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Abstract: ‘Huangguan’ pear has excellent quality, strong adaptability, and good socioeconomic value.
Iron is one of the important trace elements in plants, and iron imbalance seriously affects the growth
and development of pear trees and reduces their economic benefits. If the iron content in pear fruit
can be easily and non-destructively detected using modern technology during the critical period
of fruit development, it will undoubtedly help guide actual production. In this study, ‘Huangguan’
pear fruit was used as the research object, and the possibility of using the more convenient near-
infrared spectroscopy (900~1700 nm) technology for nondestructive detection of the iron content in
the peel and pulp of ‘Huangguan’ pear was explored. First, 12 algorithms were used to preprocess
the original spectral data, and based on the original and the preprocessed spectral data, partial
least squares regression and gradient boosting regression tree algorithms were used. A full-band
prediction model of the iron content in the peel and pulp of ‘Huangguan’ pear was established,
and the genetic algorithm was used to extract characteristic wavelengths, establish a characteristic
wavelength prediction model, and evaluate the prediction effect of each model according to the
coefficient of determination R2 and the relative analysis error RPD. After comparison, we found that
the prediction model with the best prediction of the iron content in the peel and pulp of ‘Huangguan’
pear reaches class A, and the prediction effect is good and meets expectations. This experiment shows
that the use of near-infrared spectroscopy can achieve better prediction of the iron content in the peel
and pulp of ‘Huangguan’ pear.

Keywords: ‘Huangguan’ pear; iron; near-infrared spectroscopy; modeling; content prediction

1. Introduction

‘Huangguan’ pear has excellent quality, and its fruit yield is high. The fruit is rich in
minerals and vitamins, making it delicious and juicy, so it is widely enjoyed by consumers.
‘Huangguan’ pear has good economic benefits, and now China and even the rest of the
world have a large area of cultivation, with good development prospects. As one of the
irreplaceable trace elements in plants [1], iron plays an important role in the growth and
development of ‘Huangguan’ pear trees and the quality of pear fruit. Iron participates in
the respiration of plants because it is a component of some enzymes related to respiration,
such as peroxidase and catalase, which are often in the active site of the enzyme structure.
So, if plants lack iron, these enzymes’ activities are affected, respiration is blocked, and ATP
synthesis reduces, so the growth and development of plants and their yield are significantly
affected. Iron is closely related to plant photosynthesis, and the synthesis of chlorophyll
requires the participation of iron. The growth and development of pear trees are hindered
by iron deficiency, and pear trees may develop a variety of physiological diseases, such as
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yellow leaf disease [2]. Iron-deficiency yellow leaf disease of pear trees is caused by the
lack of iron in the trees or an imbalance between iron and other nutrients. The lack of iron
makes the pear trees grow slowly, the fruit yield decreases, and the fruit is deformed, has a
poor color, etc., which seriously affects the quality of the fruit [3,4]. The soil of orchards
in northern China is mostly calcareous yellow tide soil or chestnut calcium soil [5]. Some
orchards also have a low terrain and a high groundwater table, so the phenomenon of iron
deficiency and green loss of pear trees is common [2,6], which seriously affects the quality
and yield of pear fruit. The diagnosis of yellow leaf disease in production practice mainly
depends on external morphological indicators, but characterization alone cannot confirm
the cause and extent of onset of yellow leaf disease [7]. Moreover, the iron content in a single
leaf is difficult to detect directly, but the iron content in the fruit can be used to indirectly
reflect the iron content in the leaf and the rest of the pear tree. If the iron content in the fruit
can be easily measured using nondestructive testing techniques during the critical period
of ripening of the ‘Huangguan’ pear, it will help tailor agricultural management methods,
effectively prevent and help treat yellow leaf disease, guide actual production, and help
improve the yield and quality of ‘Huangguan’ pear fruit in the ‘Huangguan’ pear industry.

For the detection of the mineral element content in pear fruit, the methods commonly
used in laboratories include inductively coupled plasma-mass spectrometry (ICP-MS) [8,9]
atomic absorption spectrometry [10], and ultraviolet-visible spectrophotometer measure-
ment. Although these methods can determine the mineral element content in the fruit more
accurately, all require destructive sampling. In addition, they can only be carried out in
the laboratory and cannot be directly performed in the field, which is time-consuming and
labor-intensive and is difficult for farmers to grasp and apply in practice. At present, the
detection of the mineral element content in ‘Huangguan’ pear fruit is mainly conducted
during product quality tests carried out in the laboratory, and there is no relevant appli-
cation that can provide real-time detection data for the growth and development of the
fruit. If the iron content in pear fruit can be measured quickly and nondestructively in
the field at the critical stage of pear fruit development, it can not only effectively prevent
the occurrence of iron-deficiency yellow leaf disease in pear trees but also help carry out
quantitative fertilization according to the iron content in pear fruit, adjust the fertilization
strategy, and guide production.

Compared with traditional mineral element detection and analysis methods, near-
infrared spectroscopy detection technology is convenient and fast, does not require de-
structive sampling, and can detect multiple components at the same time, which has good
application prospects. In 1986, scientists Batten and Blakeney pioneered the use of near-
infrared spectroscopy to analyze nitrogen in rice tissue to determine optimized fertilization
strategies. Rossa et al. used near-infrared spectroscopy to measure macronutrients C, N, P,
K, Ca, and Mg and micronutrients Na and Fe in Paraguayan tea and the concentrations of
Mn, Cu, and Zn, and good results were achieved [11]. Mir-Marques et al. used near-infrared
spectroscopy to establish a multivariate correction model for predicting Ca, K, Mg, Fe, Mn,
and Zn in artichoke [12], and the prediction worked well. Lastras et al. used near-infrared
spectroscopy combined with the improved partial-positive partial least squares regression
algorithm to predict the content of major mineral elements Ca, Fe, and Mg and the content
of fatty acids in lentils [13]. A large number of experiments have proven that the use of
near-infrared spectroscopy technology can achieve nondestructive testing of the mineral
element content in fruits and vegetables.

Based on near-infrared spectroscopy, taking ‘Huangguan’ pear fruit as the research
object, this paper modeled and predicted the iron content in pear peel and pulp and es-
tablished a full-band prediction model of the iron content according to the iron content
detection value, original spectral data, and preprocessed spectral data of the samples. The
prediction model with a good fitting effect was selected, and the genetic algorithm [14–16]
was used to extract the characteristic wavelength and establish a characteristic wavelength
prediction model. By comparing the coefficient of determination (R2) and the relative anal-
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ysis error (RPD) of each model, the prediction model of the peel and pulp of ‘Huangguan’
pear was screened, which provided guidance for actual production practice.

2. Materials and Methods
2.1. Test Pear Fruit Samples

The pear fruit samples in this experiment were obtained from 18 ‘Huangguan’ pear
trees from the fourth team of the Dangshan County Horticultural Farm in Suzhou City,
Anhui Province (34.442516◦ N, 116.367097◦ E), and the plants were in good condition
and free of obvious diseases and pests. In early August, the pear fruits were picked and
transported back to the laboratory; 65 samples with good fruit shape, no diseases and pests,
and no mechanical damage were selected; and the surface of the fruits was scrubbed and
numbered for later use.

2.2. Near-Infrared Spectral Data Acquisition

In this experiment, a reflective miniature handheld near-infrared spectrometer was
used to acquire 228 bands in the wavelength range of 900–1700 nm, with a spectral resolu-
tion of 3.89 nm. The signal-to-noise ratio was 5000:1 [17–19].

To accurately reflect the phosphorus content in pear fruit samples, it was necessary to
reasonably divide the sampling area. Taking the equatorial line of the fruit as the reference
line, the long axis was selected evenly about 7.5 cm, three elliptical regions with a minor
axis of about 5.5 cm were selected, and 5 spectral acquisition points were uniformly selected
within each elliptical region, as shown in Figure 1. Spectral data were collected sequentially,
and the average of the 5 reflection spectral data was used as the original modeled spectral
data of a single elliptical region. After acquisition, the spectral data were exported and
numbered for later modeling.
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Figure 1. Schematic diagram of the surface spectral acquisition point of pear fruit.

2.3. Near-Infrared Spectroscopy Data Preprocessing

Raw spectral data are susceptible to environmental interference, so the original spec-
tral data needed to be processed using pretreatment methods, including Savitzky-Golay
convolutional smoothing (SG) [20,21], multiple scattering correction (MSC)), logarithmic
transformation (LG) [22], first derivative (FD) [23], second derivative (SD) [24], and combi-
nations of two or three single pretreatment methods (SG + MSC, SG + SNV, SG + MSC + SD,
SG + MSC + FD, SG + SNV + FD, SG + SNV + SD). The raw spectral data were preprocessed,
and the effects of each pretreatment method were analyzed using trial-and-error comparison.

2.4. Characteristic Wavelength Extraction

The original spectral data contained a large amount of information from inside the pear
fruit, but there could be were inevitably some wavelengths that were weak or irrelevant to
the target chemical composition of the samples, and environmental factors, such as noise
and light, could have inevitably interfered with the process of collecting the spectrum, af-
fecting the accuracy of later modeling. This experiment was based on the genetic algorithm
(GA). The characteristic wavelength extraction process was carried out on the full-band
model that met the prediction standard, and a characteristic wavelength prediction model
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was established to further optimize the model. The genetic algorithm was first proposed by
Professor John Holland of the United States in 1975, which has a wide range of applications,
is easy to mix with other technologies, and has advantages over traditional algorithms in
dealing with some complex combinatorial optimization problems [25–27].

2.5. Detection of the Iron Content in Pear Peel and Pulp

After collecting the spectral data of all pear fruit samples, the peel and pulp were
sampled within the delimitation range of each pear fruit skin mentioned in Figure 1, packed
in Ziplock bags, marked with numbers, and sent to the Anhui Geological Experiment
Institute for iron content detection. The detection method used was inductively coupled
plasma-mass spectrometry.

2.6. Establishment of a Prediction Model for the Iron Content in the Peel and Pulp of ‘Huangguan’ Pear

In this experiment, partial least squares regression (PLSR) [28,29] and gradient boost-
ing regression tree (GBRT) [30,31] algorithms were used to establish a quantitative pre-
diction model of the iron content in pear peel and pulp. The PLSR algorithm has fewer
sample requirements, can handle multi-faceted complex models, can process reflection
indicators and formation indicators at the same time, and can realize multiple linear regres-
sion analyses, principal component analyses, and correlation analyses between two sets of
variables at the same time, which is suitable for establishing predictive models. The GBRT
algorithm is a decision-tree-based boosting algorithm, which can process various numerical
and categorical large features as well as continuous and discrete target variables; has a
certain robustness to abnormal data and outliers; and can better predict the target variable.

2.7. Model Effect Evaluation Indicators

The coefficient of determination (R2) and residual predictive deviation (RPD) were
the model evaluation indices used in this study. The coefficient of determination (R2) has a
range of values between 0 and 1, and the closer it is to 1, the less the error, the greater the
model fitting effect, and the closer the distribution of prediction points to the regression line.
The opposite is also true, showing a poor model prediction effect. The ratio of the standard
deviation (SD) and the root mean square error of prediction (RMSEP), also known as the
relative analysis error (RPD) or residual prediction bias, is a key indicator for assessing the
benefits and drawbacks of the model.

The RPD assessment level suggested by Chang et al. [32] was used to assess the
model’s ability to forecast. When ERPD ≥ 2 and R2 ≥ 0.8, the model’s prediction effect
is good and the model belongs to class A, which can be applied to the corresponding
quantitative prediction. When 1.4 ≤ ERPD < 2 and 0.5 ≤ R2 < 0.8, the predictive ability of
the model is medium and the model belongs to class B. When ERPD < 1.4 and R2 < 0.5, the
model’s prediction effect is relatively poor and the model belongs to class C and cannot be
applied to quantitative prediction.

3. Results
3.1. Analysis of the Iron Content Detection in the Peel and Pulp of ‘Huangguan’ Pear

The reasonable division of samples had an important impact on the accuracy of the
later model. In this paper, 65 test samples were randomly divided into modeling sets and
prediction sets at a ratio of 8:2, with a total of 52 samples in the modeling set and a total of
13 samples in the prediction set. The specific breakdown data of the samples are shown in
Table 1. The table shows that the data distribution of the sample set had a certain gradient,
and the mean and standard deviation of the samples in the modeling set and the prediction
set were relatively close, which shows that the data distribution structure of the modeling
set and the prediction set was similar, which is conducive to the rational interpretation of
the prediction results.
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Table 1. Classification of iron content detection samples in pear peel and pulp and parameter statistics.

Sets Sample Size Maximum
(mg/kg)

Minimum
(mg/kg)

Average
(mg/kg) Standard Deviation

Modeling set (Peel) 52 95.95 8.75 29.79 19.42
Prediction set (peel) 13 66.57 7.48 25.08 18.86
Modeling set (pulp) 52 10.40 0.28 1.52 1.77
Prediction set (pulp) 13 3.64 0.37 1.68 1.08

3.2. Raw Spectral Data Analysis

After the spectrum was acquired, original spectral curves (Figure 2a) and average
spectral curves (Figure 2b) were obtained. Overall, the original spectral curves reflected
similarity in the reflectance spectral data of all samples, with small differences from sample
to sample, indicating that the mineral content in the samples was generally similar. The
reflectance spectral data reached the maximum and minimum values at wavelengths of
approximately 900 nm and 1450 nm, respectively, and there were obvious curve troughs
near 980 nm, 1200 nm, 1440 nm, and 1660 nm and obvious peaks at 1050 nm, 1260 nm, and
1680 nm, which may be related to compounds in pear fruit [33,34]. The primary peaks of
water absorption, according to the literature, are 980 nm and 1450 nm. About 1660 nm
corresponds to the first frequency-doubling information of the methyl C-H bond tensile vi-
bration about related carbohydrate O-H bonds. The main chemical components in pear fruit
include flavonoids, triterpenes, phenolic acids, luminolates, and polysaccharides [35,36].
The entire spectral curve is a rich reflection of the pear fruit’s interior data.
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‘Huangguan’ pears.

3.3. Analysis of Spectral Data Preprocessing Results

Figure 3 displays the spectral curve that was obtained following 12 pretreatment
techniques. Compared with the initial spectral curve, the spectral curve after pretreatment
underwent a significant alteration. First, the baseline shift phenomenon improved, and
the signal-to-noise ratio also improved in the spectral image after reciprocal processing.
However, at the same time, the influence of noise on the spectrum increased, and the
second-derivative algorithm processing had a greater noise impact than the first-derivative
algorithm processing. Second, there were no noticeable changes in the spectral picture
following MSC and SNV pretreatments. The MSC transformation mostly removed the
scattering impact brought on by an uneven particle distribution and varied particle sizes
on the sample surface, while SNV was primarily used to remove the effects of these
factors. Third, LG pretreatment was beneficial in highlighting the characteristic spectrum,
emphasizing some spectral peaks. Fourth, at the same time, the spectral curve after the
superposition of multiple pretreatments was not simply the superposition of a single
processing effect but also had an impact between various pretreatments, and further
experiments are needed to explore which pretreatment is most conducive to improving the
accuracy of the model.
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3.4. Full-Band Modeling

In this paper, the classic single algorithm partial least squares regression (PLSR) [37]
and the ensemble algorithm the gradient boosting regression tree (GBRT) were used to
establish a predictive model for iron content.

3.4.1. Full-Band Modeling of the Iron Content in the Peel of ‘Huangguan’ Pear

The R2 and RPD of the modeling set and the prediction set were used as evaluation
indices. A total of 26 prediction models for predicting the iron content in pear peel were
established based on the original spectral data and 12 preprocessed spectral data items
according to the PLSR and GBRT algorithms. Table 2 displays the specific outcomes.
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Table 2. Full-band modeling and prediction results of the iron content in pear peel based on PLSR
and GBRT algorithms.

Modeling Methods Preprocessing Methods
Modeling Sets Prediction Sets

Class of Models
R2 RPD R2 RPD

PLSR

Raw (not preprocessed) 0.955 3.371 0.547 1.195 C
SNV 0.922 2.583 0.603 1.254 C
FD 0.939 2.908 0.697 1.395 C

MSC 0.871 2.035 0.657 1.326 C
SD 0.648 1.313 0.631 1.289 C
SG 0.955 3.371 0.547 1.195 C
LG 0.922 2.583 0.678 1.360 C

SG + MSC 0.871 2.035 0.657 1.326 C
SG + SNV 0.922 2.583 0.603 1.254 C

SG + MSC + FD 0.767 1.558 0.733 1.470 B
SG + MSC + SD 0.838 1.833 0.651 1.317 C
SG + SNV + FD 0.773 1.576 0.733 1.470 B
SG + SNV + SD 0.838 1.833 0.650 1.316 C

GBRT

Raw (not preprocessed) 0.999 22.366 0.449 1.119 C
SNV 0.999 22.366 0.427 1.106 C
FD 0.935 2.820 0.427 1.106 C

MSC 0.943 3.005 0.469 1.132 C
SD 0.899 2.283 0.408 1.095 C
SG 0.999 22.366 0.498 1.153 C
LG 0.764 1.550 0.530 1.179 C

SG + MSC 0.999 22.366 0.469 1.132 C
SG + SNV 0.999 22.366 0.424 1.104 C

SG + MSC + FD 0.865 1.993 0.463 1.128 C
SG + MSC + SD 0.999 22.366 0.402 1.092 C
SG + SNV + FD 0.999 22.366 0.518 1.169 C
SG + SNV + SD 0.799 1.663 0.524 1.174 C

According to the results of the 26 prediction models, it can be seen that after Raw-PLRS,
R2 = 0.955 and RPD = 3.371 for the modeling set and R2 = 0.547 and RPD = 1.195 for
the prediction set. After Raw-GBRT, R2 = 0.999 and RPD = 22.366 for the modeling set,
R2 = 0.449 and RPD = 1.119 for the prediction set, and the model class is C. So, the mod-
eling results of the original spectral curve do not meet the modeling requirements and
cannot be used as a predictive model. Among the 13 models established using PLSR, the
SG + MSC + FD-PLSR model and the SG + SNV + FD-PLSR model reached class B, which
met the requirements of preliminary modeling accuracy, and the remaining 11 models
did not meet the modeling requirements. The modeling effect of the spectral curve after
12 preprocessing steps was better than the modeling effect of the original spectral curve,
indicating that under the condition of the PLSR algorithm, preprocessing has a positive
effect on improving the accuracy of the model. However, this does not mean that the
more preprocessing that is stacked, the better. Among the 13 models established using
GBRT, none met the requirements of modeling accuracy. Although the fitting effect of the
modeling set was better, the fitting effect of the prediction set was poor, so it cannot be
used as a predictive model, indicating that under these experimental conditions, the GBRT
algorithm is not suitable for establishing the model. Overall, the modeling effect of the
PLSR algorithm is better than that of the GBRT algorithm for predicting the iron content in
the peel of ‘Huangguan’ pear.

3.4.2. Full-Band Modeling of the Iron Content in the Pulp of ‘Huangguan’ Pear

According to the PLSR and GBRT algorithms, a total of 26 prediction models for
predicting the iron content in pear pulp were established based on the original spectral data
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and the spectral data after 12 preprocessing steps. The R2 and RPD of the prediction set and
the modeling set were used as evaluation indices. Table 3 displays the specific outcomes.

Table 3. Full-band modeling and prediction results of iron content in pear pulp based on PLSR and
GBRT algorithms.

Modeling Methods Preprocessing Method
Modeling Sets Prediction Set

Class of Models
R2 RPD R2 RPD

PLSR

Raw (not preprocessed) 0.991 7.64 0.167 1.014 C
SNV 0.087 1.004 0.015 1.000 C
FD 0.819 1.743 0.633 1.291 C

MSC 0.087 1.004 0.015 1.000 C
SD 0.884 2.142 0.611 1.264 C
SG 0.991 7.64 0.167 1.014 C
LG 0.999 54.94 0.393 1.087 C

SG + MSC 0.087 1.004 0.015 1.000 C
SG + SNV 0.087 1.004 0.015 1.000 C

SG + MSC + FD 0.840 1.846 0.721 1.445 B
SG + MSC + SD 0.872 2.04 0.54 1.188 C
SG + SNV + FD 0.854 1.923 0.725 1.451 B
SG + SNV + SD 0.873 2.05 0.54 1.188 C

GBRT

Raw (not preprocessed) 0.985 5.767 0.412 1.098 C
SNV 0.592 1.241 0.262 1.036 C
FD 0.99 7.089 0.61 1.262 C

MSC 0.592 1.241 0.177 1.016 C
SD 0.99 7.089 0.2 1.021 C
SG 0.985 5.766 0.413 1.098 C
LG 0.894 2.233 0.394 1.088 C

SG + MSC 0.592 1.241 0.177 1.016 C
SG + SNV 0.592 1.241 0.262 1.036 C

SG + MSC + FD 0.942 2.991 0.519 1.170 C
SG + MSC + SD 0.99 7.089 0.256 1.034 C
SG + SNV + FD 0.942 2.991 0.519 1.170 C
SG + SNV + SD 0.99 7.078 0.209 1.022 C

For the 13 models established using the PLSR algorithm, R2 = 0.840 and RPD = 1.846 for
the modeling set of the SG + MSC + FD-PLSR model, R2 = 0.721 and RPD = 1.445 for
the prediction set of the SG + MSC + FD-PLSR model, R2 = 0.854 and RPD = 1.923 for
the SG + SNV + FD-PLSR model modeling set, and R2 = 0.725 and RPD = 1.451 for the
SG + SNV + FD-PLSR model prediction set. These two models reached class B, which
meets the accuracy requirements of preliminary modeling. The 13 prediction models
established using the GBRT algorithm all met the modeling requirements and cannot be
used as predictive models. Overall, the modeling results of the preprocessed spectral
data are not completely better than the modeling results of the original spectral data, the
modeling effect of the PLSR algorithm is better than the modeling effect of the GBRT
algorithm, and the GBRT algorithm is not suitable for model establishment for the iron
content in the pulp of ‘Huangguan’ pear under these experimental conditions.

3.5. Extraction of Characteristic Wavelengths

According to the above-mentioned research results, through SNV, FD, MSC, SD, SG,
LG, SG + MSC, SG + SNV, and SG + MSC + SD, the PLSR models established using the
10 pretreatments of SG + SNV + SD did not meet the quantitative prediction criteria and
were not suitable for the prediction of the iron content in the peel and pulp of ‘Huangguan’
pear, while none of the 26 prediction models established using the GBRT algorithm met the
prediction criteria and was not suitable for iron content prediction. For the two models that
initially met the prediction criteria, SG + MSC + FD-PLSR and SG + SNV + FD-PLSR, and for
the two models that predicted the iron content in pear pulp that initially met the prediction
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criteria, SG + MSC-FD-PLSR and SG + SNV-FD-PLSR, characteristic wavelength processing
was carried out using the genetic algorithm. To further optimize the prediction model, the
characteristic wavelengths extracted by the four models are shown in Tables 4 and 5.

Table 4. Extraction results of characteristic spectral data of the iron content prediction model for
pear peel.

Characteristic
Wavelength
Extraction
Method

Models Extract the Number of
Characteristic Wavelengths Specific Characteristic Bands (nm)

GA

SG + MSC + FD
-PLSR 106

901.57, 909.36, 933.92, 945.50, 949.35, 957.03,
960.87, 964.70, 969.80, 973.63, 977.45, 981.26,

996.48, 1000.27,1009.10,
1012.88, 1020.43, 1024.19, 1039.22, 1044.21,
1051.68, 1059.14,1082.65, 1090.04, 1093.72,
1104.76, 1108.43, 1116.98, 1124.29,1135.22,
1138.85, 1150.94, 1154.56, 1165.38, 1168.98,
1176.17,1198.82, 1202.38, 1205.93, 1209.49,
1213.03, 1216.58, 1224.83,1228.36, 1231.88,
1242.44, 1249.45, 1254.11, 1261.10, 1268.06,
1271.54, 1278.48, 1285.41, 1303.79, 1310.66,
1314.08, 1317.50,1322.06, 1339.07, 1373.89,
1380.58, 1404.96, 1414.87, 1429.11,1438.93,
1453.04, 1456.28, 1462.76, 1478.88, 1482.09,
1486.36,1489.56, 1492.76, 1516.07, 1522.39,
1525.54, 1528.69, 1531.84,1534.98, 1538.11,
1541.25, 1548.54, 1551.65, 1557.88, 1567.18
1573.36, 1586.69, 1589.76, 1592.82, 1598.93,
1601.98, 1606.04,1615.14, 1618.17, 1624.21,
1627.22, 1643.22, 1646.21, 1649.19,1658.11,

1667.98, 1670.93, 1685.63, 1691.47,
1695.36, 1698.27.

SG + SNV + FD
-PLSR 107

901.57, 909.36, 941.64, 969.80, 985.07, 996.48,
1000.27,1012.88,1031.71, 1039.22, 1044.21,

1051.68, 1055.42, 1059.14, 1078.95
1082.65, 1086.34, 1090.04, 1097.41, 1104.76,
1138.85, 1142.48, 1150.94, 1168.98, 1176.17,
1184.53, 1195.25, 1198.82, 1202.38, 1205.93,
1213.03, 1216.58, 1221.30, 1224.83, 1228.36,
1235.41, 1245.94, 1249.45, 1261.10, 1264.58,
1268.06, 1275.02, 1278.48, 1290.02, 1300.36,
1303.79, 1307.23, 1310.66, 1314.08, 1317.50
1322.06, 1328.87, 1339.07, 1342.46, 1357.10,
1360.47, 1363.83, 1370.54, 1377.24, 1383.92,
1388.36, 1391.69, 1395.02, 1398.34, 1404.96,
1422.55, 1425.83, 1438.93, 1442.19, 1453.04,
1478.88, 1486.36, 1492.76, 1495.95, 1502.32,
1505.50, 1511.85, 1516.07, 1519.23, 1525.54,
1528.69, 1531.84, 1541.25, 1544.37, 1548.54
1557.88, 1564.08, 1573.36, 1577.47, 1592.82,
1595.88, 1606.04, 1615.14, 1621.19, 1637.23,
1640.23, 1643.22, 1655.14, 1658.11, 1661.08,
1665.02, 1673.88, 1679.76, 1685.63, 1688.55,

1695.36, 1698.27
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Table 5. Extraction results of the characteristic spectral data of the iron content prediction model for
pear pulp.

Characteristic
Wavelength
Extraction
Method

Models Extract the Number of
Characteristic Wavelengths Specific Characteristic Bands (nm)

GA

SG + MSC + FD
-PLSR 120

909.36, 921.02, 924.89, 933.92, 937.78, 941.64,
945.50, 953.19 964.70, 985.07, 988.88, 996.48,
1000.27, 1005.32, 1012.88 1016.66, 1031.71,
1035.47, 1055.42, 1059.14, 1062.87, 1074.01
1078.95, 1093.72, 1097.41, 1101.08, 1135.22,
1138.85, 1142.48 1165.38, 1172.58, 1176.17,
1184.53, 1195.25, 1198.82, 1209.49 1216.58,
1231.88, 1242.44, 1245.94, 1249.45, 1264.58,
1271.54 1278.48, 1281.95, 1285.41, 1293.47,
1296.91, 1300.36, 1303.79 1307.23, 1310.66,
1314.08, 1325.47, 1328.87, 1332.28, 1339.07
1345.85, 1363.83, 1367.19, 1377.24, 1380.58,
1383.92, 1391.69 1398.34, 1404.96, 1411.57,
1414.87, 1418.16, 1456.28, 1459.52 1472.44,
1475.66, 1478.88, 1489.56, 1492.76, 1495.95,
1502.32 1505.50, 1508.68, 1511.85, 1516.07,
1519.23, 1528.69, 1534.98 1538.11, 1541.25,
1548.54, 1551.65, 1554.77, 1567.18, 1570.27
1577.47, 1580.55, 1589.76, 1598.93, 1601.98,
1609.08, 1612.11 1618.17, 1621.19, 1627.22,
1630.23, 1633.23, 1643.22, 1646.21 1649.19,
1652.17, 1655.14, 1658.11, 1661.08, 1665.02,
1667.98 1673.88, 1676.82, 1679.76, 1682.70,

1688.55, 1691.47, 1698.27

SG + SNV + FD
-PLSR 111

913.25, 921.02, 930.06, 933.92, 937.78, 945.50,
949.35, 953.19 964.70, 973.63, 985.07, 992.68,
1009.10, 1012.88, 1016.66 1031.71, 1044.21,
1047.95, 1051.68, 1059.14, 1062.87, 1070.30
1074.01, 1086.34, 1093.72, 1112.10, 1116.98,
1124.29, 1127.93 1131.58, 1138.85, 1146.11,
1165.38, 1168.98, 1179.76, 1184.53 1188.11,
1191.68, 1195.25, 1198.82, 1205.93, 1209.49,
1224.83 1228.36, 1231.88, 1235.41, 1242.44,
1254.11, 1257.61, 1268.06 1271.54, 1275.02,
1290.02, 1293.47, 1296.91, 1300.36, 1307.23
1314.08, 1322.06, 1332.28, 1339.07, 1342.46,
1363.83, 1367.19 1373.89, 1383.92, 1401.65,
1404.96, 1408.27, 1411.57, 1425.83 1435.66,
1445.45, 1459.52, 1462.76, 1469.22, 1472.44,
1495.95 1499.14, 1502.32, 1511.85, 1519.23,
1522.39, 1528.69, 1531.84 1534.98, 1541.25,
1554.77, 1557.88, 1564.08, 1567.18, 1570.27
1573.36, 1583.62, 1589.76, 1595.88, 1618.17,
1630.23, 1633.23 1637.23, 1640.23, 1646.21,
1649.19, 1661.08, 1670.93, 1676.82 1679.76

3.5.1. Characteristic Wavelength Extraction of the Iron Content Prediction Model for
Pear Peel

Using the genetic algorithm, 106 and 107 characteristic spectra were extracted from
the spectral curves after SG + MSC + FD and SG + SNV + FD pretreatments, respectively,
and the distribution of extraction points on the spectral curve is shown in Figure 4.
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Figure 4. Location distribution of characteristic wavelength extraction points of the iron content
prediction model for pear peel: (a) SG + MSC + FD-GA-PLSR and (b) SG + SNV + FD-GA-PLSR.

According to the figure, the extracted spectral points had no obvious regular distribu-
tion on the original spectral curve, but most of them were concentrated between 920 and
1100 nm, 1150 and 1300 nm, and 1450 and 1650 nm. Although the characteristic wave-
length points extracted by the two spectra were different, most of them were concentrated
in these three regions, indicating that these wavelength intervals can reflect most of the
spectral information.

3.5.2. Characteristic Wavelength Extraction of the Iron Content Prediction Model for
Pear Pulp

Using the genetic algorithm [14], spectral data with a good effect of predicting the iron
content in the pulp of ‘Huangguan’ pear were extracted at the characteristic wavelength,
120 characteristic spectral points were extracted from the spectral data after SG + MSC + FD
pretreatment, and 111 characteristic spectral points were extracted from the spectral data
after SG + SNV + FD pretreatment. The distribution of extraction points on the entire
spectral curve is shown in Figure 5.

Horticulturae 2023, 9, x FOR PEER REVIEW 11 of 17 

 
(a) (b) 

Figure 4. Location distribution of characteristic wavelength extraction points of the iron content 
prediction model for pear peel: (a) SG + MSC + FD-GA-PLSR and (b) SG + SNV + FD-GA-PLSR. 

According to the figure, the extracted spectral points had no obvious regular distri-
bution on the original spectral curve, but most of them were concentrated between 920 
and 1100 nm, 1150 and 1300 nm, and 1450 and 1650 nm. Although the characteristic wave-
length points extracted by the two spectra were different, most of them were concentrated 
in these three regions, indicating that these wavelength intervals can reflect most of the 
spectral information. 

3.5.2. Characteristic Wavelength Extraction of the Iron Content Prediction Model for Pear 
Pulp 

Using the genetic algorithm [14], spectral data with a good effect of predicting the 
iron content in the pulp of ‘Huangguan’ pear were extracted at the characteristic wave-
length, 120 characteristic spectral points were extracted from the spectral data after SG + 
MSC + FD pretreatment, and 111 characteristic spectral points were extracted from the 
spectral data after SG + SNV + FD pretreatment. The distribution of extraction points on 
the entire spectral curve is shown in Figure 5. 

According to Figure 5, the distribution of characteristic spectral points on the spectral 
curve had no obvious regularity, and the distribution of characteristic spectral points in 
the iron content prediction model for pear pulp was similar to that for pear peel, mainly 
concentrated between 920 and 1100 nm, 1150 and 1300 nm, and 1450 and 1650 nm. 

(a) (b) 

Figure 5. Location distribution of characteristic wavelength extraction points of the iron content 
prediction model for pear pulp: (a) SG + MSC + FD-GA-PLSR and (b) SG + SNV + FD-GA-PLSR. 

3.6. Characteristic Wavelength Modeling 
Modeling treatment of the iron content predicted in the peel of ‘Huangguan’ pear 

based on characteristic wavelength extraction (SG + MSC + FD-GA, SG + SNV + FD-GA) 
and modeling treatment of the iron content predicted in pear pulp (SG + MSC + FD-GA, 

Figure 5. Location distribution of characteristic wavelength extraction points of the iron content
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According to Figure 5, the distribution of characteristic spectral points on the spectral
curve had no obvious regularity, and the distribution of characteristic spectral points in
the iron content prediction model for pear pulp was similar to that for pear peel, mainly
concentrated between 920 and 1100 nm, 1150 and 1300 nm, and 1450 and 1650 nm.
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3.6. Characteristic Wavelength Modeling

Modeling treatment of the iron content predicted in the peel of ‘Huangguan’ pear
based on characteristic wavelength extraction (SG + MSC + FD-GA, SG + SNV + FD-GA)
and modeling treatment of the iron content predicted in pear pulp (SG + MSC + FD-GA,
SG + SNV + FD-GA) were performed using the PLSR algorithm again, and the models
were evaluated. The results obtained are shown in Tables 6 and 7.

Table 6. Modeling results of the iron content in pear peel based on characteristic wavelengths.

Models
Modeling Sets Prediction Set

Class of Models
R2 RPD R2 RPD

SG + MSC + FD-GA-PLSR 0.997 12.920 0.976 4.592 A
SG + SNV + FD-GA-PLSR 0.998 5.819 0.987 6.222 A

Table 7. Modeling results of the iron content in pear pulp based on characteristic wavelengths.

Models
Modeling Sets Prediction Set

Class of Models
R2 RPD R2 RPD

SG + MSC + FD-GA-PLSR 0.701 1.403 0.987 6.405 A
SG + SNV + FD-GA-PLSR 0.753 1.521 0.989 6.793 A

3.6.1. Based on the Characteristic Wavelength, a Model for Predicting the Iron Content in
Pear Peel was Established

This is shown in Figure 6, after the two models were extracted using the GA algorithm,
the model class was further improved to reach class A, which can be used to predict the
iron content in the peel of ‘Huangguan’ pear.

Figure 6. Model prediction of the iron content in pear peel samples (scatter plot): (a) SG + MSC +
FD-GA-PLSR and (b) SG + SNV + FD-GA-PLSR.

3.6.2. Based on the Characteristic Wavelength, a Model for Predicting the Iron Content in
Pear Pulp was Established

This is shown in Figure 7, after GA feature extraction, the two prediction models
obtained reached the A prediction level, which can be used to predict the iron content in
the pulp of ‘Huangguan’ pear. The GA algorithm has a positive significance for improving
the fitting effect of the model.
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Figure 7. Model prediction of the iron content in pear pulp samples (scatter plot): (a) SG + MSC +
FD-GA-PLSR and (b) SG + SNV + FD-GA-PLSR.

3.7. Model Effect Evaluation

From the above-mentioned experimental analysis, it can be seen that under the condi-
tions of this experiment, the optimal prediction model for the iron content in the peel and
pulp of ‘Huangguan’ pear is to use the GA algorithm to extract characteristic wavelengths
from the spectral data curve preprocessed using SG + MSC + FD and then combine the
prediction model established using the PLSR algorithm—SG + SNV + FD-GA-PLSR. The
model satisfactorily predicts the iron content in pear peel, R2 = 0.998 and RPD = 15.819 for
the modeling set, R2 = 0.987 and RPD = 6.222 for the prediction set, the fitting effect of the
modeling set is slightly better than that of the prediction set, and the model effect meets
the prediction standard of the class A model. The model also satisfactorily predicts the
iron content in pear pulp and fits well, R2 = 0.753 and RPD = 1.521 for the modeling set,
R2 = 0.989 and RPD = 6.793 for the prediction set, and the model effect meets the prediction
standard of a class A model.

4. Discussion

As one of the important trace elements in plants, iron is essential for the growth of
the ‘Huangguan’ pear tree. Iron belongs to a prosthetic group of a variety of enzymes in
plants and is an important carrier of the electron transport chain. The presence of iron
in pear trees is a necessary condition for achieving an abundant and excellent fruit yield,
and timely detection of the iron content in fruits and targeted adjustment of agricultural
methods, such as fertilization and irrigation, are of high significance to the nutritional
growth and fruit quality improvement of pear trees in the later stage [3,38,39]. At the
same time, because pear trees absorb iron, which is preferentially transported to new
leaves, young shoots, developing fruits, etc., whether the iron content in pear fruits is
normal can be used as a reference to judge whether the plant is iron deficient. Combined
with some lesion characteristics of pear trees, this can help determine the physiological
diseases afflicting pear trees, such as iron-deficiency yellow leaf disease. Rapid detection
of the mineral element content in fruits has a variety of applications in agriculture. Based
on the rapidly developing near-infrared spectroscopy (900 nm~1700 nm) technology in
recent years, this paper took 65 ‘Huangguan’ pear fruits with good growth from Dangshan
County, Anhui Province, as test samples and detected the iron content in the pear peel
and pulp after near-infrared spectra acquisition. The 12 methods included Savitzky-Golay
convolutional smoothing (SG), multiple scattering correction (MSC), standard normal
variety (SNV), logarithmic transformation (LG), first derivative (FD), and second derivative
(SD). Combinations of two single preprocessing algorithms (SG + SNV and SG + MSC) and
combinations of three single preprocessing methods (SG + MSC + SD, SG + MSC + FD,
SG + SNV + FD, SG + SNV + SD, and SG + SNV + SD) were used to preprocess the original
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spectral data [40]. Next, partial least squares regression (PLSR) [41] and gradient boosting
regression tree (GBRT) algorithms were used to establish a prediction model for mineral
element content, establish a full-band prediction model, and preliminarily screen out two
models that meet the criteria for predicting the iron content in pear peel and two models
that meet the criteria for predicting the iron content in pear pulp. The genetic algorithm
(GA) was used to extract the characteristic wavelength, and a characteristic wavelength
prediction model was established to further improve the accuracy of the model.

After research evaluation, the SG + SNV + FD-GA-PLSR model was found to have the
best predictive effect on the iron content in pear peel and pulp among all established mod-
els, and the model predicted the iron content in pear peel with R2 = 0.998, RPD = 15.819,
R2 = 0.987, and RPD = 6.222 for the prediction set of ‘Huangguan’ pear peel. In predicting
the iron content in the pulp of ‘Huangguan’ pear, the model had values of R2 = 0.753,
RPD = 1.521, R2 = 0.989, and RPD = 6.793 for the prediction set. The predictive models all
reach class A, the fitting effect is good, and they can be used as predictive models. The
experimental data show that under the experimental conditions, the prediction model
established using the PLSR algorithm is generally better than the prediction model estab-
lished using the GBRT algorithm, and the GBRT algorithm is not suitable for the prediction
of the mineral element content in the fruit of ‘Huangguan’ pear. In the extraction of feature
wavelengths, we can see that the extraction after different pretreatments was slightly dif-
ferent, but most of the extracted feature wavelengths were concentrated between 920 and
1100 nm, 1150 and 1300 nm, and 1450 and 1650 nm, which is similar to the ‘Huangguan’
pear’s spectral information related to the iron content, which may be concentrated between
these three bands, and the literature shows that in the range of 900~1700 nm, there are
some chemical bonds with saturated activity, such as X-H bonds, C=O bonds of esters, C=N
bonds of amines, etc. [42]. At the same time, in addition to using the genetic algorithm
to extract feature wavelengths, this experiment also tried to use a differential evolution
algorithm to extract feature wavelengths, but the modeling results in the later stage were
poor, and the model fitting effect even had a downwards trend. It can be seen that the
specific method has an improvement effect on the establishment of a prediction model
for mineral element content in pear fruit but still needs to be further verified. In view of
the lack of research on the detection of mineral elements in pear fruit, this experiment can
provide some theoretical reference for the detection of mineral elements in pear fruit using
near-infrared spectroscopy.

5. Conclusions

In summary, the results of this paper prove that the nondestructive prediction of the
iron content in the peel and pulp of ‘Huangguan’ pear can be quickly and accurately realized
by using a miniature near-infrared spectrometer, the model fitting effect is good, and actual
production practice can be carried out, which can help identify difficult physiological
diseases, such as yellow leaf disease, and guide practical agricultural methods. This study
can provide part of the theoretical basis for near-infrared spectroscopy in the nondestructive
detection of mineral elements in ‘Huangguan’ pear fruit, and subsequent research will
further expand the number and range of samples and further improve the universality
and accuracy of the model. Using a variety of pear fruit samples, the contents of N, K,
Ca, and other mineral elements were determined to construct a wide and comprehensive
pear fruit mineral element detection model. Combined with a computer, a small, portable
near-infrared spectroscopy mineral element detection instrument was developed to further
realize direct detection in the field and apply the test theory to actual production.
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