were established for
discriminating maturity grades of pineapples, (3) quantification models were calibrated for
determining SSC values of pineapples, (4) conduct independent validation set of samples
to verify the established models.

2. Materials and Methods
2.1. Sample Collection

A total of 195 pineapple samples in different maturity grades from cultivar “Comte
de Paris” (Ananas comosusr cv. Yellow Mauritius), which is the main planting cultivar in
China [29], were harvested in Qujie Town, Xuwen County Zhanjiang City, Guangdong
Province, China, in May 2021. Pineapples in a weight range from 1.5 to 2 kg were considered
in this experiment to ensure that the samples were relatively homogeneous. Meanwhile,
the pineapple samples without defects of exterior damage or symptoms of rot were selected.
All pineapple samples were prepared by removing the stem but keeping the crown for
spectral data acquisition. The pineapple samples were harvested and taken to a laboratory
within 5 km of the pineapple orchard and then stored at 26 ± 1 ◦C environment for six
hours before acquiring spectral data.

2.2. VIS/NIR Transmittance Spectroscopy Acquisition

A platform system for acquiring VIS/NIR transmittance spectroscopy of pineapple
is shown in Figure 1. The platform had a conveyor driven by a motor for continuously
transferring pineapple samples. The free tray was designed to stabilize the pineapple on
the conveyor, it could also block the light leaking through the contact surface between
the pineapple and the tray. There was a hole in the bottom of the tray with a diameter of
50 mm. Each pineapple was put on a tray, when transferred, it passed through the spectrum
acquisition channel. In order to eliminate interference from environmental background
radiation, the whole spectroscopy acquisition process was conducted in a dark environment
composed of an illumination box and curtain. In this box, light sources were comprised
of six 100 W tungsten halogen lamps (LM-100, MORITEX Company, Yokohama, Japan).
An integrating sphere, which jointed optical fiber connecting to a commercial miniature
fiber optic spectrometer QE PRO (Ocean Optics Inc., Orlando, USA), was used to collect
the diffuse transmittance spectroscopy of samples through the hole of the free tray. The
spectrometer could cover the wavelengths of 400–1100 nm, as it was found useful for
detection of the internal translucency degrees of pineapple [30].

While acquiring VIS/NIR transmittance spectroscopy of a pineapple, the pineapple
was manually loaded on a free tray and fed onto the conveyor belt. The conveyor belt
carried the tray and moved into the illumination box at a speed of 0.1 m/s. The spec-
trometer was set to capture spectroscopy automatically in an integration time of 300 ms
under external trigger mode. The optoelectronic sensors transmitted an electrical signal
to the spectrometer as well as the computer when the tray arrived at the set position for
spectroscopy acquisition. Reference and dark spectrums were measured before sample
spectral measurement. The reference was measured using a cylinder of Teflon material. The
spectral measurement was expressed by spectrometer parameter settings, and spectrums
collection and storage were carried out via software developed based on OmniDriver®

SDK (Ocean Optics Inc., Orlando, USA) and C++ programming language in Microsoft
Visual Studio IDE. Finally, the average spectrum from 5 measurements of each individual
pineapple was used for further analysis.
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Figure 1. Schematic drawing of acquisition system for collecting VIS/NIR transmittance spectrums.

2.3. Maturity Assessment and SSC Determination

After acquiring spectrums of all samples, the maturity grade and SSC value of individ-
ual pineapples were then manually measured by cutting through the pineapples. Related
methods [19,30] were referenced for assessing maturity grades, the pineapples were cut
lengthwise into eight equal slices from stem side to crown side after removing the crown of
the fruits. First, the ratio of the translucent area and the total two sides of the sliced area
for each slice was evaluated. Second, the total ratio of the whole pineapple was summed
up. Thirdly, all pineapple samples were classified into three maturity grades (as shown in
Figure 2), namely immature, mature, and overmature, as the ratios of the translucent area
were no more than 5%, over 5% but no more than 20%, over 20%, respectively.
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Figure 2. Photographs representing maturity grades of pineapple samples: (a) Grade A, immature;
(b) Grade B, mature; (c) Grade C, overmature.

After maturity assessment, two slices opposite each other of pineapple were used for
obtaining juice and measuring SSC values. By removing the outer 1 cm of pericarp and the
core part of the pineapple, pineapple meat weas chopped up and the juice was squeezed
into a glass beaker through a filter gauze. Two drops of juice were taken to measure the
SSC values using a digital refractometer (PAL-BX/ACID9; ATAGO Co. Ltd., Tokyo, Japan)
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with a ◦Brix range of 0–60 and ±0.1 ◦Brix. Each sample was measured three times, and the
average of these three values was used as sample SSC value. Between each measurement,
the refractometer was calibrated with distilled water.

2.4. Spectral DataSets Preprecessing

All spectral data were first corrected to obtain relative transmittance spectrums using
reference and dark spectrums by Equation (1):

T =
Toriginal − Idark

Ireference − Idark
(1)

where Toriginal is the original collected transmittance spectrum of pineapple, Ireference and
Idark are the reference and dark spectrums, respectively.

The Beer–Lambert law tells that there is a linear absorption relationship between
the spectral absorbance and compounds concentration. Therefore, all the transmittance
spectrums were converted into the absorbance spectrums regression analysis according to
Equation (2):

A = log
( 1

T
)

(2)

where T is the relative transmittance spectrum of a pineapple.
Preprocessing the spectral data is necessary ahead of the modeling process to weaken

the influence of noise on the model results. Systemic jitter noise and light scattering noise
are two main forms of noise included in spectral data. This part of noise signal is generally
considered useless for modeling analysis, which should be reduced from the spectral data
to improve the robustness and accuracy of the prediction model. In this study, Savitzky–
Golay smoothing treatment (21-point width and first-order polynomial) was applied to all
spectral data to reduce the high-frequency part of the noise. Then, multiplicative scatter
correction (MSC) was also used to deduct the additive and multiplicative effects of light
scattering in the spectral data. In order to calibrate and validate the prediction model,
one-third of the samples (one spectrum chosen from every three spectrums in the collected
spectral dataset) were selected as a validation set, while the remaining two-thirds were used
as a calibration set for establishing the models. Notably, the validation set was only used
to validate the performance of established models and did not interfere with building the
models. All data analyses were performed using MATLAB R2017b software (Math-Works
Inc., Natick, MA, USA).

2.5. Modeling Algorithms

In this study, quantitative models were calibrated to determine SSC values, and
qualitative models were established to classify the maturity grades of pineapples. In order
to investigate high-performance models, PCR, PLSR, and ANN modeling algorithms were
tested to calibrate quantitative models. Meanwhile, KNN, PLSDA and SVMDA modeling
algorithms were applied for building qualitative models. For the whole modeling process,
the ten-fold cross-validation method was used to determine the optimal model parameters
by examining whether the model was underfitting or overfitting within the calibration set.

2.5.1. Quantitative Models

As the Beer–Lambert law describes a linear relationship between the spectral ab-
sorbance and the relative concentration of components, the linear regression models would
be first considered for quantifying the SSC by using absorbance spectrums. However,
using all spectral variables to establish multiple linear regression models could lead to
unstable inversions because of the multivariate collinearity in spectral data. Moreover, a
large number of spectral variables relative to a small size of sample would even lead to
an underdetermined situation while directly calculating regression coefficients of spectral
variables. In view of this typical problem, it is necessary to compress the spectral vari-
ables and extract useful information for calibrating regression models. In this study, two



Horticulturae 2023, 9, 889 6 of 15

widely used linear modeling algorithms with compression functions, namely principal
components regression (PCR) and partial least squares regression (PLSR) algorithms, were
applied. In principle, PCR model found orthogonal principal components according to the
variance of the spectral matrix and then regressed onto the measured SSC values. Therefore,
the key step of calibrating PCR model was to determine the optimal number of principal
components. Similarly, PLSR sought to find latent variables, which both capture variance
and achieve correlation between the spectral variables as predictors and SSC values as
response variables. In other words, the PLSR model attempted to maximize the covariance
of predictors and response variables during the modeling process, which integrated the
advantages of multiple linear regression and PCR. Likewise, the number of latent variables
also needs to be optimized by using the cross-validation method.

Besides, the ANN models using backpropagation network (BPN) were further trained
to investigate better performance models by using the same principal components from
the PCR model and latent variables from PLSR model severally. The parameters learn
rate and learn cycles for training were set to 0.125 and 20, respectively. Considering the
simple linear relationship between the predictors and response variable, only one hidden
layer was used in ANN models. The number of nodes in the hidden layer was optimized
by training models, including nodes over a range from 1 to 10, with a step of 1 in this
study. The optimal number was finally determined while the model produced a minimum
RMSECV during the cross-validation process.

In addition, the F-test method was used to verify the statistical significance of the
calibrated regression models by judging the significance of a model at a confidence level of
0.01 according to the calculated p-value.

2.5.2. Qualitative Models

The k-nearest neighbor (KNN) model is commonly used for classification purposes
by measuring the distance between the unknown sample and the K nearest samples. The
voting mechanism is designed to determine the category of the unknown sample according
to the category of these K samples. To obtain optimal K value, this study built KNN models
with different K values from 3 to 11 with a step of 2 as well as Euclidean distance for a
measure in the calibration set. The parameter K was saved when the model generated the
highest overall accuracy.

Partial least-squares discriminant analysis (PLSDA) is also widely used for classification
which is developed from the PLSR method. By using constant values as variables of sample
categories, PLSDA model adds a threshold for prediction results to achieve discrimination
purposes. For multi-class classification purposes in this study, the PLSDA model was
composed of three PLSDA models for three maturity grades. To be specific, each sub-model
only needed to deal with the binary classification problem by treating the target grade of
samples as one category while combining the other samples into another category. In this
way, the same number of latent variables for three sub-models was determined from 1 to 20
with a step of 1 by inspecting the overall accuracy during the cross-validation process.

The support vector machine discriminant analysis (SVMDA) algorithm is known for
its strong nonlinear fitting ability. The basic idea of SVMDA algorithm is that it first maps
the spectral data into higher dimensional spaces and then uses a finite number of samples,
called support vector machines, to optimize a hyperplane as a discriminant threshold.
Gamma value and penalty coefficient cost are two important parameters while optimizing
such a hyperplane. The gamma value belongs to the radial basis function (RBF), which was
selected as the mapping function in this study, it controlled the width of the Gaussian kernel
and, in turn, determined the shape of the hyperplane. The penalty coefficient cost was
a measure that related to all misclassified samples by the present separating hyperplane.
Both gamma and cost values were crucial to generate the optimal hyperplane. Hence, the
grid-search method was used to search the optimal gamma and cost values from 10−8 to
108 spaced uniformly at one in the log, and the above two parameters of the model that



Horticulturae 2023, 9, 889 7 of 15

produced the highest overall accuracy for the calibration set in the cross-validation stage
were further used to establish final model.

2.6. Evaluation of Model Performance

When quantitative and qualitative analyses were performed, appropriate indicators
were used to evaluate the performance.

For quantitative models, the root mean square error (RMSE), the determination coeffi-
cient (R2), and ratio prediction to deviation (RPD) were used as performance indicators
for quantitative models. RMSE is the average squared difference between the predicted
values and the measured values of the samples, it measures the average magnitude of the
errors made by the prediction model. R2 represented the proportion of the variation in the
response variable that was predictable from the spectral variables in this study, it provided
a measure of how well observed outcomes were replicated by the prediction model. The
formulas to calculate RMSE and R2 values are shown in Equations (3) and (4):

RMSE(RMSEC, RESECV, RMSEP) =

√
∑n

i (ŷi − y)2

n
(3)

where ŷi is the SSC value of ith sample predicted by model (◦Brix), y is the mean SSC value
of pineapple samples in data set (◦Brix), and n is number of pineapple samples.

R2(R2
C, R2

CV, R2
P) =

∑n
i (ŷi − y)2

∑n
i (yi − y)2 (4)

where yi is the measured SSC value of ith sample (◦Brix).
RPD is related with the ability of the prediction model to predict unknown samples

in relation to the initial variability of the calibration set, it can be calculated according to
Equation (5):

RPD =
SD

RMSEP
(5)

where SD is the standard deviation of SSC values of samples in the validation set (◦Brix),
RMSEP is the root mean square error of prediction for the validation set (◦Brix).

For qualitative models, precision, recall, and overall accuracy were used as perfor-
mance metrics for qualitative models, which were primarily concerned with evaluating the
classification performance of machine learning models. These three metrics were calculated
from confusion matrix results while predicting the calibration set and the validation set.
Precision (from Equation (6)) represented the fraction of relevant instances among the re-
trieved instances. Recall (from Equation (7)) was the fraction of relevant instances that were
retrieved. Overall accuracy (from Equation (8)) was the ratio of the number of correctly
classified samples to the total number of samples in the calibration set or validation set.

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

Overall accuracy =
TP + TN

TP + TN + FP + FN
(8)

where TP, FP, TN, FN represent the add-up number of samples, which are divided into
groups of true positive, false positive, true negative, and false negative, respectively.
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3. Results and Discussion
3.1. Internal Quality of Pineapple Samples

Table 1 shows a summary of the numbers of pineapple samples in different maturity
grades, as well as the statistical results of measured SSC values per each grade in the
calibration set and the verification set. A total of 130 samples in the calibration set were
prepared that were used for establishing qualitative models and quantitative models for
detection of the internal quality of pineapples. Furthermore, an independent validation set
including 65 samples was organized to verify the performance of prediction models. In
other words, the samples in the validation set did not participate in the modeling process.
In the calibration set, the SSC values of a total of 130 samples ranged from 13.40 ◦Brix to
20.40 ◦Brix, with a mean of 17.33 ◦Brix. Meanwhile, the SSC values of a total of 65 samples
in the validation set generated a similar distribution to the calibration set, with a mean
of 17.28 ◦Brix, ranging from 13.60 ◦Brix to 20.27 ◦Brix. Boxplot diagrams were drawn in
Figure 3 to show the distribution details of measured SSC values in different maturity
grades. Notably, the mean SSC values of pineapples in the mature grade were slightly
higher than those samples in the immature grade. It indicated that pineapples reached a
high SSC value before they turned transparent, which was a water-soaked appearance with
a flat and overripe flavor [31]. However, the mean SSC values of pineapples judged as
overmature grade were much lower than pineapples in immature grade and mature grade.
This is mainly because the SSC of a pineapple increased at the anterior ripening stage, but it
decreased towards the end of the posterior ripening period [32]. In other words, the taste
quality of the overmature pineapple would successively decrease because the SSC was an
important factor affecting sensory evaluation. Besides, the SSC range of pineapple samples
in this study was different from that reported in previous studies [21] (7.6–13.9 ◦Brix with
a mean of 11.03 ◦Brix) and [22] (11.90–18.60 ◦Brix with a mean of 14.81 ◦Brix). This might
result from diverse factors, such as cultivars, planting modes, soil conditions, maturity
grades.

Table 1. Number of pineapple samples in different maturity grades and statistics of measured SSC
values in calibration set and verification set.

Data Sets
Maturity
Grades

Number of Samples
SSC (◦Brix)

Min Max Mean d SD

Calibration set

a Grade A 54 15.73 19.87 17.80 0.9826
b Grade B 42 16.47 20.40 18.51 1.0303
c Grade C 34 13.40 17.00 15.12 1.1033

Total 130 13.40 20.40 17.33 1.6983

Validation set

Grade A 31 15.73 20.07 17.77 1.1249
Grade B 19 17.13 20.27 18.25 0.9064
Grade C 15 13.60 17.20 15.05 0.9529

Total 65 13.60 20.27 17.28 1.6048

Notes: a Grade A, immature grade; b Grade B, mature grade; c Grade C, overmature grade; and d SD, standard
deviation.

3.2. Spectrums of Pineapple Samples

Figure 4 plots the transmittance spectrums of all pineapple samples (n = 195) in the
wavelength range of 400–1100 nm. The relative transmittance spectrums after correction
with dark and reference spectrums are plotted in Figure 4a. It is evident that the transmit-
tance spectrums of pineapples had a high amplitude in wavelength bands 700–900 nm. The
absorbance spectrums, which were converted from the relative transmittance spectrums,
are plotted in Figure 4b. In this way, it could be more intuitively observed that the pineap-
ple samples had a lower absorption to light sources in wavelength bands 700–900 nm. In
Figure 4b, two absorption valleys at around 730 nm and 810 nm had also appeared in a
previous study, while Tantinantrakun et al. [3] applied short wavelength NIR spectroscopy
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in a range of 665–955 nm for detection of he pineapple maturity index. This was mainly
because similar tissue structure and main compounds, such as water, SSC, and other carbo-
hydrates of pineapple determined similar spectral absorptions. The absorbance peak at
around 680 nm was the characteristic wavelength of chlorophyll [33].
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spectrums preprocessed with smoothing and MSC treatments of all samples in three maturity grades,
(d) mean spectrums of absorbance spectrums preprocessed with smoothing and MSC treatments in
three maturity grades.
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Because of the irregular shape and cratering of the surface of pineapples, jitter noise,
and spectral scattering were obtained from the absorption spectrums in Figure 4b. After
preprocessing with smoothing to reduce the jitter noise and MSC treatments for correcting
the light scattering, the whole spectrums and the mean spectrums of all samples in three
maturity grades are plotted in Figure 4c,d, respectively. The spectral characteristics of
pineapples in different maturity grades were mainly concentrated in two wavelength band
regions, ranging from 710 to 870 nm and from 930 to 1050 nm. Furthermore, pineapples
in different grades showed opposite absorption trends in these two regions. In the range
of 710–870 nm, the more mature the pineapples are, the less light source composition the
pineapples absorbed. The range of 710–780 nm could be explained as the characteristics of
the fourth overtones of the vibrations from the -CH3, -CH2, and -CH functional groups,
which relate to carbohydrates. Moreover, the absorption region between 870 and 930 nm is
the third overtone vibrational absorptions of -CH, -CH2, and -CH3, and similar functional
groups that belong to SSC content, sugar, and other carbohydrates. On the contrary, the
pineapples absorbed more of the light source in the wavelength bands 930–1050 nm as
the fruits became more mature. Besides, the overmature pineapples generated higher
absorbance in wavelength bands 500–680 nm than immature and mature pineapples, while
immature and mature pineapples had similar absorbance in these wavelength bands. In this
study, the absorbance spectrums preprocessed with combined pretreatments of smoothing
and MSC were used for further modeling analysis.

3.3. Qualitative Models for Discriminating Maturity Grades

Table 2 summarizes the results of confusion matrices predicted by KNN, PLSDA,
and SVMDA models, the optimal parameters of all models were determined by cross-
validation method. The actual pineapple numbers in each maturity grade are recorded
in rows for calculating the recall metric. The columns give the number of pineapples
that are classified into different grades by prediction models for calculating the precision
metric. The intersections of recall and precision in Table 2 were the overall accuracies of
models. In general, three models yielded overall accuracies higher than 85.0% both in
the calibration set and the validation set. It could be interpreted that all the tested three
modeling algorithms could extract effective characteristics from spectrums for detection
of pineapple maturities, since visually visible differences of spectrums had been found
from three maturity grades in Figure 4. Among the three models, the SVMDA model
demonstrated a better fit to the calibration set than the other two models, giving the
highest overall accuracy of 94.6%. However, the SVMDA model did not perform equally
well for the validation set, only gaving an overall accuracy of 87.7%. The KNN model
only generated an overall accuracy of 86.9% for the calibration set, but it resulted in a
higher overall accuracy in the validation set of 87.7% just as the SVMDA model did.
The PLSDA model generated a higher overall accuracy of 90.8% for the validation set
than SVMDA did, which was considered the most robust model of all calibrated models.
Besides, the precisions for predicting overmature pineapples all reached 100.0% by three
models for the calibration set, the misclassified pineapple samples were mainly between the
immature grade and mature grade. Bakar et al. [14] also reported the prediction accuracy
for fully ripe pineapples was higher than for unripe and ripe level pineapples. This is
mainly because the feature differences between overmature samples and the other samples
were large, while the feature differences between immature samples and mature samples
were small. Tantinantrakun et al. [3] established quantitative models for determining
pineapple maturity based on spectral data while calculating the ratio of total soluble
solids (TSS) to titratable acidity (TA) as the maturity index. Their results showed that the
PLSR model based on transmittance short wavelength NIR spectroscopy (665–955 nm)
generated R2

CV of 0.70 and RMSECV of 2.16. It might be a helpful way to flexibly set the
threshold of maturity index for sorting pineapple toward different consumer demands. As a
whole, high overall accuracies from classification models indicated that using the VIS/NIR
transmittance spectroscopy technique and machine learning methods could successfully
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achieve a nondestructive detection of pineapple maturity. Meanwhile, more noise reduction
algorithms still need to be developed to improve the prediction accuracy of the model since
the structure design of NIR instrument, as well as the environmental conditions under
which the NIR instrument operated, would bring noise to the spectral data. Establishing a
model with more sample data would be another useful way to improve model performance
since the model could handle more diverse unknown samples.

Table 2. The confusion matrices of different classification models for discriminating maturity grades
during calibration and validation processes.

Models
(Parameters)

Prediction of Calibration Set Prediction of Validation Set

Grade
A

Grade
B

Grade
C

Recall
(%)

Grade
A

Grade
B

Grade
C

Recall
(%)

Actual maturity

KNN
(K = 5)

a Grade A 47 7 0 87.0 27 4 0 87.1
b Grade B 9 33 0 78.6 3 15 1 78.9
c Grade C 0 1 33 97.1 0 0 15 100.0

Precision (%) 83.9 80.5 100.0 86.9 90.0 78.9 93.8 87.7

PLSDA
(d LVs = 7)

Grade A 47 7 0 87.0 29 2 0 93.5
Grade B 4 38 0 90.5 4 15 0 78.9
Grade C 0 1 33 97.1 0 0 15 100.0

Precision (%) 92.2 82.6 100.0 90.8 87.9 88.2 100.0 90.8

SVMDA
(gamma = 10−6,

cost = 106)

Grade A 52 2 0 96.3 28 3 0 90.3
Grade B 4 38 0 90.5 3 15 1 78.9
Grade C 0 1 33 97.1 0 1 14 93.3

Precision (%) 92.9 92.7 100.0 94.6 90.3 78.9 93.3 87.7

Notes: a Grade A, immature grade; b Grade B, mature grade; c Grade C, overmature grade; and d LVs, number of
latent variables.

3.4. Quantification Models for Determining SSC Values

Table 3 shows the results of regression models for determining SSC values of pineapples,
and Figure 5 shows the prediction details of regression models both for the calibration set
and the validation set. The optimum parameters for different models were selected when
the model produced the lowest RMSECV value through the cross-validation process. The
PCR and PLSR models were first calibrated. As a result, the determination coefficient
of prediction (R2

P) from PCR model was 0.7147 when using six principal components,
with an RMSEP value of 0.8591 ◦Brix. The PLSR model using five latent variables could
generate slightly better results than the PCR model, with a higher R2

P of 0.7455 and a lower
RMSEP value of 0.8120 ◦Brix. The PLSR model performed better than PCR model with
less compressed components, possibly, mainly because of that the PLS algorithm had a
better trade-off to capture the relevant component associated with the output variable rather
than the components only with high variance. In a previous study, it was reported that the
Bayesian ANN model coupled with the robust principal components achieved satisfactory
calibration and prediction performance for determining the SSC of pineapples [20]. In
order to investigate better models, the ANN models were also trained by using the same
principal component variables and latent variables as input variables like PCR and PLSR
did, respectively. Benefiting from the powerful fitting ability of the ANN algorithm, the
ANN-PCA model and the ANN-PLS model performed better than the PCR model and the
PLSR model both in the calibration set and the validation set. By training with the ANN
algorithm, the R2

P of ANN-PCA model increased the R2
P to 0.7238 and reduced the RMSEP to

0.8451 ◦Brix. The R2
P of ANN-PLS also reached a higher R2

P value of 0.7596 and lower RMSEP
of 0.7879 ◦Brix than the PLSR model. It was close to the results from Chia et al. [20], where
they combined the VIS-SWNIR (650–1000 nm) technique with ANN model for predicting
the SSC of pineapple (RMSEP values in a range of 0.71–1.14 ◦Brix). It could be explained that
the ANN model had calculated preferable weights of spectral variables for determining the
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SSC of pineapples. In summary, four calibrated models could pass the significance test of
the F-statistic at a 99.9% confidence level since all p-values were lower than 0.001. All these
models produced RPD values in the range between 1.7 and 2.42, which were reported to be
usable for screening [34]. These results suggest that VIS/NIR transmittance spectroscopy
technique is promising for determining the SSC of pineapples. Noticeably, it is crucial to
select an appropriate reference method for accurate detection of SSC values to establish a
detection model for the practice production process. Besides, more samples with a broader
reference value range are required to build the model. It would be useful to improve model
performance while handling more diverse unknown samples.

Table 3. The results of different regression models for determining SSC values during calibration and
validation processes.

Models Parameters RMSEC
(◦Brix) R2

C
RMSECV

(◦Brix) R2
CV

RMSEP
(◦Brix) R2

P RPD p-Value

PCR a PCs = 6 0.7878 0.7832 0.8189 0.7658 0.8591 0.7147 1.8680 <0.001
PLSR b LVs = 5 0.7674 0.7942 0.8107 0.7706 0.8120 0.7455 1.9763 <0.001

c ANN-PCA PCs = 6,
nodes = 5 0.7558 0.8004 0.8168 0.7681 0.8451 0.7238 1.8989 <0.001

d ANN-PLS
LVs = 5,

nodes = 4 0.7076 0.8251 0.8093 0.7719 0.7879 0.7596 2.0369 <0.001

Notes: a PCs, number of principal components; b LVs, number of latent variables; c ANN-PCA, ANN model
using principal components compressed by principal component analysis algorithm (PCA) as input variables;
d ANN-PLS, ANN model using latent variables compressed by partial least squares algorithm (PLS) as input
variables.
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3.5. Characteristic Spectral Variables for Determining Internal Quality of Pineapple Samples

As the PLS modeling algorithm was applied for calibrating models to detect maturity
grades and SSC values, the regression coefficients calculated by the PLS model were used to
interpret the characteristic spectral variables for determining pineapple maturity and SSC
content of pineapple. The larger the absolute coefficient, the more important the spectral
variable was to the prediction model. Since PLSDA combined the other samples in different
maturity grades into one category while detecting samples in a single maturity grade,
three coefficient vectors were extracted from the PLSDA model and plotted in Figure 6a.
Relatively large fluctuations could be observed between 720 and 930 nm, which belonged
to the fourth and third overtone vibrational absorptions of functional groups related to
carbohydrates. What is more, wavelength bands at around 755, 810, 840, and 915 nm
were the characteristic bands identified by the PLS algorithm for classifying pineapple
maturities. The wavelength bands at around 840 nm were mainly related to the absorbance
of water [3]. It was reasonable that the moisture content of pineapple varied closely with
maturity. Figure 6b shows a different pattern of coefficients for SSC determination from
those for maturity discrimination. Characteristic wavelength bands at 425, 475, 710, 755,
810, 875, and 955 nm could obtain high absolute values of coefficients, which were more
related to the absorption of light source by SSC in pineapples. The similar wavelength
bands 754, 950, and 960 nm were also considered useful for determining the total soluble
solids (TSS) content of pineapple in a study of Amuah et al. [22]. They reported that these
wavelengths were related to functional groups of -CH and -OH, which were attributed
to TSS. Besides, 755 and 810 nm were simultaneously identified by the PLSR model and
the PLSDA model, showing spectral variables around these two bands were related to
SSC content as well as indicating the maturities of pineapples. However, the wavelength
bands between 550 and 700 nm did not provide highly relevant information for detection
of pineapple maturity and SSC content. This was also reported by Rahim et al. [21] that
wavelengths in the vicinity of the spectrum 662–700 nm lacked useful information for the
SSC assessment of pineapples.
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4. Conclusions

This study established accurate and robust models for detection of the internal quality
of pineapples by using VIS/NIR transmittance spectroscopy and machine learning mod-
eling methods. The qualitative model for discriminating maturity grades of pineapple
achieved a high accuracy of 90.8% by PLSR model both for the calibration set and the
validation set. Meanwhile, the quantitative model for determining soluble solids content
(SSC) also reached the high determination coefficient (R2

P) of 0.7596 and low root mean
square error of prediction (RMSEP) of 0.7879 ◦Brix by ANN-PLS model among all tested
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modeling algorithms. The high performances of the qualitative model and the quantitative
model suggested that the VIS/NIR transmittance spectroscopy technique could be success-
fully applied for rapid and nondestructive detection of the internal quality of pineapples.
Additionally, the regression coefficients calculated from the PLS models indicated that the
spectral variables around 755 and 810 nm were both related to maturity grades and SSC
absorption of pineapples, which verified the correlation between the SSC and pineapple
maturities as previous studies reported. Overall, this study demonstrated a feasible method
to nondestructively detect the internal quality of pineapples by using VIS/NIR transmit-
tance spectroscopy technique coupled with machine learning methodologies as an effort to
bring the spectral techniques developed in the academy closer to meeting the requirements
found in practice. The next step could be to integrate the detection models into a pipeline
equipment system with detection units and sorting units for practical application research.
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