
Citation: Melgarejo, P.;

Núñez-Gómez, D.; Hernández, F.;

Martínez-Font, R.; Lidón Noguera, V.;

Martínez-Nicolás, J.J.; Legua, P.

Lemon Peel and Juice: Metabolomic

Differentiation. Horticulturae 2023, 9,

510. https://doi.org/10.3390/

horticulturae9040510

Academic Editors: Sonia Cacini

and Catello Pane

Received: 21 March 2023

Revised: 4 April 2023

Accepted: 10 April 2023

Published: 20 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

horticulturae

Article

Lemon Peel and Juice: Metabolomic Differentiation
Pablo Melgarejo , Dámaris Núñez-Gómez , Francisca Hernández , Rafael Martínez-Font,
Vicente Lidón Noguera, Juan José Martínez-Nicolás * and Pilar Legua

Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernandez
University, Ctra. Beniel km 3.2, 03312 Orihuela, Spain
* Correspondence: juanjose.martinez@umh.es

Abstract: Lemon is one of the most significant crops globally, with annual production exceeding
20.8 million tons in 2021. Spain leads the production in Europe with over 62% of lemon production
(1.17 million tons in 2021). This study evaluated the real impact of cultivation conditions (rootstock
and culture medium) on the compositional characteristics of ‘Verna’ lemons (peel and juice) using
1H-MNR metabolomic identification techniques and multivariate analyses. Twenty metabolites were
identified in both the peel and juice samples. Arginine, phenylalanine, ethanol, and trigonelline
were absent in the peel samples but present in all the juice. On the other hand, the metabolites
asparagine, glutamate, formate, and malate were present in the peel samples but absent in the juice.
The analysis of the results indicates that the rootstock had a significant impact on the metabolites
related to the energy metabolism of the plant, which directly affects the development of fruits and the
influence of the culture conditions (rootstock and culture medium) on the plant’s adaptive response
and modification of metabolic pathways.

Keywords: Citrus limon (L.) Burm. F; rootstock; culture media; ‘Verna’ cultivar; 1H-MNR; multivari-
ate analysis

1. Introduction

Citrus limon (L.) Burm. F. is an evergreen tree from the Rutaceae family [1]. The yellow
fruit of C. limon, commonly known as lemon, is its main raw material. Lemon is one of
the most significant crops globally, with annual production exceeding 20.8 million tons in
2021, ranking second only to orange and tangerine [2]. According to the latest FAOSTAT
report [2], India, Mexico, Turkey, and Spain are the largest lemon-producing countries,
accounting for 17, 14, 7, and 4% of world production, respectively. However, Spain leads
the production in Europe with over 62% of lemon production (1.17 million tons in 2021),
followed by Italy (28%), Greece (5%), and Portugal (1%).

Lemons are grown for fresh fruit markets or processing into pectin, juice, and essential
oil [3]. The size and peel color are significant characteristics of fresh market fruits, while for
processing, soluble solids, juice, pectin, and essential oil content are critical [4]. Therefore,
understanding the composition of lemons, both the peel and the juice, as well as the
handling parameters that may affect its composition, is vital.

In citriculture, rootstock selection is one of the most important factors for crop manage-
ment as lemon trees respond differently to growth, fruit quality, and nutrient accumulation
when grown on various rootstocks [5]. Good lemon production largely depends on select-
ing compatible and adequate rootstocks, which provide better adaptability and response to
the edaphoclimatic conditions of the trees [6]. This better adaptability translates into better
fruit quality [6]. Despite advances in understanding rootstock–scion interactions, there is
relatively little knowledge about their effects on the overall fruit metabolite composition [7].

Metabolomics is an analytical technique used to study the complete profile of metabo-
lites present in an organism or tissue at a specific moment [8]. This technique has found
a broad range of applications in fruit research, as the metabolic profile of fruits can vary
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depending on the variety, maturity stage, and environmental and/or cultivation condi-
tions [9]. One of the most widely used techniques in fruit metabolomic studies is proton
nuclear magnetic resonance spectroscopy (1H-MNR), which allows for the identification
and quantification of different metabolites present in the sample [10]. This technique is
based on the detection of the resonance signal of metabolite protons in the presence of a
magnetic field. The signal of each metabolite is characterized by its chemical shift, which is
unique and specific to each compound [10,11].

Combining 1H-MNR with multivariate statistical techniques, such as principal compo-
nent analysis (PCA) and partial least squares (PLS) regression, among others, has enabled
the analysis of large datasets and the identification of the most relevant metabolites [12].
These statistical methods allow for the identification of patterns and correlations between
different metabolites, which facilitates the interpretation of results and the identification of
biomarkers for different biological and pathological processes [13].

The use of the 1H-MNR technique combined with multivariate statistical techniques in
fruit metabolomic studies has proven to be a potent approach for analyzing the metabolic
composition of fruits and identifying valuable biomarkers. This approach is particularly
useful in evaluating the quality and adaptive responses to agronomic modifications, such
as changes in cultivation patterns or mediums.

This study aimed to evaluate the real impact of cultivation conditions (rootstock and
culture medium) on the compositional characteristics of ‘Verna’ lemons using metabolomic
identification techniques. The economic and industrial importance of lemons necessitated
the evaluation of both the peel and the juice of the fruits. The present work builds on
previous work carried out by the authors [6,14–16] and aims to provide clear answers and
increase knowledge about cultivation techniques in citriculture and their impacts while
maintaining an agronomic perspective and prioritizing fruit quality factors.

Note that, despite the extensive research on lemon fruit characterization [17–19], to our
knowledge, no previous studies have specifically examined the influence of culture media
and rootstock on lemon fruit metabolites, as the majority of studies that use a metabolomic
approach in lemon fruits evaluate the impact of postharvest treatments on fruit quality [20–22].
Therefore, the present study intends to address this research gap and provide new insights
into the impact of cultivation practices on lemon fruit metabolites.

2. Materials and Methods
2.1. Plant Material and Experimental Design

In this study, the metabolomic characteristics of Citrus limon (L.) Burm variety ‘Verna’
lemons obtained in nine different treatments (Table 1) were evaluated. The evaluated
treatments respond to the modification of two controlled variables: the rootstock (n = 3) and
the culture medium (n = 3). The most common rootstocks used in commercial citriculture
were evaluated: (i) Citrus macrophylla; (ii) Citrus aurantium; and (iii) the combination between
Citrus aurantium and Citrus sinensis.

Related to the culture medium, three substrates composed of the mixture of peat
and phytoremediated marine sediment in different proportions were evaluated: (i) 25%
sediment + 75% peat; (ii) 50% mix of peat and sediment; and (iii) 75% sediment + 25%
peat. The marine sediment used comes from the port of Livorno (Italy) and was previously
phytoremediated for three years and successfully used in other ornamental and food
crops [23–27].

For each of the nine treatments (1 cultivar × 3 rootstocks × 3 substrates), a total of
10 trees were evaluated with an experimental design of random distribution by blocks
(n = 5) and 2 trees of each combination per block. In total, the fruits obtained from 90 lemon
trees (3 substrates × 3 rootstocks × 2 trees × 5 blocks) of 2 years of age cultivated in an
experimental plot of the Miguel Hernandez University (Orihuela, Spain) were evaluated.
Both the growing conditions and the management of the crop remained homogeneous
throughout the trial in order to minimize external influences on the parameters evalu-
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ated and study the morphological and nutritional variations/differences of the lemons
objectively.

Table 1. Specifications of the rootstock and the culture medium of the lemon fruits evaluated in this
study, with emphasis on the acronym used.

Rootstock
Culture Media

Acronym
Peat Content (%) Port Sediment Content (%)

Citrus macrophylla

75 25 25 M

50 50 50 M

25 75 75 M

Citrus aurantium

75 25 25 A

50 50 50 A

25 75 75 A

Citrus aurantium/Citrus
sinensis

75 25 25 AS

50 50 50 AS

25 75 75 AS

In all cases, the lemons were harvested manually once the fruit reached commercial
maturity [28]. Once the lemons were collected, they were immediately transported to the
laboratory, and their processing began. The morphological, pomological, and compositional
characteristics of the lemons confirmed the adequacy of the experimental test and the
quality of the fruits obtained. These results have already been published by the same
authors and can be consulted at [6].

2.2. Metabolomic Profile of Lemons

For each combination studied (n = 9), 5 fruits were taken per replicate, totaling 25 fruits
per sample (5 fruits × 5 blocks). Once in the laboratory, the surface of the lemons was
cleaned manually with distilled water in order to remove possible dust and dirt residues.
Lemon juice was carefully obtained using a manual commercial juicer (Citromatric Deluxe,
MPZ-22, Braum), while the peel (albedo + flavedo) was cut into small pieces. In both cases,
the samples were stored in sterile polypropylene containers with 50 mL maximum capacity
screw-top buffer (Deltalab, Barcelona, Spain) and kept at −80 ◦C until lyophilization for 48 h
(Christ Alpha 2–4, LSCplus, Martin Christ). The lyophilized samples were stored in sterile
polypropylene tubes (Deltalab, Barcelona, Spain) at −20 ◦C until metabolomic analysis
was performed. Both the extraction of the lyophilized samples and the determination of
the metabolites using nuclear magnetic resonance (1 H-NMR) were performed according
to the methodology described by Van der Sar et al. [29] with the modifications specified
in [14,30]. In this sense, the following protocol was used for sample preparation: 0.5 mg
of lyophilized sample was mixed with a hydromethanolic mixture (1:1, MeOH: H2O) in
Eppendorf tubes of 2 mL maximum capacity. The mixture was sonicated for 3 min at 1 min
intervals and left at 4 ◦C for 30 min. After centrifugation at 11,000 rpm for 20 min at 4 ◦C,
the recovered supernatant was subjected to Speed-Vaccum at a maximum temperature of
27 ◦C until all the liquid phase had evaporated overnight. The soluble solid obtained was
then resuspended in 800 µL of 100 mM potassium phosphate buffer (KH2PO4) at pH = 6.0
(dissolved in 100% D2O) + 0.58 mM of TPS (internal standard) and filtered using 0.45 µm
nylon filters. Finally, 600 µL aliquots of the filtered volume were placed in 5 mm NMR
tubes for quantification using 1H-NMR.

2.3. Multivariate Statistical Analysis
1H-NMR results of the samples were analyzed using the MestReNova Software

(Mestrelab Research, Santiago de Compostela, Spain). Spectral intensities were pooled
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(δ 0.04) considering the region of δ 0.5–9.0. The regions corresponding to the solvent D2O
(δ 4.70–4.9) and water (δ 3.09–3.15) were not considered in the analysis [31]. Subsequent
statistical analysis was performed using MetaboAnalyst 5.0 (Wishart Research Group, Uni-
versity of Alberta, Edmonton, Canada), which allowed the identification and definition of
spectral intensities, as well as principal component analysis (PCA) and partial least squares
discriminant analysis (PLSD-DA). Loading plots, variable Importance in projection (VIP),
and t-tests (p-values < 0.05) were used to determine metabolites contributing to significant
between-group differences in PLS-DA score plots [32].

2.4. Metabolic Pathway and Network Analysis

Additionally, debiased sparse partial correlation algorithm (DSPC) network analysis
was performed. The metabolic pathway was predefined with pathway impact values
greater than 0.02 and a p-value less than 0.05. Each estimated metabolite in both lemon
peel and lemon juice was compared with metabolites belonging to different metabolic
pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Its
statistical p-value was estimated, as well as the threshold for those with values less than
0.02 [33,34].

3. Results and Discussion
3.1. Metabolomic Profile of Lemon Fruits

The 1H-NMR spectra analysis of the 27 lemon peel and juice samples (3 substrates ×
3 rootstocks × 3 repetitions for each of the analyzed parts) revealed significant composi-
tional differences. While 20 metabolites were identified in both the peel and the juice, the
lemon peel contained 10 amino acids, 5 organic acids, 4 sugars, and 1 intermediate metabo-
lite, while the lemon juice had 10 amino acids, 3 organic acids, 4 sugars, and 3 secondary
metabolites (Table 2). The identified metabolites were consistent with previously reported
values for both peel and juice in the literature [35–37].

Table 2. Concentration of the metabolites identified for the different parts of the lemon fruit. The
results correspond to the mean values (n = 27) expressed in mM.

Metabolites
Samples

Peel Juice

Amino acids (mM)

GABA 0.44 1.31

Alanine 0.64 2.30

Arginine ND 0.39

Asparagine 7.13 ND

Aspartate 0.27 23.55

Glutamate 0.25 ND

Glutamine 0.43 1.68

Isoleucine 0.02 0.05

Leucine 0.02 0.04

Phenylalanine ND 0.08

Proline 3.05 4.47

Valine 0.03 0.13
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Table 2. Cont.

Metabolites
Samples

Peel Juice

Organic acids (mM)

Ascorbate 0.75 2.01

Citrate 3.03 327.46

Format 0.02 ND

Lactate 0.06 0.17

Malate 0.67 ND

Sugars (mM)

Fructose 17.15 32.41

Glucose 36.64 28.10

Myo-inositol 2.68 2.01

Sucrose 10.92 7.91

Other metabolites (mM)

Choline 0.26 0.11

Ethanol ND 0.75

Trigonelline ND 0.08
ND: not detected.

At the qualitative level (the type of metabolites), certain metabolites, such as arginine,
phenylalanine, ethanol, and trigonelline were absent in the peel samples but present in all
the juice samples. Arginine is known for its diverse functional role in regulating the growth
and development of plants, particularly in their fruits [38–40], and phenylalanine is linked
to a range of enzymes involved in the biosynthesis of aromatic amino acids [41].

On the other hand, the metabolites asparagine, glutamate, formate, and malate were
present in the peel samples but absent in the juice samples (Table 2). Studies on plants have
established the relationship of these metabolites with biosynthetic pathways and energy
metabolism [42–44]. Notably, there were concentration differences in some metabolites,
such as aspartate in the juice or glucose in the peel, between the samples.

3.2. Lemon Peel Samples

Lemon peel is a valuable source of bioactive compounds; therefore, the primary
compositional characterization of this part is particularly relevant for its application in
the food and pharmaceutical industries [37,45]. To optimize its use in these sectors, it is
important to identify the agronomic parameters that have a direct impact on its composition.

The analysis of variance (ANOVA), as shown in Figure 1 and Table 3, revealed that
7 out of the 20 metabolites identified in the lemon peel samples exhibited significant
differences (p < 0.05) based on the Tukey test. These metabolites were proline, glucose,
fructose, lactate, myo-inositol, choline, and aspartate, which were affected by the rootstock
(Figure 1A). Glutamate was the only metabolite that showed significant differences de-
pending on the substrate (Figure 1B). The remaining metabolites did not show significant
differences among the treatments studied.
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Figure 1. Important features selected by ANOVA plot with p-value threshold 0.05 for lemon peel
cultivated under 9 different treatments (3 rootstocks × 3 substrates), highlighting (A) differences
based on the substrate employed and (B) differences based on the rootstock.

Table 3. Important features identified by one-way ANOVA and post hoc analysis for the lemon peel
related to the rootstock and the culture medium used, where 1 to 3 corresponds to the rootstock type
as (1) Citrus macrophylla; (2) Citrus aurantium; and (3) Citrus aurantium/Citrus sinensis; and 4 to 5 is
related to the culture media: (4) 50% peat + 50% port sediment; and (5) 75% peat + 25% port sediment.

Compound f-Value p-Value −log 10 (p) FDR Tukey’s HSD

Rootstock

Proline 7.598 0.0027773 2.5564 0.032998 2-1; 3-1

Glucose 7.2669 0.0034074 2.4676 0.032998 3-1; 3-2

Fructose 6.1678 0.006895 2.1615 0.032998 3-1; 3-2

Lactate 5.8468 0.0085401 2.0685 0.032998 2-1; 3-1

Myo-inositol 5.7254 0.0092688 2033 0.032998 2-1; 3-1

Choline 5.6285 0.0098993 2.0044 0.032998 3-1; 3-2

Aspartate 5.1105 0.014158 1849 0.040453 3-1

Culture media

Glutamate 7.7853 0.002477 2.6059 0.04955 4–5

3.2.1. Multivariate Analysis

Multivariate data analyses were employed to identify significant compounds. Princi-
pal component analysis (PCA) was performed initially to classify the samples and analyze
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the metabolites responsible for the data variation. The PCA score graph displays a grouping
of the data based on the rootstock or culture medium. Regarding the substrate (Figure 2A),
the samples cultivated with the substrate containing 75% peat and 25% port sediment
tended to be separate from those grown with the mixture of 50% peat and 50% port sedi-
ment. The samples grown with the substrate containing 25% peat and 75% port sediment
showed some overlap with the other groups. For the rootstock (Figure 2B), while the groups
were distinguishable, they shared common interactions. The PCA results for both the root-
stock and culture medium demonstrate that the first three principal components (PCs)
accounted for 93% of the total variance. To gain a better understanding of the variables
responsible for the grouping observed in the PCA score plot, loading plots were generated.
The loading plots showed that the sugars, including glucose, fructose, sucrose, myo-inositol,
and proline, contributed most to the separation observed in PC1 (69.8% total variance).
Meanwhile, organic acids, such as citrate, ascorbate, malate, and asparagine, were the main
variables responsible for the separation observed in PC2 (16.1% total variance).
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Figure 2. PCA score graph of the metabolomic analysis of lemon peel cultivated under nine different
treatments (three rootstocks × three substrates), highlighting (A) differences based on the substrate
employed and (B) differences based on the rootstock, where 1 to 3 corresponds to the rootstock type
as (1) Citrus macrophylla; (2) Citrus aurantium; and (3) Citrus aurantium/Citrus sinensis; and 4 to 6 is
related to the culture media: (4) 75% peat + 25% port sediment; (5) 50% peat + 50% port sediment;
and (6) 25% peat + 75% port sediment.

Sugars play a crucial role as the primary energy source for plants and function as
signaling molecules during biotic and abiotic stresses, as reported by several authors [46,47].
While there was some overlap between the groups, the grouping observed in the PCA score
plot suggests that both the substrate and the rootstock influence the metabolites produced
by the plants.

To further investigate the relationship between treatments and significant metabolites,
a PLS-DA regression was conducted [48,49]. The results of the PLS-DA model and the
variable importance in projection (VIP) reveal that glucose and fructose were significant
and differentiating metabolites between the rootstocks (Figure 3A). Additionally, fruc-
tose, asparagine, sucrose, and citrate were significant metabolites between the substrates
(Figure 3B). However, the remaining metabolites did not show significant differences
between the samples and the variables, as indicated by the VIP values of less than 1.

To provide a more intuitive visualization, a hierarchical clustering heatmap was
generated (Figure 4) [50]. Differences in relative metabolite levels between the samples
were observed depending on the variables studied. Specifically, the fruits cultivated
with the Citrus aurantium/Citrus sinensis rootstock showed higher relative concentrations
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of organic acids (malate, ascorbate, and citrate), sugars (glucose and fructose), amino
acids (aspartate and asparagine), and the secondary metabolite choline compared to other
rootstocks. In contrast, sugar sucrose and myo-inositol showed medium to high relative
levels in the peel of lemons grown with Citrus aurantium (Figure 4A).
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Figure 3. VIP scores (variable importance in projection) plot, derived from the partial least squares
discriminant analysis (PLS-DA), is shown along with the corresponding heat map in which red and
blue colors indicate the level of metabolites. The analysis is performed for (A) the rootstock used
(n = 3) and (B) the substrate used (n = 3), where 1 to 3 corresponds to the rootstock type as (1) Citrus
macrophylla; (2) Citrus aurantium; and (3) Citrus aurantium/Citrus sinensis; and 4 to 6 is related to the
culture (4) 75% peat + 25% port sediment; (5) 50% peat + 50% port sediment; and (6) 25% peat + 75%
port sediment.
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Figure 4. Visual representation of the metabolomic study of lemon peel grown in 9 different treat-
ments (3 rootstocks × 3 substrates) using hierarchical clustering heatmaps. The heatmaps are ana-
lyzed based on (A) the rootstock used (n = 3) and (B) the substrate (n = 3), where 1 to 3 corresponds
to the rootstock type as (1) Citrus macrophylla; (2) Citrus aurantium; and (3) Citrus aurantium/Citrus
sinensis; and 4 to 6 is related to the culture media: (4) 75% peat + 25% port sediment; (5) 50% peat +
50% port sediment; and (6) 25% peat + 75% port sediment.
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Regarding the substrate used and its content in port sediment, two different behaviors
were observed in the most distant samples. Specifically, the peel of lemons grown with
the substrate containing the highest peat content (75%) presented higher relative levels for
most of the identified amino acids. On the other hand, the samples of cultivated lemon
peel with the highest proportion of port sediment (75%) showed higher relative levels of
organic acids and sugars (Figure 4B). The results could confirm that the metabolism of
organic acids and sugars plays an important role in the response of plants to stress, such as
an unfavorable substrate such as port sediment [6,14]. This is in contrast to the promotion
of more structural metabolic pathways, such as amino acids, which occur when the culture
media is ideal, as in the case of peat.

3.2.2. Debiased Sparse Partial Correlation (DSPC)

The metabolic pathway analysis was performed based on the 1H-NMR data, with the
goal of identifying significant modulations of metabolites based on the variables of interest,
namely the rootstock and culture medium. To achieve this, the deviated scattered partial
correlation (DSPC) algorithm was employed, which utilizes a deparsified graphical loop
modeling procedure proposed by Jankova and Van De Geer [49] and consolidated by Basu
et al. [51]. The DSPC algorithm allowed for the construction of a graphical model, providing
partial correlation coefficients and p-values for each pair of metabolites in the dataset
and determining the connectivity between all the identified metabolites, visualized as a
weighted network with nodes representing input metabolites and connections representing
measures of association (Figure 5).
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Figure 5. Partial correlation network constructed using the 20 identified metabolites in lemon peel.
The size of the nodes represents the direction of change, and colored borders indicate a p-value < 0.05
and a false discovery rate (FDR)-adjusted p-value < 0.2. Red and blue borders indicate positive and
negative correlations, respectively.

The analysis of the metabolic pathway based on the variables of interest (rootstock and
culture medium) using the deviated scattered partial correlation (DSPC) algorithm revealed
sucrose as the only variable with a grade of 8 and an interaction of 44.78, indicating its
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significance in the system’s metabolite relationships. Sucrose showed a positive correlation
with glutamine, proline, lactate, leucine, valine, and isoleucine, indicating that an increase
in its concentration would result in an increase in the other metabolites [52]. However,
sucrose had a negative correlation with choline and ascorbate (Partial Coeff. -1). According
to Tasseca et al. [53], choline increases in response to plant stress.

Isoleucine and choline presented a grade of 6 and betweenness of 8.88 and 27.33,
respectively, both showing positive (red border) and negative (blue border) correlations
with other metabolites. Grade 5 was identified for glutamine, leucine, ascorbate, proline,
and lactate, with betweenness values ranging from 3.22 to 33.68, most of which had
positive and negative interactions except for lactate and proline, which had minimal
positive correlations. Glutamate was the metabolite with the lowest grade (1) and was only
negatively correlated with citrate (a grade of 3 and betweenness of 17).

The DSPC analysis identified three matching pathways according to p-values and
impact values (impact > 0.2) based on the pathway typology (Figure 6A). The identification
of six metabolites in the metabolic pathway of alanine, aspartate, and glutamate indicates
the impact of the variables studied (rootstock and culture medium) on this pathway.
Alanine, a non-protein amino acid, protects plants from extreme temperatures, drought,
and hypoxia by transforming them into osmoprotective compounds, such as alanine-
betaine and the antioxidant homoglutathione [54]. Aspartate is a precursor of asparagine
biosynthesis and is one of the primary nitrogen transporters in plants [55]. The next
pathway with the highest coincidences (three) was the metabolism of arginine and proline,
including L-glutamate, L-aspartate, and L-Glutamine. The affected pathway plays a role in
plant responses to biotic and abiotic stress, mainly due to arginine, which is an essential
precursor of proline and polyamine biosynthesis. These results are coherent with the
modifications/impacts potentially caused mainly by changes in the culture medium, but
the variation of the rootstock will also affect soil–plant interactions.

Finally, the enrichment analysis confirmed the results obtained, with a high enrichment
ratio (>3.0) for fatty acyls and organic acids, supporting the suitability of the evaluated
pathways (Figure 6B).
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Figure 6. Pathway analysis. (A) Identification of the metabolic routes of the lemon peel altered by the
variables studied (rootstock and culture medium). Pathways were considered significant when they
presented a p-value < 0.05 and an impact factor > 0.2. (B) Bar graph resulting from the enrichment
analysis of metabolites identified for the lemon peel samples.

3.3. Lemon Juice Samples

Lemon juice is a highly versatile ingredient that finds applications in various industries
due to the presence of its unique bioactive compounds [56,57]. The analysis of variance
(ANOVA) revealed that none of the identified metabolites in the lemon juice samples
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showed significant differences according to the Tukey test (p < 0.05) based on the rootstock
(Figure 7A) or substrate (Figure 7B). These results indicate the homogeneity of the samples
irrespective of the studied variables, i.e., the rootstock and culture medium.
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Figure 7. Important features selected by ANOVA plot with p-value threshold 0.05 for the lemon juice
samples obtained in 9 different treatments (3 substrates × 3 rootstocks) related to (A) rootstock and
(B) culture media.

3.3.1. Multivariate Analysis

The PCA score plot for lemon juice samples confirmed that the results for both vari-
ables overlapped and were similar (Figure 8). However, lemon juice grown using the
highest percentage of port sediment (25% peat + 75% port sediment) showed greater dis-
persion and 95% confidence regions when differentiating by rootstock (Figure 8A). For
both rootstock and substrate, the first two principal components (PC) explained 98.3% of
the total variance. In all the juices, PC1, which accounted for 93.7%, was mainly related
to amino acids, such as citrate, aspartate, proline, alanine, and glutamine. PC2, which
represented 4.6% of the total variance, was correlated with sugars such as fructose, glucose,
sucrose, and myo-inositol.
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Figure 8. PCA score graph of the metabolomic study of lemon juice cultivated in 9 different treatments
(3 rootstocks × 3 substrates) differentiating (A) depending on the substrate used and (B) depending
on the rootstock, where 1 to 3 corresponds to the rootstock type as (1) Citrus macrophylla; (2) Citrus
aurantium; and (3) Citrus aurantium/Citrus sinensis; and 4 to 6 is related to the culture media: (4) 75%
peat + 25% port sediment; (5) 50% peat + 50% port sediment; and (6) 25% peat + 75% port sediment.

A PLS-DA regression was employed to establish correlations between the studied
treatments and identified metabolites in lemon peel. The variable importance in projection
(VIP) was also determined to assess the significance of the metabolites [58]. As for both
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variables (rootstock and substrate), the aspartate, citrate, and fructose metabolites showed
significance (VIP > 1). However, the degree of importance varied, with aspartate > citrate >
fructose being more important for rootstock (Figure 9A), while citrate followed by glucose
and aspartate had the highest VIP for substrate (Figure 9B). These metabolites are likely
related to the final flavor of the juice, indicating their practical significance [59].
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Figure 9. Graph of VIP scores (variable importance in projection), derived from the partial least
squares discriminant analysis (PLS-DA), with the corresponding heat map where red and blue
indicate the level of metabolites. The results are analyzed according to (A) the rootstock used (n = 3)
and (B) the substrate (n = 3), where 1 to 3 corresponds to the rootstock type as (1) Citrus macrophylla;
(2) Citrus aurantium; and (3) Citrus aurantium/Citrus sinensis; and 4 to 6 is related to the culture media:
(4) 75% peat + 25% port sediment; (5) 50% peat + 50% port sediment; and (6) 25% peat + 75% port
sediment.

The use of hierarchical clustering heatmaps allowed for a more detailed analysis
and intuitive visualization of the mean concentration values of the identified metabolites
and their differentiation between the studied variables (Figure 10). Specifically, a clear
quantitative difference in the concentration of all metabolites was observed in the juice
samples from lemons cultivated with Citrus aurantium rootstock, which generally had
higher concentrations compared to those obtained from lemons cultivated with other
rootstocks (Figure 10A). Moreover, the results based on the substrate showed a general
decrease in metabolite content, with the exception of ethanol, in juices from lemons grown
using a substrate with the highest percentage of port sediment (25% peat + 75% sediment)
(Figure 10B).

3.3.2. Debiased Sparse Partial Correlation (DSPC)

The connectivity of all identified metabolites was defined based on the graphic model
generated from the DSPC network (see Figure 11). Alanine had the highest grade (10) and
betweenness value (20.13) among all variables, followed by valine and lactate, which had
grades of 9 and betweenness values of 6.85. Gandolfi et al. [60] associated bactericidal
activity in different fruit juices with alanine, which is highly relevant for preservation.
Additionally, glutamine and sucrose had grades of 7 and 6, respectively. The lowest degree
identified was 2 for the metabolites aspartate, isoleucine, and glucose.
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Figure 10. Hierarchical clustering heatmaps of the metabolomic study of lemon juice grown in
9 different treatments (3 rootstocks × 3 substrates). The results are analyzed according to (A) the
rootstock used (n = 3) and (B) the substrate (n = 3), where 1 to 3 corresponds to the rootstock type
as (1) Citrus macrophylla; (2) Citrus aurantium; and (3) Citrus aurantium/Citrus sinensis; and 4 to 6 is
related to the culture media: (4) 75% peat + 25% port sediment; (5) 50% peat + 50% port sediment;
and (6) 25% peat + 75% port sediment.
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Figure 11. Partial correlation network of the metabolites identified in lemon juice. The size of the
node indicates the direction of change. The colored borders have a p-value < 0.05 and the false
discovery rate (FDR)-adjusted p-value < 0.2. The red borders show positive correlations.

Out of the 34 metabolic pathways determined based on the results of the juice DSPC
analysis, 3 were found to be significant (Impact > 0.2). Similar to the lemon peel samples,
the metabolism of alanine, aspartate, and glutamate had the highest number of metabo-
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lites, once again confirming its relevance in the plant’s response to stress caused by the
studied variables (rootstock and culture medium). Despite the ascorbate, aldarate, and
phenylalanine pathways having few metabolomic coincidences, their overall impact was
still significant (see Figure 12A). Finally, the enrichment analysis, which calculated the
ratio between detected compounds and those expected based on the identified metabolic
pathways/nodes, revealed that alkaloids were the largest set of metabolites (enrichment
ratio of >6), followed by nitrogenous organic compounds (enrichment ratio of >2) and fatty
acyls (enrichment ratio of >1) (Figure 12).
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Figure 12. Pathway analysis. (A) Identification of the metabolic pathways of lemon juice samples al-
tered by the variables studied (rootstock and culture medium). Pathways were considered significant
when they presented a p-value < 0.05 and an impact factor > 0.2. (B) Bar graph resulting from the
enrichment analysis of metabolites identified for the lemon juice samples.

4. Conclusions

In this study, the impact of rootstock and culture medium on different parts of lemon,
namely the peel and juice, was investigated. The results revealed that the rootstock had a
significant effect on the metabolites related to the plant’s energy metabolism in the lemon
peel samples. This finding suggests that the rootstock can influence the development of
fruits and the plant itself. Furthermore, the study showed that the culture conditions, in-
cluding both the rootstock and the culture medium, have an impact on the plant’s adaptive
response and the modification of metabolic pathways. Interestingly, sucrose was identified
as the most important metabolic pathway in all samples. In contrast, the homogeneity of
the results indicated that the rootstock and culture medium had a limited influence on the
juice metabolites, which were mainly related to the sensory perception of flavor. The study
also revealed that the lemon juice samples obtained with Citrus macrophylla rootstock had
the highest concentrations of metabolites, indicating the rootstock’s vigor. Conversely, the
juices of lemons cultivated with the highest percentage of port sediment (75%) had the
highest total content, suggesting the plant’s response to abiotic stress conditions. Overall,
these findings demonstrate the differentiated impact of both rootstock and culture medium
on different parts of the lemon and provide valuable insights into the metabolic pathways
involved in the production of this important fruit.
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