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Abstract: Potato tubers are susceptible to wounding during post-harvest processes, leading to quality
decline, perishability and large economic losses. In this study, the potato cultivar, ‘Longshu No.7’,
was foliar-sprayed with 3% chitosan (w/v) three times during the pre-harvest period after flowering
to evaluate the effect of foliar spraying with chitosan on suberization processing in the wounds of
harvested potato tubers. Our results demonstrated that foliar sprayed with chitosan significantly
reduced wound-induced fresh weight loss and dry rot disease index by 37.34% and 41.60% on day
28 after wounding, respectively. Foliar sprayed with chitosan accelerated the deposition of suberin
polyphenolic and lignin at the wound sites of potato tubers with the formation of thicker cell layers.
This occurred with increased localized activities of key enzymes in the suberin polyphenolic and
lignin pathways, including phenylalanine ammonia lyase, 4-coumaryl-coenzyme A ligase, cinnamyl
alcohol dehydrogenase and peroxidase (33.90–64.32%), as well as the contents of cinnamic acid,
sinapic acid, flavonoids, lignins and total phenolics (19.70–23.46%) in the wounded sites of potato
tubers on day 7 after wounding. Our results indicated that foliar application of chitosan accelerated
wound-induced suberization of potato tubers and could mitigate post-harvest product damages.

Keywords: chitosan; foliar application; lignin; potato; suberin polyphenolic; wound-induced
suberization

1. Introduction

Potato (Solanum tuberosum L.) is the world’s fourth largest food crop and an important
raw material in food industrial processing, with annual production reaching 18 million
tons in China (potato grain production is converted to 20% of the fresh weight of potatoes
as the standard yield; data from the 2021 statistics of the National Bureau of China). About
70–80% of the total production of potato tubers is stored after harvest for consumption
over the following year [1]. However, the primary periderm of potato tubers can be fragile
and susceptible to peeling, scraping and friction injuries during harvesting, post-harvest
transportation and storage operations [2]. Epidermal wounds are the main channels for
pathogen infection and water loss, leading to a decline in product quality and increased
product decay during storage [3]. In China, the incidence of potato tuber rot during storage
was reported to be on average between 10 and 30% and up to 60%, which represents huge
economic losses [4]. Injury to the tuber periderm leads to secondary periderm formation as
protection against pathogen infestations and water loss [5]. This healing process involves
wound-induced suberization at the wound site, which occurs with the localized synthesis
and deposition of suberin polyphenolic (SPP) and lignin. However, this process can
take 2–3 weeks to complete, which is sufficient for substantial water loss, opportunistic
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pathogen entry, disease incidence and product loss during storage [5]. Therefore, the study
of methods to accelerate wound-induced suberization is of economic importance [3,6].

Chitosan, a deacetylation product of chitin (poly-β-(1,4)-N-acetyl-D-glucosamine),
is widely found in the exoskeletons of crustaceans, insects and the cell walls of fungi.
Chitosan functions as an elicitor in the plant system for the induction of antimicrobial
activities and innate disease resistance [7,8]. Chitosan is non-toxic, edible and biodegrad-
able, and has been commercially registered for production in some countries for use in
food preservation [9]. Reports have shown that soaking or coating treatments of plant
products by chitosan can effectively control the occurrence of post-harvest decay in some
fruits and vegetables [10–12]. Significantly, some studies have shown that pre-harvest foliar
application of chitosan can also effectively enhance plant stress resistance and reduce the
occurrence of field diseases in wheat and maize [13,14]. For fruit and vegetable preserva-
tion, Nia et al. (2021) found that foliar spraying of table grapes with chitosan improved fruit
disease resistance and reduced the incidence of fruit during the post-harvest period [15]. Li
et al. (2021) reported that pre-harvest spraying of chitosan promoted the accumulation of
SPP in muskmelon fruits and enhanced the rate of wound healing at the fruit surface [16].
Chitosan treatment also induced lignin production in suspension cells of Pinus elliottii and
callus of Oryza sativa [17,18]. However, the effect of foliar application of chitosan on the
wound-induced suberization of potato tubers after harvest has not been reported. In this
study, S. tuberosum L. cv. Longshu No.7 was used to explore the effects of pre-harvest
foliar spraying of chitosan on the suberization of wounded tubers after harvest and the
underlying biochemical mechanism involved and to provide a theoretical basis for the use
of this treatment to maintain product quality during commercial potato tuber storage.

2. Materials and Methods
2.1. Materials

Chitosan (poly-β-(1,4)-2-amino-D-glucose) with a degree of deacetylation of ≥90%
was purchased from WN Group of Publishers Ltd. (Mansouriah block1, Paris, France).
1,3,5-Trihydroxybenzene (No. Y93552), standards for cinnamic acid (No. B21082) and
sinapic acid (No. B25310) were purchased from Yuanye Biotechnology Co., Ltd. (Shanghai,
China).

Fusarium sambucinum was isolated from potato tissues exhibiting typical symptoms
of dry rot. The identity of the pathogen was verified from its rDNA-ITS sequence and
the pathogenicity was verified in potato tubers according to Koch’s Postulates [19]. The
pathogen was preserved in Potato Dextrose Agar (PDA) medium at 4 ◦C and cultured on a
PDA medium for 7 days at 28 ◦C before use.

2.2. Experimental Design

Virus-free seeds of S. tuberosum L. cv. Longshu No.7 potatoes, provided by the Potato
Institute of the Gansu Academy of Agricultural Sciences (Lanzhou, China), were planted in
an open field on 20 April 2019 in Nangou Village, Huichuan Town, Weiyuan County, Dingxi
City, Gansu Province (35◦06′30′′ N, 103◦58′15′′ E, 2260 m above sea level). Potatoes were
planted in six rows per plot, with an inter-row spacing of 60 cm and plant spacing of 30 cm,
and 210 plants were sown in each plot. Potato plants were sprayed evenly (1 L/30 plants)
using a hand sprayer with either water (control) or 3% (w/v) chitosan at the flowering stage,
the tuber bulking stage and 2 weeks before harvesting, respectively. The experiment was
conducted in a completely randomized group arrangement with three replications [20].
Tubers were developed to maturity and harvested on 10 October 2019, dried in the sun for
4 h, and then packed into standard corrugated cartons. The tubers used for physiological
and biochemical analyses were stored refrigerated (5 ± 2 ◦C, RH 80–90%) until further use.
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2.3. Methods
2.3.1. Artificial Wounding of Potato Tubers

Three batches of 300 potato tubers from each of the chitosan and control treatments
of similar size, free of mechanical damage, pests and diseases were selected, rinsed under
running water and soaked in 1% sodium hypochlorite for 10 min. After air drying, the
periderm was cut along the equatorial plane with a sterile scalpel to a depth of 0.3–0.5 mm
according to the method of Zheng et al. (2020) [6]. The wounded tubers were then stored
in a polyethylene preservation box, which had moist sterilized filter paper inside. The box
was wrapped with a perforated black bag in the dark at 20 ± 2 ◦C with an RH of 75–85%.
The images of the artificial wounding of potato tuber and storing procedures after injury
are shown in Figure 1.
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2.3.2. Determination of Dry Rot Disease Index and Loss of Fresh Weight in Wounded
Potato Tubers

The loss of tuber fresh weight and the disease index of dry rot were determined
according to the method of Zheng et al. (2020) [6]. Using sterile water containing 0.01%
(w/v) Tween 80, spore suspensions (1 × 106 spores/mL) were prepared from 7-day-old
F. sambucinum solid PDA cultures. On days 7, 14 and 28 after injury, 20 µL of the F. sam-
bucinum spore suspension was evenly applied at the surface of wounded tubers, which
were air-dried, placed in polyethylene preservation boxes wrapped with perforated black
bags and stored in a ventilated storage room in the dark (20 ± 2 ◦C, RH 75–85%) for 7 days
before determining the disease incidence [20]. Ninety tubers were used for each treatment
and randomly divided into three groups of thirty categorized as three biological replicates.
The severity of the dry rot was graded based on the percentage of tubers displaying visible
fungi on the tuber surface [20]. The disease index was then calculated using the following
equation with three biological replicates.

Disease index =
∑(Number of diseased tubers× Relative level value)

(Total number of tubers×High estrepresentative value)
× 100 (1)

To determine the fresh weight loss, ninety artificially wounded tubers were selected
from each treatment group and randomly divided into three biological replicates of thirty
tubers for storage under the conditions described above. The fresh weight loss was cal-
culated according to the following equation on days 7, 14 and 28 after wounding. The
experiment was repeated three times.

Fresh weight loss(%) =
Fresh weight before wounded− Fresh weight after wounded

Fresh weight before wounded
× 100 (2)



Horticulturae 2023, 9, 663 4 of 14

2.3.3. Microscopic Observation of SPP and Lignin Deposition at the Wound Site of
Potato Tubers

The vertical wound surface of the tuber was cut into 0.2–0.3 mm slices of ca. 1 cm2

using a sterile scalpel, which were washed three times with distilled water to remove
starch particles. Lignin was stained by the phloroglucinol–hydrochloric acid method [6]
and observed using a microscope (CX21FS1C Olympus, Tokyo, Japan). The deposition of
SPP was monitored from its autofluorescence using a fluorescence microscope (Shimadzu
RF-5301 PC, Tokyo, Japan), with the excitation wavelength and the emission wavelength at
340–390 nm and 420 nm, respectively [21]. The IS Capture software (Tucsen, Fujian, China)
was used to determine the thickness of the cell layer of lignin and SPP [6].

2.3.4. Sample Collection

The suberized tissue sampling was collected from the wounded site after 0, 1, 3,
5 and 7 days of artificial injury according to the method of Ge et al. (2021) with some
modifications [20]. Briefly, the sample was taken 3 mm around and below the wound site.
Samples were snap-frozen in liquid nitrogen and ground into a powder with a grinding
mill (IKA M20, IKA-Werke GmbH & Co., KG, Staufen im Breisgau, Germany), and then
stored at −80 ◦C until further analysis.

2.3.5. Determination of Enzyme Activities in SPP and Lignin Anabolism

For the determination of the relative activities of phenylalanine aminolase (PAL),
4-coumaroyl-coenzyme A ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), perox-
idase (POD), and 0.5 g (FW) of sampled tissue were homogenized on ice with 2 mL of
extraction reagents and centrifuged at 4 ◦C and 10,000× g for 10 min; the supernatant
was used as the enzyme crude extract. The activities of the enzyme were analyzed using
microplate assay kits as the manufacturer’s instructions (Comin Bio. Co., Ltd., Suzhou,
China). Crude extracts were placed on ice and tested within 20 min. A total of 10 µL
crude extract and 190 µL reaction reagent were added and mixed as a reaction system for
measuring the enzyme activity. The extraction and reaction reagents were provided in the
kits. Colorimetric determination was made by ultraviolet and visible spectrophotometers
(Shimadzu UV-2450, Tokyo, Japan). Using BSA as a standard, the protein content of the
tissue extracts (mg·mL−1) was determined using the Bradford assay [22]. The activity
of the enzyme was expressed as U activity mg−1 protein. One unit of PAL and POD
enzymes was defined as that required to achieve an increase in the absorbance of 290 nm
of 0.1 min−1·mL−1. One unit of 4CL was defined as that required for the production of
one nmoL of 4-coumaryl coenzyme A per minute and one unit of CAD enzyme activity
was defined as that required for the generation of one nmol of Nicotinamide adenine
dinucleotide phosphate per minute. All enzyme activities presented were determined from
three biological replicates.

2.3.6. Determination of Metabolic Contents of Suberization

The content of phenolic acid monomers (cinnamic acid and sinapic acid) was de-
termined according to the method of Gruz et al. (2008) with minor modifications [23].
Briefly, 1 g of the frozen tissue homogenate was extracted by ultrasonication in 3 mL of
70% (v/v) methanol for 30 min and centrifuged twice at 8000× g for 20 min. The super-
natant was concentrated in a vacuum concentrator (EYELA UT2000, Tokyo, Japan) and
dissolved in 1 mL of a 70:30:1 mixture of methanol, ultrapure water and glacial acetic
acid, respectively, and filtered using a 0.22 µm nylon filter membrane (Biosharp, Hefei,
China). Quaternary gradient ultrafast liquid chromatography (ACQUITY Arc, Waters,
Milford, MA, USA) and Symmetry® C18 column (4.6 mm × 250 mm, 5 µm) were used to
analyze the filtrate. The analysis conditions used were as described by Zhu et al. (2022) [21],
where cinnamic and sinapic acids were detected at 276 nm and 325 nm, respectively, and
identified from their retention times relative to those of their pure standards. The content of
these phenolic acid monomers was calculated from their standard curves and expressed as
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µg·g−1 (FW). The relative contents of lignin, total phenols and flavonoids were measured
according to the method of Ge et al. (2021) [20], where the contents of lignin and total
phenols were expressed as OD280·g−1 (FW), and the content of flavonoid was expressed as
OD325·g−1 (FW).

2.4. Statistical Analysis

All data were presented as the average of at least three biological replicates and
± standard error. Significance testing was performed using Duncan’s multiple difference
with SPSS 19.0 (Chicago, IL, USA), and with p < 0.05 as the threshold. All graphs were
generated using Origin 2023 (OriginLab, Northampton, MA, USA).

3. Results
3.1. Foliar Spraying of Chitosan Reduces the Effects of Wounding on Tuber Fresh Weight Loss and
Dry Rot Development

Both fresh weight loss and dry rot disease development were promoted by tuber
wounding. The loss of fresh weight in the wounded tubers gradually increased with
increasing healing time. However, the fresh weight loss in the wounded tubers of the
control group was significantly higher (5.49%) than that in the chitosan-sprayed group
(3.44%) after 28 days of storage, representing a ca. 37.34% reduction in fresh weight loss
after wounding (p < 0.05; Figure 1A). Typical dark brown spots symptomatic of dry rot
were observed on the surfaces of the injured tubers inoculated with F. sambucinum. In the
control group, the disease index of dry rot increased rapidly from the 7th (ca. 10%) to the
28th day of incubation (ca. 73%). In contrast, the disease index in the wounded tubers of
the chitosan-sprayed group was consistently and significantly lower (p < 0.05) than that in
the control group by 28.80–41.60% (Figure 2B). These results demonstrate that the foliar
spraying of chitosan significantly reduced fresh weight loss and the development of dry
rot in wounded potato tubers after harvesting.
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Figure 2. Effects of the foliar spraying of chitosan on (A) the fresh weight loss and (B) the development
of dry rot disease in wounded potato tubers. Lowercase letters indicate a significant difference
between the different treatment groups at the same time point after injury (p < 0.05).

3.2. Effect of Foliar Spraying of Chitosan on SPP and Lignin Accumulation at the Wound Site of
Potato Tuber

The SPP and lignin layers are important components of the wound periderm in
wounded potato tubers. As shown in Figure 3A, tubers from the foliar spraying of the
chitosan group showed an increased deposition of SPP at the wound site relative to the
control group as early as 3 days after injury. After 7 days of injury, tubers from the chitosan
treatment group showed larger increases in SPP fluorescence intensity and fluorescent
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cell layer thickness (27.27%; Figure 4A) at the wound site relative to the control tubers.
Similarly, tuber wounding induced the localized deposition of lignin, which increased over
7 days (Figure 3B). After 7 days of injury, the lignin content of the treated group increased
by 23.46% (Figure 4C) and the thickness of the cell layer by 26.54% compared to the control
group (Figure 4B). These results indicated that the foliar spraying of chitosan significantly
accelerated the deposition of SPP and lignin at the wounds of potato tubers.
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3.3. Effect of Foliar Spraying of Chitosan on Key Enzyme Activities of SPP and Lignin Anabolism
during Wound-Induced Suberization

The activities of key enzymes in both the SPP and lignin synthesis pathways were
determined. Prior to wounding, there were no significant differences (p ≥ 0.05) in the
activities of PAL, 4CL or POD between the control and chitosan treatment groups. However,
the activity of CAD was comparatively 17.61% higher in tubers of the chitosan treatment
group at the time of harvest (Figure 5).
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Following wounding, the activities of the four key enzymes showed a gradual increase
in the control group. However, these enzyme activities in the tubers of the chitosan treat-
ment group were all higher than those of the control group (Figure 5). Notable relative
differences included a larger increase in PAL activity 0–3 days post-injury (Figure 5A) and
two peaks of 4CL activity on days 3 and 7 after wounding (Figure 5B). The activity of CAD
at the wound site was 48.42% higher than that of the control after 1 day of wounding and
maintained higher activities over the following 6 days (Figure 5C). POD activities showed a
continual increase after wounding, with the highest activity on day 7 (Figure 5D). Relative
to the control group, the activities of PAL, 4CL, CAD and POD of the chitosan treatment
group were 35.02%, 55.74%, 64.32% and 33.9% higher, respectively, after 7 days of wound-
ing (Figure 5). These results indicated that the foliar spraying of chitosan significantly
enhanced the localized mobilization of PAL, 4CL, CAD and POD activities in response to
the wounding of potato tubers after harvest.

3.4. Effects of the Foliar Spraying of Chitosan on the Contents of Phenolic acid Monomers, Total
Phenols and Flavonoids in Tubers during Wound-Induced Suberization

SPPs are polymerized from different phenolic acid monomers, of which cinnamic
acid and sinapic acid are the main constituents. Total phenols and flavonoids are the
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sum of phenolic acid in tubers. The data on day 0 showed that the foliar spraying of
chitosan had no significant effect on the contents of cinnamic acid, sinapic acid, or total
phenols (Figure 6A–C), but resulted in a significantly higher flavonoid content relative
to the control (p< 0.05; Figure 6D). Following tuber wounding, the contents of phenolic
acids and flavonoids showed an increasing trend (Figure 6), and the contents of sinapic
acid and cinnamic acid increased rapidly, reaching a maximum value on days 5 and day 7,
respectively. In the chitosan-treated group, the contents of both phenolic acid monomers
were significantly higher relative to the control group (Figure 6A,B). In tubers of the chitosan
treatment group, the total phenolic content was significantly higher than that of the control
group from days 3 to 7 after wounding (Figure 6C), whereas the flavonoid content was not
only relatively higher directly after harvesting but was also induced to higher levels after
wounding with further increases over time (Figure 6D). Compared to the control group,
the content of cinnamic acid, sinapic acid, total phenols and flavonoids in the tubers from
the chitosan-treated group increased by 20.34%, 20.50%, 22.86% and 19.70%, respectively,
on day 7 after wounding (Figure 6). The above results indicated that the foliar spraying of
chitosan promoted a higher rate of synthesis of cinnamic acid, sinapic acid, total phenols
and flavonoids in potato tubers after harvest during wound-induced suberization.
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4. Discussion

Pre-harvest treatments, including seed dipping or foliar spraying with selected agents,
have been shown to enhance stress resistance of fruit and vegetable crops during plant
cultivation, reduce damage to product quality from aspects of post-harvest processes,
and improve post-harvest preservation of the freshness of fruits and vegetables, all of
which have great potential for application in agricultural production [24–28]. Many agents
have been reported to improve the post-harvest quality of fruits and vegetables, such as
brassinosteroid, salicylic acid, sorbitol, sodium nitroprusside, sodium silicate, chitosan,
etc., during the pre-harvest or post-harvest period [21,24,29–32]. Chitosan is generally
recognized as safe (GRAS) and can be applied to many crops during pre-harvest [10]. It
is known that potato tubers decay easily in water, so harvested tubers are not suitable
for preservative treatment with water solution after harvest, as potato tubers are not
suitable for post-harvest treatments involving their immersion, and there is a lack of
fumigation treatments in current potato production practices. Therefore, the pre-harvest
foliar application is a good strategy for improving potato tuber quality after harvest.

Our results showed that pre-harvest foliar spraying of chitosan three times during
potato tuber development was effective in reducing fresh weight loss and dry rot disease
development in wounded tubers during the post-harvest period (Figure 2). The reduced
fresh weight loss is likely a direct result of the accelerated formation of the wound perid-
erm [20]. Potato tubers are susceptible to Fusarium spp. and F. sambucinum, which are the
dominant causal pathogens of dry rot during potato storage [4]. Pre-harvest foliar spraying
of chitosan significantly impaired the development of dry rot in injured tubers, which can
be related to the accelerated suberization of the wound periderm and its provision of an
enhanced protective barrier against pathogen infection. Similar post-harvest protective
effects have been reported for potatoes using a stroby (kresoxim-methyl) [20].

Wound-induced tissue suberization is a complex biological process involving an
increase in precursor phenylpropanoid synthesis, SPP and lignin formation in potentially
dedicated pathways [5,16,33]. The phenylpropanoid pathway is an important secondary
metabolic pathway closely related to the plant immune system, and large amounts of
phenolic acids are biosynthesized via this pathway [34]. PAL is the key rate-limiting
enzyme in the phenylpropanoid pathway and catalyzes the deamination of phenylalanine
to produce trans-cinnamic acid [35], which undergoes a series of catalytic transformations to
generate many phenolic compounds, including p-coumarate, caffeic, ferulic acid and sinapic
acid [33]. Phenolic acid monomers are catalyzed to hydroxylated phenolic acids, which are
polymerized in the presence of POD to produce SPP [31]. Hydroxylated phenolic acids are
also catalyzed by 4CL to acetylate and produce p-coumaroyl-CoA, feruloyl-CoA, sinapic-
CoA, etc., which are further catalyzed in the presence of CAD to produce monolignols,
including p-coumaryl, coniferyl and sinapyl alcohols, which are subsequently polymerized
by POD into lignin [31,33,35]. The increased availability of phenolic substrates has been
associated with an accelerated deposition of SPP and lignin during the wound-induced
suberization process [4,21]. Phenolic acids provide precursor substrates for the synthesis
of SPP and lignin, which provide important waterproofing properties and a protective
barrier against pathogen infection in the periderm of potato tubers [36]. It has been shown
that chitosan treatment can enhance fruit resistance by activating the activity of defense
enzymes related to the lignin synthesis pathway [15,16,24], promote lignin synthesis and
prolong fruit shelf life in citrus [37,38], pears [39], grapes [40], muskmelons [16] and bamboo
shoots [41]. These effects occurred during the foliar spraying of chitosan in our study. Our
results showed that pre-harvest foliar spraying of chitosan enhanced the wound-induction
of PAL, 4CL, CAD and POD activities (Figure 5), and promoted increased contents of two
phenolic acid monomers in the wounded sites of potato tubers (Figure 6A,B). Key enzyme
activities of the phenylpropanoid pathway, SPP and lignin anabolism were activated, which
were associated with an accelerated SPP and lignin deposition in the suberizing wound
periderm (Figures 3 and 4).
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Many phenolic acids and the derivatives of the phenylpropanoid pathway contribute
to the total phenolic content of plant tissues [31,35]. The total synthesized phenols and
flavonoids can have antioxidant and antimicrobial activities, which inhibit pathogen ex-
pansion in the host [7,24,33,42]. The accumulation of total phenols and flavonoids can
contribute to improved fruit and vegetable storage performance through potential an-
timicrobial and antioxidant activities. Li et al. (2021) found that the pre-harvest chitosan
treatment increased the content of flavonoids during wound healing of post-harvest melon
fruits and reduced the disease index of fruit [16]. Cui et al. (2020) reported that pre-harvest
chitosan spray promoted the post-harvest synthesis of phenolic acids in apricot with the
enhancement of the fruit’s antioxidant capacity [24]. Potato varieties with high contents
of total phenols tend to have a higher disease resistance [6]. Pre-harvest chitosan spray
induced the accumulation of total phenols and flavonoids in muskmelons and apricots,
together with an enhanced fruit resistance to infection and extended shelf-life [16,24].
Flavonoids have high antioxidant capacity and antimicrobial activity in plant products,
which can effectively improve plant resistance to infection by pathogens [43,44]. In this
study, the foliar spraying of chitosan led to an increased content of flavonoid in tubers
during harvest and a relatively larger increase in flavonoid levels after tuber wounding
(Figure 6D), as well as an increased content of total phenols after wounding in potato tubers
(Figure 6C), which are consistent with an improvement in antioxidant capacity, inhibition
of pathogen infection and a reduction in disease index.

The pre-harvest chitosan treatment presented here involves foliar spraying of potato
plants with 3% (w/v) chitosan during the flowering period, tuber enlargement period and
two weeks before tuber harvest. The efficacy of this treatment in improving post-harvest
potato tuber performance was successfully field-tested in 2017 and 2018. A similar method
was developed for the pre-harvest spraying of muskmelon with chitosan in [16]. As for the
regulatory mechanism underlying the beneficial effects of the foliar spraying of chitosan
on the wound-induced suberization of potato tubers, further research at the gene level of
priming is needed.

5. Conclusions

In summary, foliar spraying of chitosan on potato plants activated PAL and increased
cinnamic acid, sinapic acid, total phenolics and flavonoids in tuber wounds. Foliar spraying
of chitosan activated 4CL, CAD and POD and increased SPP and lignin on wounded sites
of potato tubers. The accelerated deposition of SPP and lignin domains of the periderm was
associated with an enhanced wound periderm formation in the wounds of potato tubers,
resulting in alleviated wound-facilitated fresh weight loss and dry rot disease index.

Based on our findings, we hypothesize that the reduced fresh weight loss and disease
index of dry rot result from the accelerated ability of wound periderm formation. Pre-
harvest application of chitosan elicited immune activity in potato tubers after post-harvest
and activated PAL, 4CL, CAD and POD, increased phenolic compounds, resulting in
intensified deposition of SPP and lignin, and accelerated wound periderm formation in
the wounds of potato tubers. A possible model of foliar spraying of chitosan to accelerate
wound periderm formation of potato tubers is illustrated in Figure 7. The foliar spraying
of chitosan is a good strategy to improve the potato tuber quality. Our study provides
an alternative and eco-friendly treatment for the preservation of commercial potato tuber
qualities after harvest.
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in the wounds of potato tubers by eliciting phenylpropanoid metabolism via the polymerization
of SPP and lignin. Reactions denoted by solid lines are known, whereas those denoted by dashed
lines are hypothetical metabolic steps catalyzed by multiple enzymes. Black arrows represent the
flow of material that synthesizes lignin, blue dashed lines in the box and blue arrows represent
the flow of material that synthesizes SPP, and green arrows represent the synthesis of flavonoids,
respectively. The black brackets and words on the left side of the model diagram show different
metabolic pathways, and the brown brackets and ellipses on the right side of the model diagram
show the variation in fresh weight loss and disease index of potato tubers after wounding. PAL,
phenylalanine ammonialyase; 4CL, 4-coumaric acid coenzyme A ligase; CAD, cinnamoyl alcohol
dehydrogenase; POD, peroxidase; SPP, suberin polyphenolic.
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