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Abstract: Raisins are a significant grape product with an annual trade volume of approximately USD
2 billion. There are various methods employed for drying grapes into raisins. This study aimed to
investigate the effects of different drying methods on raisins, specifically, without pretreatment (SD),
treatment with potassium carbonate (5%) containing 2% olive oil (POT), and treatment with ashy
water with 2.5% olive oil (AOW). The study examined the changes in raisin weight, physicochemical
characteristics, total phenolics, antioxidant and anthocyanin contents, color properties, and protein
content in three grape varieties: Deyvani, Haseni, and Reşek. The results indicated that POT treatment
resulted in the lightest raisins in Deyvani (0.48 g) and Reşek (0.58 g), while Haseni exhibited the
heaviest raisins (0.64 g) under the same treatment. The variations in physicochemical characteristics
were relatively limited compared to the changes observed in phenolic and antioxidant properties.
Nontreated raisins had the lowest anthocyanin content across all varieties. Protein content was
significantly affected by the POT treatment, while the effects of the AOW and SD treatments were
comparatively minor. SD drying resulted in slightly brighter raisins, but lower phenolic content and
significantly lower color properties. The findings of this study highlight the differential effects of
drying methods on different grape varieties, emphasizing the importance of considering a variety-
specific approach when selecting the drying method.

Keywords: grape; potassium carbonate; oak ash; total phenolic content; color changes; DPPH
scavenging activity; multivariate approaches

1. Introduction

Grapes hold a prominent position among the crops cultivated worldwide, boasting a
substantial production volume. Furthermore, processed grape products play a significant
role in agricultural trade [1]. Notably, wine stands out as the leading exported commodity,
with a quantity of 10.6 million tons, followed by fresh grapes at 4.8 million tons. The
import value aligns closely with the export value. In terms of the sector’s trade, the wine
market amounts to approximately USD 39 billion, while fresh grapes contribute around
USD 10 billion. Raisins, with a trade value of roughly USD 2 billion, exhibit a similar
balance between exports and imports [2].

The process of obtaining raisins typically involves pre-drying, drying, and post-
drying procedures, which significantly impact the quality of the raisins in terms of enzyme
activities, sugar content, and drying time [3,4]. The drying process leads to substantial
changes in total antioxidant activity, volatile compounds, vitamins, minerals, and fiber
content compared to fresh grapes [5]. Different methods can be employed to dry fresh
grapes, including sunlight/shade drying, immersion in potash or water with ash, or
modern techniques such as vacuum or microwave drying and hot air drying [6]. In Turkey,
grapes are dried using various methods based on consumer preferences. Sun drying
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involves placing the grapes on soil, concrete floors, or shelves and allowing them to dry
for 2–3 weeks under direct sunlight. Shade drying, on the other hand, involves drying the
grapes for 2 or 4 weeks without exposure to direct sunlight. Prior to drying, pretreatment
can be applied to remove water from the grapes [7]. In Asia Minor, a solution is used
to enhance the drying rate of grape clusters. In ancient times, solutions were prepared
using wood ash or olive oil, while nowadays, olive oil, wood ash, or potassium carbonate
are commonly used. Commercial cold dips often include a combination of potassium
carbonate and fatty acids known as potash solution. Water containing wood ash is also
used as an organic dipping solution. Grapes dried without dipping exhibit a blackish-gray
color, tough skin, a dry and oil-free surface, and lower sugar content compared to those
dried with dipping methods [8].

The consumption of grapes and raisins can be traced back to ancient times, even
predating recorded history [9]. It is believed that early hunter-gatherer societies recognized
the desirable qualities of wild grapes and observed that grapes could naturally transform
into a dried, edible form when they fell off the vine and were exposed to sunlight [10].
The utilization of raisins as both food and decorative elements can be found in ancient
murals of the Mediterranean region and archaeological discoveries from the Bronze Age,
such as those found at Lachish in Israel. Raisins gained recognition and value due to their
ease of storage and transport [11]. Grapes are typically categorized as juicy berries. Their
high juice content makes them highly perishable during the postharvest period due to
the combination of abundant moisture and sugar, which leads to a shorter shelf life [12].
Consequently, once harvested, fresh grapes become susceptible to physical damage and a
decline in quality. When stored under normal conditions, the deterioration of fresh grapes
occurs rapidly [13]. Hence, it is crucial to either consume them promptly or process them
into various products to minimize postharvest losses in terms of quantity and quality [14].

In recent years, people’s demand for healthy food products has been increasing
rapidly [15–17]. In the past, consumers primarily considered taste, cost, and availability
when deciding to purchase fresh or processed agricultural products. However, the growing
body of research highlighting the impact of diet on human health and nutrition has led to an
increasing number of consumers making their purchasing decisions based on the nutritional
value and potential health benefits of food [18,19]. Plant scientists and breeders work
intensively to identify and breed species and varieties rich in biochemical substances that
positively contribute to health. Numerous studies have been published recently examining
the quality and biochemical contents of grapes [20–22]. Similarly, it is possible to come
across studies in the literature on the content of raisins [23,24]. Raisins are an important
source of micro- and macronutrients, providing sugars, vitamins, minerals, and fiber.
Additionally, they contain a diverse array of bioactive compounds such as polyphenols [25].
Raisins have a sugar content of over 62%, primarily composed of monosaccharides, glucose,
and fructose, which are present in nearly equal proportions. The amount of sucrose in
raisins is comparatively low, providing easily absorbed energy and a moderate glycemic
index [26]. However, almost 95% of the world’s raisin production is supplied with Sultani
Çekirdeksiz, the synonym of Thompson Seedless [27]. Although this variety dominates
the market, Breska et al. reported that Sultani Çekirdeksiz and Fiesta, the other widely
produced variety, are the lowest among 16 white grape varieties in terms of phenolic
content and antioxidant activity [28]. In addition, Sultani Çekirdeksiz is not a variety
that can be grown in every geoclimate. Determining the dried grape varieties suitable for
the current geoclimatic conditions is a crucial issue [29]. Since species and varieties have
different responses to processing methods and technologies [30], studying suitable drying
methods for specific varieties is vital for obtaining raisins of the desired quality.

This study investigated the effects of different drying methods on the physicochemical,
antioxidant, and colorimetric properties of seeded grape varieties adapted to high altitudes
in Turkey.
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2. Materials and Methods
2.1. Plant Material

This study was carried out on Deyvani, Haseni, and Reşek grape (Vitis vinifera L.)
varieties grown in a producer’s vineyard in the Midyat district of Mardin Province, Türkiye
(37◦25′30.2′′ N 41◦22′45.8′′ E, and 950 m elevation). The varieties were hand-harvested
when the total soluble solid (TSS) content reached 22%, in mid-August for Haseni and
Reşek and at the end of August for Deyvani. Clusters with uniform berry sizes were chosen
for the study.

2.2. Pretreatment Solution Preparation and Treatment

An adequate number of grapes was collected from each variety at the beginning. The
grapes were then divided into three groups for each pretreatment solution. The preparation
of the pretreatment solutions was as follows:

Preparation of water with ash: water comprising 7% oak wood ash (w/v) was brought
to a boil. It was then removed from heat and left to cool, allowing the ash to settle at
the bottom. The water was separated and boiled again with approximately 2.5% olive
oil added.

Preparation of potassium carbonate: a solution was created by dissolving 5 kg of
potassium carbonate in 100 L of water, and 1.5 L of high-acidity olive oil (2%) was added [31].
Subsequently, the grape clusters were immersed in the prepared solution for approximately
5 s. All samples were then placed on a white cloth spread on soil to prevent contamination
and were dried in the sun. Regular checks were conducted during the drying process
to ensure uniform drying. Drying continued until the moisture content of the samples
reached 17% [32]. Throughout the drying process, the average temperature in the region
was 31.6 ◦C, with a relative air humidity of 16%, no precipitation, and a wind speed of
0.6 m/s.

The control group (sun-dried) involved samples without any pretreatment solution,
while the immersion of grape clusters in potassium carbonate and water with ash solutions
was referred to as POT and AOW applications, respectively.

2.3. Measurement of Raisin Weight and Physicochemicals

Raisin weight was assessed by measuring 50 raisins in each replication using digital
scales. For physicochemical analyses, 10 g samples of raisins were taken from each replica-
tion, their seeds were removed, and the samples were blended using an electric blender
and combined with 100 mL of distilled water. They were then left at room temperature for
6 h. Subsequently, the mixture was filtered using cheesecloth, and an appropriate amount
of the resulting filtrate was collected. The TSS was determined using a digital refractometer
(ATC, 0–32, İstanbul, Turkey). To determine titratable acidity, an appropriate volume of the
filtrate was titrated with 0.1 N NaOH [32]. The pH of the filtrate was measured using a pH
meter (Orion Star A211, Thermo Scientific, Waltham, MA, USA).

2.4. Total Phenolics and DPPH Scavenging Assay

The microscale procedure reported by Waterhouse [33] was used with some modifica-
tions in the determination of the total phenolic content. Briefly, 1600 µL of distilled water
and 50 µL of Folin–Ciocalteu agent were added to 50 µL of methanolic extract and mixed
gently. Then, 300 µL of 7% (w/v) calcium carbonate solution was added and vortexed.
After the mixture was left in the dark under room conditions for 2 h, its absorbance at
760 nm was read using a UV-Vis spectrophotometer (SP-UV1100, DLAB, Beijing, China).
Obtained absorbance values were converted to real content by calculating the equation
obtained with a standard curve (R2 = 0.99) prepared using 0.5, 1, 2, 3, 4, 5, and 6 mM gallic
acid with the same procedure.

An ethanol solution of 2,2 Diphenyl 1 picrylhydrazyl obtained from Sigma-Aldrich
(Schnelldorf, Germany) was prepared with a final absorbance within the range of 0.7–0.8 to
measure the DPPH scavenging activity. The activity was measured by determining the most
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appropriate methanolic extract amount by preliminary trials, with a final volume of 2 mL;
a 50 µL sample, 1450 µL of ethanol, and 500 µL of DPPH solution were added sequentially
and vortexed. The prepared solution was measured at the 520 nm wavelength in a UV-Vis
spectrophotometer after 15 min, and the DPPH scavenging capacity was calculated with
the following formula.

DPPH (%) = (Ablank − Asample)/Ablank.

2.5. Soluble Protein and Total Monomeric Anthocyanin Assays

The total amount of soluble protein was determined using the modified Bradford
method [34]. Briefly, 1950 µL of Bradford agent was added to 50 µL of methanolic extract.
The absorbance was read at the 595 nm wavelength on a UV-Vis spectrophotometer, and
the actual content was calculated with the equation obtained from the standard curve.
Solutions obtained by serial dilution of 100 mg/mL bovine serum albumin stock solution
were used in preparing the standard curve.

For the determination of total monomeric anthocyanin, the pH differential method
defined by Fuleki and Francis [35] was applied with some modifications. Briefly, the
appropriate amount to be taken from the methanolic extract was determined and the
dilution factor was recorded in order to obtain an absorbance in the range of 0.4–0.8 at
the maximum wavelength. Subsequently, 0.4 mL of prepared dilution was placed into
2 separate tubes and filled to 2 mL with pH 1.0 and pH 4.5 buffer solutions. The tubes were
then capped and kept in the refrigerator for 2 h in dark conditions. Samples were measured
at the wavelengths of 516 nm and 700 nm, and the true absorbance was calculated with the
following formula:

Absorbance (A) = (A516 − A700) pH 1. − (A516 − A700) pH 4.5.

The total amount of monomeric anthocyanin was calculated by adding the obtained
absorbance value to the formula below.

Total anthocyanin (mg/L) = (A × 103 ×MW × DF)/(E × L)

A: absorbance, MW: molecular weight of pigments, (cyanidin 3 glucoside; 484.83 g/mol),
DF: dilution factor, E: molar absorbance (26,900), L: optical path (1 cm) of the cuvette.

2.6. Colorimetric Properties and Color Density Determination

Numerical color values in CIE color space L*, a*, b*, Chroma and Hue angle values
were determined with a handheld colorimeter (PCE CSM-4, Southampton, UK). The an-
thocyanin degradation method was used to determine the color intensity and polymeric
color [35]. In sample preparation, dilution, and absorbance values were adjusted as in total
monomeric anthocyanin, and 0.4 mL samples were placed in two different tubes, one filled
with distilled water and the other with 20% (w/v) metabisulfite solution. Both solutions
were measured half an hour later with a UV-Vis spectrophotometer at 420 nm, 516 nm, and
700 nm. The color density was calculated in the untreated sample, and the polymeric color
was computed in the bisulfite-treated sample with the following formula.

Color Density/Polymeric color = [(A516 − A700) + (A420 − A700)] (DF).

DF: dilution factor

2.7. Statistical Evaluations

The study was carried out in triplicate for each treatment and variety in a factorial
trial design. Data were subjected to Levene’s homogeneity test to assure that they were
homogeneous. After determining the normality, data were subjected to a two-way analysis
of variance (ANOVA) to determine the effects of the factors and their interaction. The
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differences between the means of the factors and interactions were compared using a
Student’s t-test (LSD) with an alpha level of 0.05. The interrelations among the drying
methods, varieties, and studied traits were evaluated by principal component (PCA) and
heatmap analyses using the “ggplot2” package of R Studio [36].

3. Results
3.1. Raisin Weight and Physicochemicals

The weights of raisins showed significant variation based on different factors, includ-
ing variety (p < 0.001), drying method (p < 0.05), and their interactions (p < 0.001). The
Reşek variety yielded the heaviest raisins, weighing 0.662 g, whereas the Deyvani variety
produced the lightest ones, weighing 0.541 g. Among the drying methods, SD did not
show a significant difference compared to the others, while AOW (0.618 g) had a notably
higher mean raisin weight than POT (0.569 g). The highest mean weight of the berries was
observed in the Reşek variety with AOW treatment, measuring 0.779 g. Considering the
interactive effect, POT resulted in the lowest mean weight values for the Reşek (0.579 g) and
Deyvani (0.483 g) varieties, while it yielded the highest mean weight in the Haseni (0.646 g)
variety. SD yielded the highest raisin weight in Deyvani (0.577 g), while AOW-treated
Reşek obtained the highest raisin weights with a mean of 0.779 g (Table 1).

Table 1. Changes in raisin weight and physicochemical characteristics according to variety and
drying method (mean ± standard deviation).

Variety Raisin Weight (g) TSS (%) pH TA (mg/L)

Deyvani 0.541 ± 0.051 c 68.86 ± 3.60 a 5.14 ± 0.44 a 0.52 ± 0.07 b
Haseni 0.586 ± 0.066 b 68.59 ± 6.22 a 4.53 ± 0.33 b 0.67 ± 0.04 a
Reşek 0.662 ± 0.096 a 66.91 ± 4.56 a 4.99 ± 0.27 a 0.55 ± 0.05 b

Drying method

AOW 0.618 ± 1.026 a 70.86 ± 4.26 a 4.91 ± 0.56 a 0.56 ± 0.09 b
POT 0.569 ± 0.076 b 68.63 ± 4.28 ab 4.97 ± 0.46 a 0.57 ± 0.11 b
SD 0.602 ± 0.037 ab 64.88 ± 4.24 b 4.78 ± 0.26 a 0.62 ± 0.04 a

Variety × drying method

Deyvani
AOW 0.563 ± 0.032 de 68.01 ± 3.90 abc 5.34 ± 0.31 ab 0.51 ± 0.03 de
POT 0.483 ± 0.028 f 70.35 ± 4.04 ab 5.43 ± 0.31 a 0.46 ± 0.03 e
SD 0.577 ± 0.033 cd 68.24 ± 3.92 abc 4.66 ± 0.27 cde 0.60 ± 0.03 c

Haseni
AOW 0.512 ± 0.029 ef 73.52 ± 4.22 a 4.25 ± 0.24 e 0.67 ± 0.04 ab
POT 0.646 ± 0.037 b 70.35 ± 4.04 ab 4.52 ± 0.26 de 0.71 ± 0.04 a
SD 0.601 ± 0.034 bcd 61.91 ± 3.55 c 4.81 ± 0.28 cd 0.64 ± 0.04 bc

Reşek
AOW 0.779 ± 0.045 a 71.05 ± 4.08 ab 5.14 ± 0.29 abc 0.51 ± 0.03 de
POT 0.579 ± 0.033 cd 65.19 ± 3.74 bc 4.95 ± 0.28 abcd 0.54 ± 0.03 d
SD 0.629 ± 0.036 bc 64.49 ± 3.70 bc 4.88 ± 0.28 bcd 0.60 ± 0.03 c

ANOVA

FVariety 28.18 *** 0.66 ns 11.82 *** 50.17 ***
FDrying method 4.64 * 5.37 * 1.00 ns 6.74 **
FVariety × drying method 20.31 *** 2.28 ns 4.65 ** 8.46 ***

Different letters in the same column indicate a significant difference between means according to Student’s t-test
(p < 0.05) for each factor. ns: non-significant. *, **, and *** indicate significance at p < 0.05, p < 0.01, and p < 0.001,
respectively.

The total soluble solids (TSS) showed relatively low variation across the different
varieties, whereas there was a significant variation among the drying methods (p < 0.05).
The interaction between variety and drying method was found to be insignificant. The
pH levels significantly differed among the varieties (p < 0.001), with Haseni having the
lowest pH of 4.53. The interaction between variety and drying method was also significant
(p < 0.01), and in the POT treatment, the Deyvani variety exhibited the highest pH at 5.43.
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However, the pH values of the drying methods ranged from 4.78 to 4.91, and this variation
was not significant. In contrast to the pH, the titratable acidity (TA) showed the opposite
trend, which is an expected occurrence, except for the significance of the drying method.
The highest TA value of 0.71 mg/L was observed in the Haseni variety with the POT
treatment, while the lowest value was found in the Deyvani variety, which also underwent
the POT treatment (Table 1).

3.2. Total Phenolics and DPPH Scavenging

The total phenolic content was significantly influenced by the variety, drying method,
and their interactions (p < 0.001). The total phenolics ranged from 82.29 mg/L GAE (Reşek)
to 104.30 mg/L GAE (Deyvani) across the different varieties. Among the drying methods,
the POT treatment exhibited notably higher total phenolic content (118.37 mg/L GAE)
compared to the SD treatment (78.24 mg/L GAE) and the AOW treatment (80.43 mg/L
GAE). The highest mean interaction value was observed in the POT treatment for the
Deyvani variety. It is worth mentioning that the phenolic content was consistently most
elevated in the POT treatment for all varieties, while the lowest amounts varied (Figure 1).
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Figure 1. Fluctuations in the total phenolics content (A) and DPPH scavenging activity (B) according
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The DPPH scavenging capacity displayed significant variations among the varieties
(p < 0.001), drying methods (p < 0.001), and their interactions (p < 0.05). Among the varieties,
the Haseni variety exhibited the highest DPPH scavenging activity (83%), whereas the
Deyvani variety had the lowest activity, with a scavenging capacity of 69%. The differences
in DPPH scavenging capacity across the treatments were relatively modest compared to the
variations among the varieties. The POT treatment showed the lowest DPPH scavenging
activity at 70%, while the AOW treatment had 78% and the SD treatment had an average of
79%. The interactive effect on the DPPH scavenging capacity yielded diverse outcomes.
The Haseni variety treated with AOW demonstrated the highest activity at 89%, while the
AOW-treated Deyvani and POT-treated Reşek exhibited the lowest activity with an average
of 66% (Figure 1).

3.3. Changes in Protein and Anthocyanin Content

The soluble protein content showed significant differences among the varieties, drying
methods, and their interactions (p < 0.001). The soluble protein content ranged from
1.07 mg/mL (Haseni) to 2.49 mg/mL (Reşek), indicating at least a 2-fold difference in
protein content across the different varieties. In terms of the drying methods, the AOW
and SD treatments were similar in protein content, with 1.18 mg/mL and 1.13 mg/mL,
respectively. However, the POT treatment displayed over 2-fold higher protein content,
with an average of 2.47 mg/mL. When evaluating the interactive effect, the Deyvani and
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Reşek varieties exhibited the highest protein content in the POT treatment, with mean
values of 2.08 mg/mL and 4.25 mg/mL, respectively, while the Haseni variety had the
highest protein content in the SD treatment, with a mean of 1.31 mg/mL (Figure 2, Table S1).
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The total monomeric anthocyanin content exhibited significant variations based on
the variety (p < 0.01), drying method (p < 0.001), and their interaction (p < 0.001). The
differences in mean monomeric anthocyanin values among the varieties were relatively
narrow, ranging from 4.22 mg/L (Haseni) to 4.72 mg/L (Reşek). However, sun-dried raisins
had two to three times lower monomeric anthocyanin content than AOW and POT-treated
raisins. AOW-treated raisins contained 4.81 mg/L, POT-treated raisins had 6.42 mg/L,
and sun-dried raisins had only 2.25 mg/L of monomeric anthocyanin. The interactions
revealed a completely different pattern. The treatments led to a significant diversity of
monomeric anthocyanin in the Deyvani variety, ranging from 1.34 mg/L (SD) to 9.08 mg/L
(POT). Reşek also exhibited a similar trend within a relatively narrow range. On the other
hand, the Haseni variety displayed the highest monomeric anthocyanin content in the
AOW treatment (6.55 mg/L), while the lowest was in the SD treatment (2.29 mg/L), as
observed in the other varieties (Figure 2, Table S1).

3.4. Changes in Raisin Color Properties

The color parameters, including L, a, b, Chroma, and Hue, were significantly in-
fluenced by the variety, drying method, and their interactions. However, the degree of
influence varied depending on the specific color attribute. The interaction effect was the
least significant (based on the F value) for all color properties except for Hue, while the
drying method had the greatest impact on all color properties. Notably, the effect of drying
methods on the L value and Hue angle was found to be at least twice as significant as
the other two factors. Furthermore, when analyzing the changes in color values based on
drying methods for different varieties, it is evident that white varieties exhibit a wider
range of color changes due to drying (Table 2).

In terms of color intensity, the Reşek variety displayed the most intense color, followed
by Deyvani and Haseni, in that order. There was no statistically significant difference in
average color intensity between the SD and POT drying methods, while the AOW treatment
yielded lower color density compared to the other two methods. The Haseni and Reşek
varieties achieved the highest color intensity with the SD treatment, while Deyvani showed
the highest intensity with the POT treatment. Moreover, the Reşek variety exhibited the
highest values in terms of polymeric color among the different drying methods, with the
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POT treatment yielding the highest values overall. All varieties displayed the highest
polymeric color when subjected to the POT treatment (Table 2).

Table 2. Changes in color features of raisins according to the variety, drying method, and their
interaction (mean ± standard deviation).

Variety L* a* b* Chroma Hueo ColDen PolCol

Deyvani 19.79 ± 1.98 a 3.75 ± 1.41
a

4.75 ± 2.52
a

6.09 ± 2.81
a 48.72 ± 7.39 a 2.12 ± 0.16

b
1.30 ± 0.23
c

Haseni 17.74 ± 1.57
b

3.15 ± 1.36
b

3.82 ± 1.70
b

4.96 ± 2.18
b 50.14 ± 2.76 a 1.75 ± 0.16

c
1.57 ± 0.09
b

Reşek 19.26 ± 1.84 a 1.33 ± 0.71
c

1.22 ± 0.99
c

2.00 ± 0.94
c

42.59 ± 11.11
b

2.70 ± 0.32
a

2.17 ± 0.48
a

Drying
method

AOW 18.04 ± 0.98
b

3.20 ± 1.21
b

3.83 ± 1.23
b

5.00 ± 1.72
b 51.92 ± 4.47 a 2.04 ± 0.30

b
1.46 ± 0.37
c

POT 18.23 ± 2.02
b

3.79 ± 1.42
a

4.81 ± 2.71
a

6.18 ± 2.96
a

48.92 ± 8.47
b

2.25 ± 0.54
a

1.97 ± 0.63
a

SD 20.52 ± 1.72 a 1.25 ± 0.68
c

1.15 ± 0.87
c

1.87 ± 0.87
c 40.61 ± 7.29 c 2.29 ± 0.50

a
1.60 ± 0.24
b

Variety × drying
method

Deyvani
AOW 17.65 ± 1.01

cd
4.30 ± 0.25
b

4.87 ± 0.28
c

6.51 ± 0.37
b

48.68 ± 2.79
b

2.11 ± 0.12
bc

1.02 ± 0.06
e

POT 20.15 ± 1.16
ab

5.00 ± 0.29
a

7.58 ± 0.43
a

9.09 ± 0.52
a 56.80 ± 3.26 a 2.26 ± 0.13

b
1.49 ± 0.09
cd

SD 21.57 ± 1.24 a 1.93 ± 0.11
d

1.80 ± 0.10
f

2.68 ± 0.15
de 40.70 ± 2.34 c 2.00 ± 0.11

c
1.39 ± 0.08
d

Haseni
AOW 18.54 ± 1.06

bc
3.64 ± 0.21
c

4.39 ± 0.25
d

5.71 ± 0.33
c

50.41 ± 2.89
b

1.69 ± 0.10
d

1.53 ± 0.09
cd

POT 16.01 ± 0.92
d

4.41 ± 0.25
b

5.42 ± 0.31
b

7.00 ± 0.40
b

51.38 ± 2.95
b

1.64 ± 0.09
d

1.63 ± 0.09
c

SD 18.68 ± 1.07
bc

1.41 ± 0.08
e

1.66 ± 0.10
f

2.18 ± 0.13
e

48.65 ± 2.79
b

1.92 ± 0.11
c

1.54 ± 0.09
cd

Reşek
AOW 17.92 ± 1.03 c 1.65 ± 0.09

de
2.23 ± 0.13
e

2.78 ± 0.16
d 56.69 ± 3.25 a 2.32 ± 0.13

b
1.84 ± 0.11
b

POT 18.54 ± 1.06
bc

1.95 ± 0.11
d

1.44 ± 0.08
f

2.45 ± 0.14
de 38.58 ± 2.21 c 2.85 ± 0.16

a
2.79 ± 0.16
a

SD 21.31 ± 1.22 a 0.40 ± 0.02
f

0.10 ± 0.01
g

0.76 ± 0.04
f

32.50 ± 1.86
d

2.94 ± 0.17
a

1.89 ± 0.11
b

ANOVA

FVariety 8.52 ** 439.40 *** 575.49 *** 472.80 *** 19.30 *** 126.04 *** 180.41 ***
FDrying method 14.42 *** 490.21 *** 618.58 *** 523.00 *** 41.06 *** 9.86 ** 62.58 ***
FVariety × drying method 4.69 ** 18.26 *** 75.99 *** 51.99 *** 24.36 *** 8.99 *** 22.18 ***

Different letters in the same column indicate a significant difference between means according to Student’s t-test
(p < 0.05) for each factor. ** and *** indicate significance at p < 0.01 and p < 0.001, respectively.

3.5. Statistical Approaches

In the PCA analysis, the first two components accounted for 59.8% of the total variabil-
ity, with PC1 contributing 36.7% and PC2 contributing 23.1%. The variables that had the
highest influence on PC1 were a*, b*, and Chroma, with vector loadings of 0.408, 0.424, and
0.424, respectively. On the other hand, PC2 was primarily influenced by protein content
(0.458) and color density (0.430) (Table S2). The PC plot revealed distinct regions for each
variety, indicating their separation based on the analyzed variables. Similarly, the drying
methods were also segregated into different zones on the plot. In terms of the relationships
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observed, the POT treatment possessed high contents of total monomeric anthocyanin,
total phenolics, and pH. The SD treatment, on the other hand, was aligned with the berry
weight. AOW treatment exhibited relatively stronger connections with TSS and Hue angle
(Figure 3). These findings highlight the distinct contributions of different variables and
their impact on the separation and relationships observed in the PCA analysis.
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carbonate solution; SD: sun drying. Col Den: color density; Pol Col: polymeric color; TA: titration
acidity; Mono Ant: total monomeric anthocyanin; TP: total phenolic content; TSS: total soluble solids.
The * represents treatments while the • represents varieties.

The heatmap analysis visually demonstrated the variations in different traits across
the varieties and drying methods. Specifically, it revealed that the Deyvani variety treated
with POT exhibited the highest values in a*, b*, Hue, Chroma, pH, total phenolics, and
total monomeric anthocyanin content. In contrast, the SD treatment of the Deyvani variety
resulted in lower values for these same features. A similar pattern was observed in the
Haseni variety, where the SD treatment showed lower values compared to the AOW and
POT treatments. On the other hand, the changes in traits for the Reşek variety differed
from those of the other two varieties across the different treatments (Figure 4).
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phenolic content; TSS: total soluble solids.

4. Discussion

Grape skin is composed of an epidermis and several layers of small thick-walled cells,
which play a crucial role in regulating the drying process. The outer epidermis is covered
by non-living layers, including cuticles, lenticels, wax, and collenchymatous hypodermal
cells [37]. The wax layer, due to its hydrophobic nature, forms a protective barrier against
fungal pathogens and minimizes water loss through transpiration [38]. Additionally, it
shields the grape from UV light and physical damage [39]. The skin also controls the
exchange of gases between the berry and its surrounding environment. The epicuticular
layer, known for its role in protecting against microbial and environmental damage, can
influence the shelf life of all grape-related products [23]. The number, size, and volume of
these skin layers vary depending on the grape cultivar [40]. The variation of the grape skin
characteristics, particularly cuticular wax abundance and composition, could be one of the
main reasons for the significantly different berry weights and physicochemicals across the
drying methods.

A recent study reported no significant change in TSS and pH due to drying methods for
the Bilbizeki, Raşe Kewnar, and Kerküş varieties, while there was a significant difference in
the berry weight of the Kerküş variety according to the drying treatment [41]. According to
Jadhav et al. [42], the ‘Thompson seedless’ grape variety dipped in a solution of potassium
carbonate and olive oil exhibited a soluble solid content (SSC) ranging from 70.71% to
82.97% and titratable acidity ranging from 0.25% to 0.32%. The acidity levels of raisins
obtained through various dipping solutions and drying techniques ranged from 0.46%
to 0.51% in the ‘Thompson seedless’ variety and from 0.54% to 0.63% in the ‘Perlette’
variety [43]. Yalcinkaya [44] observed pH values ranging from 4.29 to 4.52, acidity values
between 0.77% and 1.05%, and TSS between 81.74% and 87.13% in raisins subjected to
different drying methods, which were lower for pH but higher for TA and TSS. The
variation in acidity could be due to the drying technique, growing ecology, and variety [45].

The antioxidant properties of foods are associated with their ability to inhibit or
scavenge reactive oxygen species (ROS). The DPPH assay has gained popularity due to
its easy, rapid, and cost-effective application [46]. This technique relies on the elimination
of DPPH free radicals by acting as a hydrogen donor to ROS [47]. It is important to note
that this method is sensitive to acidic pH levels. Higher hydrogen ion concentrations can
lead to a decrease in the antioxidant activity of the sample [48]. In this study, the Deyvani
and Reşek varieties exhibited similar pH levels across the treatments, resulting in relative
changes in DPPH scavenging activity. However, the Haseni variety consistently displayed
the highest DPPH activity across all treatments, indicating that the antioxidant properties of
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raisins are influenced by the specific grape variety, emphasizing the importance of selecting
an appropriate variety. The findings of this study are in line with the findings of Breska
et al. [27], who reported variations in antioxidant levels among various grape cultivars in
raisins. Additionally, Keskin et al. [4] observed higher antioxidant enzyme activities in
raisins treated with oak ash compared to those treated with potassium carbonate in the
Gök Üzüm variety. In the present study, AOW treatment demonstrated higher antioxidant
activities than POT treatment in the Haseni and Reşek varieties, while the Deyvani variety
exhibited higher activity in POT treatment. These results suggest that the change in
antioxidant properties in raisins is a complex process influenced by various factors.

The majority of macromolecules in raisins are carbohydrates, followed by protein
and fat. In Tunisian grape raisins, the protein content was reported to vary among va-
rieties, ranging from 1.65% to 3.33% [49]. Conversely, Zemni et al. [50] reported protein
contents not exceeding 1.3% and found no significant difference in protein content based
on the drying method in the Italian Muscat cultivar. Previous researchers used the Kjel-
dahl assay to quantify protein content, while in this study, the more sensitive Bradford
assay was employed [51]. The conflicting statements among previous researchers and the
findings of this study could be due to differences in cultivars, measurement assays, or
pretreatment conditions.

Color is a crucial aspect of both processed and non-processed foods, playing a vital
role in consumer acceptance of the product. It can also indicate chemical changes that
occur during production and storage. Researchers have highlighted the importance of
color changes in dried grapes as a quality indicator, influenced by various chemical and
biochemical processes during drying and storage [52]. Compared to other food items,
raisins are more prone to color changes, especially in terms of browning reactions, whether
enzymatic or non-enzymatic, as well as due to storage and distribution conditions [53].
Non-enzymatic browning reactions involve the interaction between amino acids or proteins
and sugars, resulting in the formation of nitrogen polymers and a darkening of the product.
Consumers generally prefer grapes or raisins with brighter colors, making it important to
prevent browning reactions that lead to darkening [54] and undesirable flavors in raisins. In
this study, the L* values were comparable to those in previous studies on raisins [55]. On the
other hand, the a* and b* values of all raisin varieties were positive, indicating the presence
of colors ranging from red to yellow. As expected, the black Reşek variety exhibited a
higher a* value than b*, while the green varieties had higher b* values. Interestingly,
sun-dried raisins showed the highest brightness across all varieties, suggesting a lower
degree of oxidation. Browning in raisins is typically caused by enzymatic reactions and
the breakdown of cellular structures [56]. The results of this study, particularly the limited
variation in a* and b* values, highlight the importance of bleaching treatments to achieve
specific colors for each variety of raisins.

The PCA and heatmap analysis have started to be utilized in research studies to
evaluate the differentiation of the factors according to the studied characteristics from the
visual point of view [57,58]. By examining the biplot, it is possible to observe the relative
positions of the varieties and drying methods, indicating their similarities or differences in
terms of the studied traits. The biplot can also reveal which traits have the most significant
influence on the separation of varieties and drying methods. Overall, the biplot serves as
a visual tool to aid in understanding the complex relationships and patterns among the
variables and how they contribute to the distribution of varieties and drying methods in the
analyzed dataset. The heatmap analysis provided a visual representation of these variations,
allowing for easy comparison and identification of the differences between varieties and
drying methods. The heatmap analysis revealed distinct differences in trait changes for the
Reşek variety compared to the other two varieties across different treatments. Moreover,
the pretreatments were grouped together, except for the POT-treated Reşek variety, which
indicates that treatments significantly affected distinctions among raisins. Additionally,
the biplot analysis shows a clear separation among all treatments and varieties, indicating
proximate variation in raisin characteristics of the varieties according to the treatments.
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5. Conclusions

This study aimed to assess the impact of different drying methods on the changes
observed in raisins from specific grape varieties. The drying methods included no pre-
treatment, pretreatment with potassium carbonate, and pretreatment with ashy-oily water.
The results revealed significant variations in phenolic content, antioxidant capacity, color
properties, berry weight, and physicochemical characteristics, which were influenced by
both the variety of grapes and the drying methods. The Deyvani variety exhibited the
highest phenolic content, antioxidant capacity, and color properties when treated with
potassium carbonate, while the Reşek variety had higher levels of protein, color density, and
polymeric color. In contrast, the Haseni variety showed the highest antioxidant activity and
color properties when treated with ashy-oily water. The color density was predominantly
influenced by the grape variety, highlighting the importance of selecting the appropriate va-
riety for market purposes. Future research should focus on evaluating quality changes and
bioactive compounds during shelf life while considering the interaction between variety
and pretreatment.
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1, pp. 269–272.

3. Sério, S.; Rivero-Pérez, M.D.; Correia, A.C.; Jordão, A.M.; González-SanJosé, M.L. Analysis of commercial grape raisins: Phenolic
content, antioxidant capacity and radical scavenger activity. Ciência Téchnica Vitivinícola 2014, 29, 1–8. [CrossRef]

4. Keskin, N.; Kaya, O.; Ates, F.; Turan, M.; Gutiérrez-Gamboa, G. Drying Grapes after the Application of Different Dipping
Solutions: Effects on Hormones, Minerals, Vitamins, and Antioxidant Enzymes in Gök Üzüm (Vitis vinifera L.) Raisins. Plants
2022, 11, 529. [CrossRef] [PubMed]

5. Franco, M.; Peinado, R.A.; Medina, M.; Moreno, J. Off-Vine Grape Drying Effect on Volatile Compounds and Aromatic Series in
Must from Pedro Ximénez Grape Variety. J. Agric. Food Chem. 2004, 52, 3905–3910. [CrossRef]

6. Panagopoulou, E.A.; Chiou, A.; Nikolidaki, E.K.; Christea, M.; Karathanos, V.T. Corinthian raisins (Vitis vinifera L., var. Apyrena)
antioxidant and sugar content as affected by the drying process: A 3 year study. J. Sci. Food Agric. 2019, 99, 915–922. [CrossRef]

7. Esmaiili, M.; Sotudeh-Gharebagh, R.; Cronin, K.; Mousavi, M.A.E.; Rezazadeh, G. Grape Drying: A Review. Food Rev. Int. 2007,
23, 257–280. [CrossRef]

8. Guler, A.; Candemir, A. Çekirdeksiz Kuru Üzüm Üretiminde Alternatif Çeşitler ve Kuru Üzüm Karakteristiklerinin Belirlenmesi.
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45. Foshanji, A.S.; Krishna, H.C.; Vasudeva, K.R.; Ramegowda, G.K.; Shankarappa, T.H.; Bhuvaneswar, S.; Sahel, N.A. Effects of
pre-treatments and drying methods on nutritional and sensory quality of raisin. J. Pharmacogn. Phytochem. 2018, 7, 3079–3083.

46. Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; Vibhuti, A.; Gupta, A.; Pandey, R.P.; Chang, C.-M. Determination of Antioxidants by
DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules 2022, 27, 1326. [CrossRef]

47. Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22,
3380. [CrossRef] [PubMed]

48. Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422.
[CrossRef] [PubMed]

49. Khiari, R.; Zemni, H.; Mihoubi, D. Raisin processing: Physicochemical, nutritional and microbiological quality characteristics as
affected by drying process. Food Rev. Int. 2018, 35, 246–298. [CrossRef]

50. Zemni, H.; Sghaier, A.; Khiari, R.; Chebil, S.; Ben Ismail, H.; Nefzaoui, R.; Hamdi, Z.; Lasram, S. Physicochemical, Phyto-chemical
and Mycological Characteristics of Italia Muscat Raisins Obtained Using Different Pre-Treatment and Drying Techniques. Food
Bioproc. Technol. 2017, 10, 479–490. [CrossRef]

51. Kamizake, N.K.; Gonçalves, M.M.; Zaia, C.T.; Zaia, D.A. Determination of total proteins in cow milk powder samples: A
comparative study between the Kjeldahl method and spectrophotometric methods. J. Food Compos. Anal. 2003, 16, 507–516.
[CrossRef]

52. Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Color measurement and analysis in fresh and processed foods: A review. Food Bioproc.
Technol. 2012, 6, 36–60. [CrossRef]

53. Guiné, R.P.F. The Drying of Foods and Its Effect on the Physical-Chemical, Sensorial and Nutritional Properties. Int. J. Food Eng.
2018, 2, 93–100. [CrossRef]

54. Ashtiani, S.-H.M.; Rafiee, M.; Morad, M.M.; Khojastehpour, M.; Khani, M.R.; Rohani, A.; Shokri, B.; Martynenko, A. Impact of
gliding arc plasma pretreatment on drying efficiency and physicochemical properties of grape. Innov. Food Sci. Emerg. Technol.
2020, 63, 102381. [CrossRef]

55. Bahabaad, G.A.; Esmaiili, M. Effects of different dipping solutions and storage conditions on the color properties of raisin. Am. J.
Agric Environ. Sci. 2012, 12, 1311–1315.

56. Farahbakhsh, E.; Pakbin, B.; Mahmoudi, R.; Katiraee, F.; Kohannia, N.; Valizade, S. Microbiological Quality of Raisin Dried by
Different Methods. Int. J. Food Nutr. Saf. 2015, 6, 62–66.
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