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Abstract: Nanotechnology could play a huge role in ensuring safer and greener agriculture in the
years ahead by providing sustainable tools to control plant diseases. In this study, the possibility
of using cellulose nanocrystals (CNCs) obtained from tomato waste to control the bacterial speck
disease’s causal agent was evaluated for the effects on plant development. Biocompatibility was
assessed by studying seeds’ germination, leaf area, biomass and nitrogen balance index of tomato
seedlings treated with CNC. Since epiphytic survival represents a relevant phase in early and
later infections provoked by Pseudomonas syringae pv. tomato (Pst), the CNC’s ability to lower the
level of bacterial cells in the plant canopy was evaluated in treated seedlings at 1, 7 and 14 days
after being artificially inoculated. Leaflets were collected and washed to quantify the epiphytic
bacterial population and observed through electron microscopy. Obtained results indicate that
CNCs are non-toxic, compatible nanomaterials, highlighting at the same time their potential in
counteracting bacterial speck disease by decreasing the level of epiphytic population after two weeks
from inoculation by up to one log unit (3.08 CFU cm−2) compared to the control (3.94 CFU cm−2).
Moreover, we were able to demonstrate that it is possible to cut in half the amount of copper without
losing effectiveness in controlling the bacteria by mixing it with CNCs, concluding that CNCs could
be used to design innovative sustainable plant protection strategies.

Keywords: organic nanomaterials; copper reduction; phytotoxicity; tomato bacterial speck disease;
circular economy

1. Introduction

The urge to find alternative sustainable pest control solutions is one of the major
challenges in modern agriculture. This is particularly true in plant bacteria management,
since copper and its derivatives are progressively being abandoned due to the appearance
of copper-tolerant strains and the increasing awareness of the potential environmental
damage to arthropods and beneficial microorganisms caused by the overuse of chemicals
over the past years [1,2]. Copper is a metal ion that has been used in protection strategies
against plant pathogenic fungi and bacteria for many decades. In horticultural crops such
as tomato, copper and cupric, compounds have been extensively used to control harmful
bacteria such as Xanthomonas and Pseudomonas species, causal agents of bacterial spot and
speck disease [3]. Despite still being effective in many cases, in some contexts, copper is
gradually losing its control properties due to several reasons: copper can be accumulated
in soil and in some cases be dissolved in underground waters, provoking membrane
and DNA damage to microorganisms and aquatic animals [4,5]; moreover, copper can
display phytotoxicity on plants if its application is not properly performed, addressing the
need to monitor its persistence and any leaching phenomenon [6,7]. Another important

Horticulturae 2023, 9, 525. https://doi.org/10.3390/horticulturae9050525 https://www.mdpi.com/journal/horticulturae

https://doi.org/10.3390/horticulturae9050525
https://doi.org/10.3390/horticulturae9050525
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/horticulturae
https://www.mdpi.com
https://orcid.org/0000-0003-2743-6413
https://orcid.org/0000-0002-0822-4506
https://doi.org/10.3390/horticulturae9050525
https://www.mdpi.com/journal/horticulturae
https://www.mdpi.com/article/10.3390/horticulturae9050525?type=check_update&version=1


Horticulturae 2023, 9, 525 2 of 11

issue was highlighted by the increasing presence of copper-tolerant or resistant bacterial
strains found in tomato crops. The genetic horizontal transfer mechanisms, such as the
conjugative transfer of plasmids, have easily provoked a rapid spread of resistance among
pathogenic and saprophytic bacteria, rendering most of the traditional plant protection
strategies used on tomato obsolete [8–10]. Indeed, the European Commission has cut the
amount of usable copper in the field from 6 kg per hectare per year (maximum 30 kg
per hectare in five years) to 4 kg per hectare per year (maximum 28 kg per hectare in
seven years) since the approval of executive regulation 2018/1981 as of 13 December 2018,
in which copper was indicated as a candidate for substitution [11].Among the potential
innovative strategies applicable in the field, nanotechnology could represent a sustainable
way to control bacterial plant pathogens [12,13]. Nanomaterials exhibit a new broad
spectrum of biochemical properties in comparison with their bulk counterparts, which can
be exploited to develop nanopesticides and nanoferitlizers. Moreover, nanoagrochemicals
have been actively investigated for the last decade since the prospective of being used as
nanocarriers, granting a controlled release and a lower input of active molecules in the
field [14–16]. Cellulose-based nanomaterials have already shown interesting applications
in several fields, but the study of their potential role in agriculture has just begun [17–19].
Since cellulose is the most abundant and renewable polymer on Earth, the synthesis of
cellulosic nanomaterial is quite affordable and reproducible. Cellulose nanocrystals (CNC)
are rod-shaped nanoparticles obtained from crystalline cellulose fibrils through several
chemical, enzymatic or mechanical approaches. CNC size ranges from 50 to 500 nm in
terms of length and from 5 to 20 nm in terms of width. Their unique properties, such as
low density and thermal expansion coefficient, as well as the high stiffness and elastic
modulus and the abundance of hydroxyls groups on the external surface, have made
these nanomaterials extremely interesting for developing films, reinforcement phases and
delivery nanosystems [20–22]. However, CNCs’ antimicrobial properties against plant
pathogens have been poorly investigated so far [23,24]. Many research studies have also
been conducted on agrofood waste as a source for cellulose extraction and subsequent CNC
synthesis [25–28]. In our previous work, we successfully demonstrated the possibility of
isolating CNC (starting from tomato harvesting residues) via a chemical- and enzymatic-
mediated protocol, in order to make the whole process more sustainable [29]. At the same
time, we were able to investigate CNCs’ antimicrobial mechanisms on the model plant
pathogen Pseudomonas syringae pv. tomato (Pst), the causal agent of the bacterial speck
disease in tomato, one of the most relevant crops worldwide [30]. Pst is a Gram-negative
bacterium characterized by an epiphytic phase, capable of provoking necrosis in the canopy
of tomato plants and leading to a decrease in photosynthetic efficiency when symptoms hit
the leaves, or to a commercial loss when berries are involved in the infectious cycle [31,32].
Moreover, several cases of emerging copper-resistant populations of Pst and other strictly
related Pseudomonas spp. have been reported all around the globe [10,33–35]. Although
the recent advances in sustainable strategies to control Pst while reducing copper include
novel compounds and detection methods [36–40], only few works have considered a
nanotechnological approach [41–43]. The aim of this work was indeed to study the effects
of a CNC as a potential antibacterial compound against Pst in comparison with traditional
copper-based treatments. We first described some of the most relevant in vitro modes
of action of CNC on Pst cells, pointing out an inhibition on the swimming motility and
a reduction of produced biofilm when bacteria where exposed to CNC at 1% w/v [29].
Starting from this evidence, we moved forward to investigate the potential application of
CNC on tomato plants, looking at their biocompatibility and then at their effects on Pst
epiphytic survival.

2. Materials and Methods
2.1. Materials and Plant Growth Condition

CNC, chemically synthetized from tomato waste in a previous work, were used [29].
All the chemical reagents used in this work were purchased from Sigma-Aldrich, Inc.
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(Taufkirchen, Germany) and used without further modifications. The bacterial strain Pst
DC3000 was kept on agar slants at 4 ◦C and periodically streaked on King’s B medium
and incubated at 27 ◦C for 48 h before use [44]. Untreated seeds and four-week-old
tomato seedlings (cv. Roma) were used in these experiments. The plants were kept in a
growth chamber with the following parameters: 16 h-light/8 h-dark photoperiod cycle with
240 µE m−2 s−1 light illumination., 24 ◦C air temperature, and 65% relative air humidity.

2.2. CNC and Plant Compatibility

In order to figure out the effects of the CNC treatment on the growth of tomato plants,
several experiments were conducted. Seed germination was evaluated according to the
International Rules for Seed Testing. Tomato seeds were soaked in a 1% w/v CNC water
suspension under continuous stirring for 15′, then were allowed to dry on sterile blotting
paper at room temperature (RT). Seeds were kept under constant humidity at 24 ◦C. Sterile
deionized water (SDW) was used as control. Each treatment consisted of 3 replicates
of 100 seeds. The germination rate was calculated as the percentage ratio between fully
germinated seeds (evident root and shoot) and total seeds at 5 and 14 days post treatment
(dpt) [45].

Effects on canopy development were recorded on four-week-old plants spray-treated
with a 1% w/v CNC water suspension. SDW was used as control. At 1, 7 and 14 dpt, one
leaflet per plant was harvested from the same leaf, and its area was calculated using the
ImageJ software (version 1.51j8) (NIH, Bethesda, MD, USA) (accessed on Windows 10)
(Microsoft, Redmond, WA, USA) [46]. At the same time, leaf chlorophylls and flavonol
content was evaluated using a leafclip sensor (Dualex 4 Scientific, FORCE-A, Orsay Cedex,
France), by taking 8 measurements per plant from the middle leaves [47]. Nitrogen balance
index (NBI) was calculated by finding the ratio between the chlorophylls and flavonols
values (expressed as Dualex Units) [48]. At 14 dpt, final root and shoot weight was obtained
by letting the plants dry at 40 ◦C until constant weight was reached.

2.3. Effect of CNC on Pst Epiphytic Survival

To evaluate the leaf colonization by Pst in the presence of CNC in comparison with
traditional antibacterial compounds, tomato plants were treated using a 1% w/v CNC water
suspension alone and mixed with copper hydroxide at half of a field dose (0.05% w/v),
while SDW and copper hydroxide at a field dose (0.1% w/v) were used as negative and
positive controls, respectively [49]. The bacterial epiphytic survival was studied by spray-
inoculating the plants with a 106 CFU mL−1 suspension made from a fresh Pst culture
24 h after the treatments. Plants were bagged, and air humidity was raised to 80% for the
following 24 h. At 1, 7 and 14 days post inoculation (dpi), a bulk of ten leaflets (one per
plant) was made and washed in 10 mL of sterile phosphate buffer saline (PBS) using a
homogenizer (Stomacher 400 Circulator, Seward Ltd., Worthing, UK) set at 110 rpm for
90 s. For each treatment, several decimal dilutions were obtained in sterile tap water, and
100 µL were plated on sucrose nutritive agar plates. After being incubated for 48 h at 27 ◦C,
developed colonies were counted and divided by the leaf area measured, as previously
described. Each treatment consisted of ten plants; for each thesis, two bulks were made
and plated three times. Data were expressed as Log10 CFU cm−2.

2.4. SEM Observation

To study the spatial disposition and the interaction among the bacterial population
and the sprayed compounds, scanning electron microscope (SEM) observations were
performed on the upper pages of the leaves collected 24 h after being inoculated. Samples
were pre-fixed for 30 min at 4 ◦C with 2.5% glutaraldehyde in cacodylate buffer 0.1 M pH
7.3 containing 0.075% ruthenium red and 0.075 M lysine acetate. The fixation of the samples
occurred with 2.5% glutaraldehyde in 0.1 M cacodylate buffer pH 7.3 for 2 h at 4 ◦C after
being washed three times in the same buffer. Samples were washed again and post-fixed
with 2% osmium tetroxide in cacodylate buffer for 2 h at 4 ◦C. Specimens were dehydrated
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in a graded ethanol series after being washed in the same buffer three times. Samples
were dried by the critical point method using CO2 in a Balzers Union CPD 020. They were
attached to aluminum stubs using a carbon tape and sputter-coated with gold in a Balzers
MED 010 unit. The observations were made by a JEOL JSM 6010LA electron microscope.

2.5. Statistical Analysis

Collected data were studied by performing one-way analysis of variance (ANOVA).
Differences among means were considered statistically significant when p-values, calculated
by Tukey’s HSD post hoc test, were less than 0.05. Each experiment was repeated twice.

3. Results

Looking at the germination rate of tomato seeds, no differences were recorded between
CNC treatment and water control. At 5 dpt, both the theses presented a germination rate of
50%, while at 14 dpt, seed germination was almost complete, reaching values of 81 and 82%
for CNC and water control, respectively (Figure 1a). No differences were documented on
the leaflet expansion either. At 1, 7 and 14 days after the canopy treatment, CNC-sprayed
plants showed similar values to the control in terms of leaflet area (Figure 1b). No evidence
of detrimental effects by the CNC treatment on the nitrogen metabolism of the leaves were
detected by looking at the chlorophyll and flavonol contents, since similar values to the
control ones were obtained at the same time points (Figure 1c). Eventually, two weeks after
the canopy treatments, no differences were seen in the total dry weight of the plants, since
root and shoot biomasses were statistically comparable (Figure 1d).
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Figure 1. Compatibility of CNC on (a) seed germination; (b) leaflet area; (c) leaf content; (d) dry
weight. Data are represented as the mean ± standard deviation; different letters stand for significant
different values if p < 0.05 after ANOVA and Tukey’s HSD were performed.

Regarding Pst epiphytic survival, appreciable differences were noted among the
treatments in terms of recovered bacterial population from leaves (Figure 2). At 1 dpi,
water-treated plant presented the highest number of recovered colonies (5.71 CFU cm−2),
while Cu(OH)2 at the field dose showed an expected knockdown effect (3.91 CFU cm−2).
CNC alone and mixed with half a field dose of copper hydroxide treatments showed a
similar result (5.15 and 5.04 CFU cm−2 respectively), but they were still different from
the water control one. At 7 dpi, an overall decrease in the epiphytic populations was
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observed in each treatment; a statistical difference could still be observed among water
control (4.92 CFU cm−2) and CNC alone (4.30 CFU cm−2), while copper hydroxide and
CNC with 0.05% Cu(OH)2 had the best effect in terms of bacterial inhibition (3.10 and
3.64 CFU cm−2 respectively). After one week (14 dpi), the previous trend was still evident
among the thesis: water control had the highest value in terms of CFU cm−2 (3.94) and
CNC at 1% w/v showed a lower significant value (3.08), while CNC mixed with 0.05%
Cu(OH)2 and copper hydroxide at the field dose displayed the lowest values (2.58 and
2.49 respectively).
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Figure 2. Epiphytic survival of Pst on tomato plants treated with water, 1% CNC, 1% CNC + 0.05%
Cu(OH)2, 0.1% Cu(OH)2, at 1, 7 and 14 dpi. Different letters stand for significant different values if
p < 0.05 after ANOVA and Tukey’s HSD were performed.

SEM pictures of leaves taken at 1 dpi confirmed the data obtained by the epiphytic
survival analysis. In water-treated plants, bacterial cells were well distributed all over the
leaf surface and trichomes (Figure 3a–c); on leaves treated with the field dose of copper
hydroxide, bacterial cells were scarcely spotted, since their presence was rarefied and
mostly limited to the edges of the areoles (Figure 3d–f); on plants treated with CNC alone
(Figure 3g–i) or mixed with half a field dose of copper (Figure 3j–l), the evident sign of the
nanocrystal layer with bacterial cells embedded in it could be appreciated. More detailed
pictures revealed that the Pst cells could be found above and within the CNC matrix
spontaneously formed on the leaves (Figure 4).
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hydroxide (j–l). Leaves and bacteria are in pale green; CNCs are in pale red (false colorized).
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Figure 4. SEM images at different magnifications ((a): 5 µm; (b): 2 µm) of tomato leaves treated with
1% CNC at 1 dpi. Particulars of bacterial cells embedded within the CNC ((c,d): 1 µm).
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4. Discussion

CNCs displayed no negative or side effects on the development of the tomato plants.
Compatibility towards plants is indeed one of the main concerns when nanomaterials
are proposed as innovative fertilizers or pesticides [50,51]. Since nanomaterials present
different biological and chemical properties in comparison with their bulk counterparts, it is
always recommended to study any possible effects on the metabolism of plants, including the
uptake, translocation and accumulation of the nanoparticles, as well as photosynthesis and
fertility [52,53]. The obtained results were expected, considering previous research that has
already highlighted the lack of toxicity of cellulose and CNCs [54,55]. Although few works
have underlined the biocompatibility of CNC towards plants at this time, as far we know,
this is the first report of a more complete investigation into CNC application, taking into
account seed germination, leaf metabolism and total plant weight [56–58]. Soaking seeds
in CNC suspension does not affect their ability to fully germinate over time, suggesting
that CNCs could be used to treat seeds and to develop coating compounds. Looking
at the nitrogen metabolism in treated leaves and the total plant weight, no difference
could be seen with the water control over time. NBI is indeed a robust indicator for
determining basal metabolism in photosynthetic tissues; in healthy conditions, the plant
will use most of the endogenous nitrogen in the synthesis of primarily needed proteins,
such as chlorophylls, while in non-optimal conditions, part of the nitrogen will be intended
for the secondary pathways, such as the flavonol ones associated with the plant’s response
to stresses [59]. Since no sign of phytotoxicity in the chlorophylls’ metabolism was detected,
we can conclude that the measured leaf surface and the root and shoot final weight were
not affected either, leading to a statistical similarity among the treatments.

Considering the effects of the CNC treatment on Pst epiphytic survival, the obtained
results confirmed the previous in vitro findings. While CNCs do not lead to bacteria
death, their presence prevents cell swimming and adhesion to surfaces, which are key
factors in allowing Pst to colonize the external host tissues [60]. Epiphytic residency rep-
resents a fundamental ecological trait in the Pst disease cycle, since the bacteria are able
to propagate over winter and maintain a high-density inoculum source by living outside
the plants [61,62]. This evidence could be explained by looking at the main interactions
between bacteria and CNCs, since they can interfere with the cell motility and they have
the ability to stick. CNC’s capability to reduce adhesion was also confirmed on E. coli,
while cellulose nanofibers were confirmed to reduce swimming in several bacteria, such
as L. monocytogenes, B. cereus and P. cannabina pv. alisalensis, when used at concentrations
similar to the ones used in this work [63–66]. Indeed, the registered results are coherent
with other works showing the ability of CNC to reduce bacterial epiphytic survival in
treated leaves [56]. Copper hydroxide at the field dose showed the highest reduction on the
epiphytic populations, beginning from the first day after the treatment. This could be easily
explained by considering the well-known ability of cupric ions to inhibit and kill bacterial
cells, as previously shown in vitro [29]. Moreover, we evaluated the possibility of halving
the field dose of copper hydroxide by applying it in combination with CNCs. While the
effect was similar to the one shown by CNCs at the very beginning, the co-presence of the
two compounds was able to lower the Pst epiphytic survival in a way that was comparable
to copper hydroxide alone. This effect could be explained by considering the role of CNC
in limiting bacterial motility and biofilm formation on the leaf surface, making the cells
more inclined to come in contact with copper instead of stepping away or shielding from it.
These findings could give future perspectives regarding the possibility of using organic
nanomaterials as carriers for cupric compounds, increasing their effectiveness and lowering
the amount of total distributed copper [67,68]. Furthermore, the copper-based nanofor-
mulations, as already shown elsewhere, could even target copper-resistant strains [69,70].
The SEM observations allowed us to better understand the physical interaction between
CNCs and Pst. Pictures revealed that CNCs at 1% w/v were able to surround the bacteria,
entrapping them inside or above the cellulose film and preventing them from moving or
getting closer to the plant tissues, making their life on the phylloplane harder. Changes
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in the topography, surface roughness and wettability can indeed drastically affect the
ability of bacteria to colonize the phyllosphere [71,72]. Since for many Pseudomonas spp.
the ability to cause disease is directly correlated with the external population level, and
controlling the epiphytic survival represents an effective way to prevent plants from getting
infected [73–75].

The obtained results address further investigations about the effects of CNCs in
limiting symptoms displayed and disease development in treated tomato plants. Further
research is planned to study in a more detailed way the molecular interaction among plants,
CNCs and bacteria, looking at some target genes’ expression involved in plant defense
pathways [76].

5. Conclusions

In this work, the effects of CNCs on the model patho-system tomato-Pst was success-
fully evaluated. CNCs were revealed to be a non-toxic, biocompatible compound that
does not affect plant basal functions such as seed germination, leaf development, nitrogen
metabolism, and biomass accumulation. Moreover, CNCs exhibited the ability to lower
the epiphytic population of Pst, the causal agent of bacterial speck disease in tomatoes.
Furthermore, CNCs can be applied with a limited amount of copper, increasing their effi-
cacy in controlling bacteria to the level displayed by the copper hydroxide used in the field.
This research highlights the potential of using organic nanomaterials to develop innovative
agrochemicals and sustainable crop protection strategies.
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