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Abstract: In a three-year experiment (2019–2021), the roots of 7-year-old apple trees (Malus domestica
cv. ‘Red Jonaprince’) grown under drip irrigation were studied. The aim of the study was to determine
the effect of irrigation on root density at different depths and distances from the trunk. The working
hypothesis assumed that irrigation significantly affects the total length of apple roots. The irrigation
treatments corresponding to the calculated water evapotranspiration (ET100), 50% of the calculated
ET (ET50), a control (ET0, no irrigation, under rainfed conditions), and a treatment using double-drip
lines (2Drops) were monitored. Soil cores were collected in spring and autumn. The total length of
the roots (TRLt) and the length of new vital roots (TRLv) to a depth of 80 cm were evaluated. The
effects of treatments were mostly insignificant for the TRLt; only in the dry season in 2019 were the
TRLt values of the irrigated treatments (ET50 and ET100) significantly higher, 18.67 km·m−2 and
17.45 km·m−2, in comparison to 11.16 km·m−2 for the ET0, at a 10 cm distance from the tree trunk.
The irrigation treatments had a statistically significant effect on the TRLv values near the trunk in
2019 and 2020, while in autumn 2020 and 2021, irrigation significantly affected the TRLv at greater
distances from the tree trunk. In summary, the irrigation treatments mostly had no significant effect
on the total root length. However, an effect of irrigation on the root length of new vital roots was
observed at certain sampling dates and distances from the trunk.

Keywords: depth; dose of water; evapotranspiration; precipitation; root density

1. Introduction

Gradual changes in the climate, i.e., higher evapotranspiration and insufficient or
irregularly distributed rainfall, have increased the need for the irrigation of field and
perennial crops. In the conditions of the climate of Central Europe [1], supplementary
irrigation represents an important stabilizing element necessary for intensive orchards
with high and regular fruit production. For example, according to Dzikiti et al. [2], the
average transpiration and demand for water during vegetation was 638 mm for ‘Cripps
Pink’ orchards and 778 mm for ‘Golden Delicious’ orchards. Leib et al. [3] found that
irrigated apple cv. ‘Fuji’ used 596 mm, 839 mm, and 685 mm in three years under a semi-
arid climate. According to Lecaros-Arellano et al. [4], irrigation applied in a ‘Gala’ apple
orchard, or calculated as demand, ranged from 308 to 566 mm. Local water shortages
have further increased the need for higher water use efficiency [5–9]. There is an effort to
reduce water consumption by reducing losses through deep soil percolation beyond the
reach of the roots and unproductive evaporation from the soil [10]. At the same time, the
impacts of irrigation on the yield and quality of production must be considered [11,12].
Lauri et al. [13] concluded that apple cultivation has developed tremendously in past
decades thanks to various improvements usually carried out at the expense of increasing
dependence on external inputs, such as water and fertilizers, generating environmental
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pollution and health issues. A deeper knowledge of the influence of irrigation and other
factors on the distribution of roots and their uptake activity would enable a more accurate
setting of irrigation management for improved water use efficiency and those of the applied
nutrients. For example, 30-month monitoring and long-term modeling fluxes in the ‘Galaxy’
apple orchard indicated that the average amounts of drainage beneath the rootzone were
89 mm·yr−1 and 136 mm·yr−1, respectively [14]. Data on root distribution in terms of
the water abstraction intensity are also important for choosing the appropriate location of
moisture sensors intended to control irrigation doses [15].

Root plasticity in response to environmental conditions has received a lot of attention
in recent years and is considered a key element in an effort to improve crop resilience under
water-limiting conditions [16]. The evaluation of the root distribution data of fruit trees
with respect to irrigation technology and doses is not simple. The most commonly used
drip irrigation locally increases the water content in the vicinity of water emitters along
the drip lines. This, in combination with fluctuating precipitation and water uptake by the
roots, creates a spatially and temporally heterogeneous environment for root growth. This
suggests possible implications for root uptake [17,18]. This issue is even more important
when using alternative water-saving irrigation strategies, such as partial root-zone drying or
regulated deficit irrigation [3]. Root density distribution, in interaction with soil hydraulic
properties, determines the potential uptake of water from different depths and distances
from the plant. For example, Besharat et al. [19] and Gong et al. [20] have demonstrated
excellent agreement between measured data and simulated outputs of a root uptake model
based on the root density distribution. The close relationship between the distribution
of the root density and the distribution of water uptake suggests the importance of the
possible modification of root density by irrigation.

The research and monitoring of root growth and development are methodologically
laborious and time-consuming, especially using methods excavating the entire root sys-
tem [21,22]. Various methods, such as the monolith or profile trench method [23–25], or
rhizotrons [22,26], have their methodological advantages and disadvantages. The soil
sampling method with a root borer, followed by the separation of roots with water, was
used in the study. This method makes it possible to directly determine the length and
density of roots to the required depth, with relatively little damage to the root system
and soil profile [27], which is important for monitoring the roots of fruit trees in longer
time series.

The aim of this study was to determine the effect of irrigation on root density at
different depths and distances from the trunk. We assumed, as a working hypothesis, that
differential irrigation significantly affects the total root length of apples.

2. Materials and Methods
2.1. Site Climate and Soil Conditions

The three-year experiment (2019–2021) was performed at the Research and Breeding
Institute of Pomology Holovousy (50.3733847′ N, 15.5798914′ E), in East Bohemia of the
Czech Republic (Figure 1). The orchard is situated 302 m above sea level on Haplic Luvisol
soil, and the slope is 2.09◦.

The site belongs to a region with temperate climate conditions, with a mean annual
temperature (1964–2021) of 8.8 ◦C and rainfall of 664 mm; the respective means of the
experimental years (2019–2021) were 9.8 ◦C and 614 mm. The reference evapotranspiration
(Penman-Monteith, ETo) was approximately 560 mm, with a maximum month sum from
June to August (81–95 mm). The negative water balance and water deficit occurred mostly
during summer. Water availability was affected by a fluctuation of precipitation (Figure 2)
and water reserves in the root zone. The water table was approximately 5 m deep, and it
did not influence the soil water in the root zone during the vegetation season.
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the crown of the trees. The grass strips between the tree rows were periodically mowed. 
All variants were fertilized annually with the same dose of NPK fertilizer (16.5/16.5/16.5), 
769 kg/ha. Half of the dose was applied to the soil surface on the herbicide strips in April, 
and the other half in May. Detailed site and set data are shown in Table 1. 
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Figure 2. Daily precipitation sums, evapotranspiration (ET), and irrigation doses in experimental
years (figure above). Average relative values of available soil water content (ASWC) (figure below).

Apple trees (Malus domestica) of the ‘Red Jonaprince’ variety, planted in 2013, were
monitored. The cultivation form is a slender spindle with a ‘click’ pruning modification.
The trees were planted in spacings of 3.5 × 1.2 m, with a 1.5 m width herbicide strip under
the crown of the trees. The grass strips between the tree rows were periodically mowed.
All variants were fertilized annually with the same dose of NPK fertilizer (16.5/16.5/16.5),
769 kg/ha. Half of the dose was applied to the soil surface on the herbicide strips in April,
and the other half in May. Detailed site and set data are shown in Table 1.

Table 1. Soil and agrochemical data of orchard in Holovousy.

Soil Layer Texture FWC 1 Volume
Weight

Corg
Content

Total N
Content pH (KCl) Available Nutrients 2

cm - % vol. g·cm−3 g·kg−1 g·kg−1 mg·kg−1

0–30 Silt loam 31.9 1.45 1.53 0.160 6.32
P 124.4
K 260.1

Mg 214.6

30–60 Silt loam 34.1 1.42 0.90 0.101 6.42
P 11.6
K 147.5

Mg 191.2

60–90 Silt loam 33.0 1.45 0.33 0.047 6.37
P 1.6
K 121.8

Mg 162.5
1 Field water capacity; 2 Mehlich III.

2.2. Irrigation Treatments

The irrigation dose was calculated as the balance difference between the calculated
evapotranspiration and the observed amount of precipitation, a commonly used proce-
dure for the determination of crop water requirements [5,28,29]. Thus, the intensity of
irrigation varied in the experimental years due to the temperature, evapotranspiration,
and the intensity and distribution of precipitation during the year (Figure 2). The actual
evapotranspiration was calculated using the agrometeorological model AVISO [9,29,30],
based on the daily data of weather indicators from a meteorological station located directly
in the orchard. The model run was initialized on January 1 of a given year and based on soil
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moisture data monitored continuously using Virrib sensors (Amet, Velké Bílovice, Czech
Republic) [31].

The experiment included four treatments: ET100—irrigation doses replaced 100%
of the calculated evapotranspiration; ET50—50% of the calculated evapotranspiration
was replaced throughout the vegetation period; ET0, a non-irrigated control treatment
dependent only on rainfall; 2Drops—a full dose of water was applied as in the ET100. The
2Drops treatment has been monitored since spring 2020. The treatments were managed in
particular irrigation sections consisting of 17 trees in a particular row. Irrigation was applied
using drip lines guided along one side of the tree trunk at a height of 40 cm (Figure 3). The
distance between the water emitters on the drip lines was 50 cm, and the emitter capacity
was 2.3 L per hour. In the 2Drops treatment, irrigation was applied using two parallel
drip lines guided on both sides of the trunks at a distance of 40 cm. This treatment was
included with the intention of more uniform moistening of the soil under the crown of
the tree [32]. Irrigation was applied from April to September in all treatments on the same
days, according to the calculated demand, in small doses of approximately 6–9 mm two to
three times per week to ensure the uniform infiltration of water into the soil and to prevent
possible seepage beyond the root zone. The total water received by the apple tree of the
ET100 treatment in 2019 was 548 mm (298 mm irrigation + 250 mm rainfall); in 2020, it was
556 mm (54 mm irrigation + 502 mm rainfall); in 2021, it was 606 mm (196 mm irrigation +
410 mm rainfall). The ET50 received 50% of the applied irrigation of the ET100, while the
ET0 did not receive any irrigation and was kept under rainfed conditions.
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2.3. Soil Sampling and Root Measurement

Root growth was monitored in the trial treatments: ET0, ET50, ET100, and 2Drops. Soil
cores were collected on two dates, at the beginning of spring vegetation, around flowering
(BBCH 50–62) (2 April 2019, 28 April 2020, 21 April 2021) and in autumn (11 November
2019, 26 October 2020, 10 November 2021), after the fruits were harvested and before the
leaves fell (BBCH 90–92). In the spring of 2019, samples were taken from the orchards
before the start of irrigation in two replications without differentiation among the planned
treatment positions. In previous years, the same doses of supplementary irrigation were
applied to the entire orchard.

The sampling of the soil cores was carried out with a soil probe/corer with a diameter
of 4 cm. The soil was collected at distances of 10 cm, 30 cm, and 60 cm from the trunk,
horizontally with the row of trees, on the side with the drip lines, and vertically to the
direction of the row of trees, toward the inter-row space (Figure 3). The soil was sampled
in two repetitions (always for two trees of a given treatment) in layers of 20 cm, to a depth
of 80 cm. Roots of the same trees were sampled in a year, from opposite sides in spring
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and autumn. The trees in the orchard are rather uniform, but still, trees of similar size that
possessed similar crown volumes and tree trunks were selected for sampling.

The roots were separated with water on a set of sieves, the samples were cleaned in the
laboratory, and the length of the roots was determined by the method of Tennant [33]. The
method is based on the number of intercrossings of roots with horizontal and vertical lines
of a square grid. When measuring the length (intercrossings), new young vital roots, which
accounted for averages of 37% (2019), 20% (2020), and 23% (2021) of the total root length,
were distinguished. These vital roots, with a smooth undisturbed surface, were identified
by color (light brown) from the older black and dark brown colored roots (Figure 4). The
root density of all roots (RDt) and the root density of young vital roots (RDv) in cm·cm−3

were calculated for layers 0–20 cm, 20–40 cm, 40–60 cm, and 60–80 cm. The total root
length (TRLt, TRLv) to a depth of 80 cm was calculated in km·m−2. The TRL (km·m2) was
calculated by summing the root length from the RD (in cm·cm−3) in the respective layers
to an 80 cm depth and converting the measurement from square cm to m2.
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2.4. Statistical Analysis

A statistical evaluation was performed using the STATISTICA 14 program (TIBCO
software, StatSoft, Inc., Tulsa, OK, USA). The effects of treatments for different distances
from the tree trunk and dates of sampling were analyzed using one-way analysis of variance
(ANOVA). The differences among the means were evaluated with Tukey’s HSD test (at
p < 0.05) where relevant.

3. Results
3.1. Distribution of Roots in the Soil Profile

The density of all roots (RDt) decreased with the depth, especially near the trunk
(Figure 5). On average for the years and treatments, 69%, 52%, and 48% of the roots to an
80 cm depth were concentrated in the upper 20 cm layer at distances of 10 cm, 30 cm, and
60 cm from the trunk, respectively (Figure 6). The decrease in the root density with depth
was clear at the start of the experiment (2019) and less pronounced in the following years,
at distances of 30 cm and 60 cm from the tree trunk. There was a tendency for a greater
proportion of roots in the topsoil layer in the ET50 and 2Drops treatments in 2020.

The root density in the top 0–20 cm soil was the highest in all years and treatments
near the trunk (Figure 5) and decreased with increasing distance from the trunk. In
the third year of the experiment, there was a tendency for a higher root density at a
distance of 60 cm compared to a distance of 30 cm. In deeper subsoil layers (40–60 cm and
60–80 cm), the decrease in the RDt with the distance from the trunk was less apparent. In
2021, the RDt in layers under a 20 cm depth was similar or greater at a 60 cm distance
compared to a 30 cm distance. On average for the years and treatments, the RDt values
at a 0–20 cm depth were 4.63 cm·cm−3, 1.54 cm·cm−3, and 1.05 cm·cm−3, at distances of
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10 cm, 30 cm, and 60 cm from the trunk; the respective values at a 60–80 cm depth were
0.27 cm·cm−3, 0.24 cm·cm−3, and 0.26 cm·cm−3.

The decrease in the roots with depth was less apparent in the root density of new
vital roots (Figure 7). The RDv represented, on average, 37% (autumn 2019), 15%, and 24%
(spring and autumn 2020), and 22% and 24% (spring and autumn 2021) of the RDt. The
proportions of RDv on RDt increased from the top 0–20 cm layer to the 60–80 cm layer. In
2019, the new vital roots represented, on average, 17%, 31%, 37%, and 66% of the RDt; in
2020, the averages were 9%, 17%, 27%, and 25%; in 2021, the corresponding values were
15%, 23%, 27%, and 26% in the respective soil layers. The RDv also decreased with distance
from the trunk, but the decrease was less steep than in the RDt (Figure 7).
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3.2. Effect of Irrigation Treatments on Total Root Length

Tracking the roots at different depths, three distances from the trunk, and in two
directions provided a large amount of data. We analyzed, with ANOVA, the effects of the
treatments on the total root length in the 0–80 cm soil layer for the total (TRLt) and new
vital roots (TRLv) on individual sampling dates. The values of the TRLt and TRLv are
expressed in km·m−2 to enable comparison with the literature data.

The irrigation treatments significantly affected the TRLt only in autumn 2019 and
autumn 2020, near the trunk tree, and in autumn 2021 at 60 cm from the trunk (Table 2).
However, the analysis of significant differences showed the opposite effect of treatments
on the TRLt in autumn 2019 and autumn 2020 (Table 3). In new vital roots, the effect of
irrigation on the TRLv was confirmed in 2019 and 2020 near the trunk. In 2021, the effect
was found mostly at greater distances from the trunk (Table 2). Similar to the TRLt, the
TRLv of the ET0 was significantly lower than the ET50, ET100, and 2Drops in autumn 2019
and 2020 (Table 4). There was a tendency for a lower TRLv at a greater distance from the
trunk in autumn 2020 and 2021, except for at a 30 cm distance in spring 2021. The average
RTLv values of the treatments (in 2020–2021) at a 10 cm distance show (insignificantly)
greater root length in treatments ET50 and ET100, of 1.76 km·m−2 and 1.66 km·m−2, in
comparison to the ET0 and 2Drops, with 1.31 km·m−2 and 1.38 km·m−2, respectively.

Table 2. The statistical analysis (ANOVA) of the effect of irrigation treatments on the total length of
all roots in a sample (TRLt); and the total length of new vital roots in a sample (TRLv) at distances of
10 cm, 30 cm, and 60 cm from the tree trunk.

TRLt TRLv

10 cm 30 cm 60 cm 10 cm 30 cm 60 cm

p-value

Treatment Autumn 2019 0.003 ns ns <0.001 ns ns
Spring 2020 ns ns ns <0.001 ns 0.012

Autumn 2020 0.001 ns ns 0.080 0.006 0.072
Spring 2021 Ns ns ns ns 0.014 ns

Autumn 2021 Ns ns 0.079 ns 0.017 <0.001

Average values of 2020 and 2021

Year <0.001 0.001 ns <0.001 <0.001 0.004
Season ns ns ns 0.011 0.035 ns
Variant 0.086 ns ns ns 0.078 0.026

Note: ns—not significant at p < 0.10.

The effects of the treatments on the TRLt and TRLv were not consistent among years
and sampling terms; for example, the TRLv was low with the ET0 and 2Drops treatments at
a 30 cm distance in 2020 and spring 2021, but in autumn 2021, a lower RTLv was observed
for the ET50 and ET100. At a 60 cm distance, lower values of TRLv were observed for
the ET0.

At 10 cm from the trunk, the TRLt reached significantly higher values in 2020 than in
2021—on average, 17.31 km·m−2 (13.5–22.7 km·m−2) compared to 9.29 km·m−2

(7.6–11.8 km·m−2) in 2021. In autumn 2019, it was 15.8 km·m−2 (10.9–18.7 km·m−2)
(Table 3). The average TRLt values in spring and autumn 2020 were 16.6 km·m−2 and
18 km·m−2, respectively, while in 2021, the corresponding values were 8.7 km·m−2 and
9.8 km·m−2.

At a distance of 30 cm, the average TRLt was significantly higher in 2019 than in 2021,
7.9 km·m−2 compared to 4.5 km·m−2. The TRLt in 2020 (6.0 km·m−2) was not significantly
different from that in 2019 and 2020. The average values of TRLt in the spring and autumn
sampling terms in 2020 were 5.65 km·m−2 and 6.32 km·m−2; and 4.70 km·m−2 and 4.35
km·m−2 in 2020, respectively. At a distance of 60 cm from the trunk, the TRLt values were
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similar in the experimental years 2020 and 2021, with averages of 3.62–4.34 km·m−2 and
5.25 km·m−2 in autumn 2019.

The average RTLv values of the new vital roots at all distances from the tree trunk
were significantly greater in autumn 2019 in comparison to the following years (Table 4).
The average RTLv in 2020 and 2021 were not significantly different. The average values of
the RTLv in spring and autumn were not significantly different.

Table 3. Total root length of all roots to a depth of 80 cm (TRLt) at distances of 10 cm, 30 cm, and 60
cm from the tree trunk, in experimental years and variants. ET0, ET50, ET100, and 2Drops refer to
irrigation water rate variants (see Figure 5).

Total Root Density, TRLt (km·m−2)

Variant 10 cm 30 cm 60 cm

Spring 2019 ET100 10.90 ± 0.95 6.18 ± 1.34 8.54 ± 1.23

Autumn 2019 ET0 11.16 ± 2.24 b 5.82 ± 1.00 a 6.31 ± 3.56 a
ET50 18.67 ± 3.18 a 9.94 ± 4.35 a 5.30 ± 4.31 a

ET100 17.45 ± 1.14 a 7.85 ± 5.03 a 4.14 ± 3.49 a

Spring 2020 ET0 17.61 ± 6.29 a 8.10 ± 4.28 a 5.33 ± 3.57 a
ET50 15.28 ± 2.94 a 6.47 ± 2.96 a 4.09 ± 0.82 a

ET100 19.11 ± 5.62 a 4.21 ± 0.96 a 3.56 ± 1.92 a
2Drops 14.49 ± 1.21 a 3.83 ± 3.15 a 2.77 ± 0.31 a

Autumn 2020 ET0 22.67 ± 3.53 a 4.77 ± 1.30 a 3.83 ± 2.00 a
ET50 15.42 ± 2.44 b 8.31 ± 3.35 a 4.64 ± 1.34 a

ET100 20.41 ± 3.20 a 6.66 ± 3.20 a 2.67 ± 1.84 a
2Drops 13.47 ± 1.11 b 5.54 ± 0.94 a 3.32 ± 2.38 a

Spring 2021 ET0 9.38 ± 1.37 a 4.41 ± 0.57 a 3.47 ± 1.32 a
ET50 9.58 ± 0.67 a 4.63 ± 0.63 a 5.48 ± 4.68 a

ET100 8.44 ± 5.02 a 4.21 ± 2.95 a 3.49 ± 1.42 a
2Drops 7.56 ± 0.95 a 5.56 ± 0.78 a 4.93 ± 4.29 a

Autumn 2021 ET0 11.82 ± 1.03 a 3.43 ± 2.07 a 1.30 ± 0.19 b
ET50 9.26 ± 1.92 a 3.57 ± 2.38 a 5.43 ± 3.49 a

ET100 9.81 ± 2.01 a 4.80 ± 0.99 a 4.80 ± 2.26 ab
2Drops 8.45 ± 2.26 a 5.60 ± 1.26 a 3.59 ± 1.05 ab

2019 (Autumn) 15.76 ± 4.03 a 7.87 ± 3.93 a 5.25 ± 3.56 a
2020 17.31 ± 4.48 a 5.99 ± 2.93 ab 3.80 ± 1.96 a
2021 9.29 ± 2.35 b 4.53 ± 1.66 b 4.06 ± 2.79 a

Spring (2020,
2021) 12.68 ± 5.36 a 5.18 ± 2.56 a 4.16 ± 2.61 a

Autumn (2020,
2021) 13.91 ± 5.41 a 5.34 ± 2.42 a 3.70 ± 2.18 a

2020, 2021 ET0 15.37 ± 6.28 a 5.18 ± 2.87 a 3.48 ± 2.43 a
2020, 2021 ET50 12.39 ± 3.62 a 5.75 ± 2.95 a 4.91 ± 2.77 a
2020, 2021 ET100 14.45 ± 6.70 a 4.97 ± 2.29 a 3.67 ± 1.86 a
2020, 2021 2Drops 10.99 ± 3.39 a 5.13 ± 1.79 a 3.65 ± 2.39 a

Note: Values are means ± standard deviation (N = 4). The values of RTD for the specific distance from the tree
trunk and sampling terms followed by the same letter are not significantly different at 0.05.
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Table 4. Total root length of new vital roots to a depth of 80 cm (TRLv) at distances of 10 cm, 30 cm,
and 60 cm from the tree trunk, in experimental years and variants. ET0, ET50, ET100, and 2Drops
refer to irrigation water rate variants (see Figure 5).

Total Root Density, TRLv (km·m−2)

Variant 10 cm 30 cm 60 cm

Spring 2019 ET100 2.79 ± 0.49 2.21 ± 1.08 2.54 ± 1.63

Autumn 2019 ET0 1.57 ± 0.39 b 1.36 ± 0.16 a 1.00 ± 0.55 a
ET50 4.17 ± 0.60 a 2.04 ± 0.77 a 1.35 ± 0.89 a

ET100 4.74 ± 0.89 a 1.99 ± 0.41 a 1.65 ± 0.83 a

Spring 2020 ET0 1.12 ± 0.17 b 0.76 ± 0.31 a 0.40 ± 0.06 b
ET50 2.16 ± 0.46 a 0.51 ± 0.18 a 0.43 ± 0.25 b

ET100 1.39 ± 0.12 b 0.95 ± 0.48 a 1.16 ± 0.54 a
2Drops 1.18 ± 0.17 b 0.79 ± 0.17 a 0.49 ± 0.14 b

Autumn 2020 ET0 1.84 ± 0.79 a 0.54 ± 0.13 b 0.51 ± 0.17 a
ET50 2.27 ± 0.33 a 1.04 ± 0.14 ab 1.06 ± 0.14 a

ET100 2.62 ± 0.32 a 1.59 ± 0.63 a 0.80 ± 0.48 a
2Drops 1.59 ± 0.57 b 0.81 ± 0.17 b 0.87 ± 0.04 a

Spring 2021 ET0 1.12 ± 0.20 a 1.31 ± 0.17 a 0.87 ± 0.30 a
ET50 1.21 ± 0.17 a 0.86 ± 0.08 ab 1.46 ± 1.13 a

ET100 1.07 ± 0.25 a 0.59 ± 0.42 b 0.70 ± 0.22 a
2Drops 1.46 ± 0.39 a 1.07 ± 0.84 ab 0.85 ± 0.69 a

Autumn 2021 ET0 1.18 ± 0.17 a 0.75 ± 0.18 a 0.39 ± 0.08 bc
ET50 1.38 ± 0.07 a 0.98 ± 0.44 ab 0.92 ± 0.25 b

ET100 1.56 ± 0.42 a 1.61 ± 0.39 b 1.49 ± 0.44 a
2Drops 1.29 ± 0.84 a 1.32 ± 0.27 ab 1.23 ± 0.14 ab

2019 (Autumn) 3.49 ± 1.56 a 1.80 ± 0.56 a 1.33 ± 0.75 a
2020 1.77 ± 0.64 b 0.88 ± 0.43 b 0.72 ± 0.38 b
2021 1.28 ± 0.45 c 1.06 ± 0.42 b 0.99 ± 0.59 ab

Spring (2020,
2021) 1.34 ± 0.48 b 0.86 ± 0.35 b 0.79 ± 0.59

Autumn (2020,
2021) 1.72 ± 0.66 a 1.08 ± 0.48 a 0.91 ± 0.41

2020, 2021 ET0 1.32 ± 0.50 a 0.84 ± 0.35 a 0.54 ± 0.26 b
2020, 2021 ET50 1.76 ± 0.56 a 0.85 ± 0.31 a 0.97 ± 0.66 ab
2020, 2021 ET100 1.67 ± 0.67 a 1.18 ± 0.61 a 1.04 ± 0.51 a
2020, 2021 2Drops 1.38 ± 0.60 a 1.00 ± 0.33 a 0.86 ± 0.42 ab

Note: Values are means ± standard deviation (N = 4). The values of RTD for the specific distance from the tree
trunk and sampling terms followed by the same letter are not significantly different at 0.05.

4. Discussion

In the experimental years, the intensity of precipitation differed significantly in the
periods of intensive growth and high evapotranspiration. The rainfall water input inter-
acted with the differentiated doses of irrigation water, complicating the interpretation of
the effect of the treatments on root growth. Water seepage from rainfall and irrigation,
water uptake by roots from different soil layers, and possible differences in the intensity of
water uptake in individual treatments create a temporally and spatially heterogeneous soil
environment [34–38]. These factors hindered the search for simple relationships between
soil moisture and root growth or morphology.

The influence of irrigation treatments on the total root length to a depth of 80 cm
(TRLt) was not significant except for the TRLt in autumn 2019 (at distances of 10 cm and 30
cm), autumn 2020 (10 cm), and in autumn 2020 near the tree trunk. In new vital roots, the
effects of the treatments on the TRLv were significant in nine of fifteen cases, and the effects
of irrigation treatments on the TRLv seemed to expand from near the trunk to greater
distances during the experimental years (Table 2). Near the trunk, the TRLt values in 2020
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and 2021 were mostly (insignificantly) higher for the ET0 and ET100 variants compared to
the ET50 and 2Drops treatments.

The greater effect of irrigation on new vital roots corresponds to the strategy of the
plants to gradually occupy new soil zones with roots in their response to environmental
conditions. It was also reflected in the tendency for an increased density of roots at a
distance of 60 cm from the trunk in the third year of the experiment. The trend is further
confirmed by the increase in the proportion of new vital roots with increasing depth
and distance from the trunk. Similarly, an increase in the proportion of “absorptive”
fine roots in 9- and 14-year-old ‘Golden Delicious’, ‘Gala’, and ‘Starking’ apple trees
laterally and in depth was observed by Thomaj et al. [39]. Tanasescu and Paltineanu [24]
found a higher influence induced by the different irrigation treatments on the “active
absorbent” apple tree root. According to our results, new vital roots are more responsive
to differentiated irrigation, similar to the aforementioned active, absorptive roots; but, the
aspect of subjectivity remains here.

Differences in root density among the treatments, years, and monitoring dates cannot
always be simply explained. The higher density of roots (RDt) near the trunk in the surface
layer with the ET0 compared to the ET50 and 2Drops in 2020 and 2021 could be explained
by the adaptive response of the roots to the lack of water; plants increase the investment
of substances into the root system to obtain additional resources [40,41]. A lower and
variable supply of water through rainfall alone stimulates root growth, while regular
water replenishment through irrigation does not stimulate root growth in the surface layer.
However, the TRLt was also insignificantly greater with the ET100 in spring and autumn
2020 (the year with the lowest total irrigation), thanks to the greater root growth in the
deeper soil layers. One possible explanation for the discrepancy may be some residual
effect of drought and irrigation on root growth in the previous year, as indicated by the
significant difference in water availability between the ET100 and ET0 or ET50 treatments,
despite the low irrigation doses in 2020 (Figure 2).

Sokalska et al. [42] observed in their experiment, after 12 years of irrigation, ‘Gloster’
apple trees had concentrated roots on the irrigated side of the tree, while on the opposite
side, the trees developed significantly higher numbers of roots, which penetrated deeper
soil layers. In the experiment of Du et al. [43], irrigation with a high frequency significantly
increased the root length density in comparison to conventional irrigation. Kadayifçı
et al. [44] found that the root distribution of young apple trees was uniform in all irrigation
methods used in their study. In our study, we did not observe a systematically greater
density of roots in the deepest layers, below 60 cm, with the non-irrigated treatment. The
density of roots in layers below 20 cm was, in many cases, higher with irrigation treatment,
but the effect was not systematic in the sampling terms and years. Frequent watering
in small doses, which does not replenish the water depleted by roots from these deeper
layers, might signal the need to invest in root growth. In the case of the 2Drops treatment
(total amount of irrigation water equal to the ET100), the root density in the surface layers
was usually more similar to the ET50, which corresponds to the frequent application of
small amounts of water, which is enough to moisten only the surface layer. Therefore, root
growth was influenced by conflicting processes, stimulating an investment of substances
from aboveground parts into the root system as a response to the lack of water. On the
other hand, the support of the total plant growth was due to regular water replenishment
by irrigation. This was probably the reason for the clearly positive effect of irrigation in the
year 2019, the first year of differentiated irrigation. The year 2019 was dry in most months,
while in 2020, precipitation fluctuated strongly, and rainfall was more evenly distributed in
2021 (Figure 2). However, the meteorological conditions in the experimental years (except
for 2019), in spite of varying precipitation sums, replenished more or less soil water during
growth. The sensing root environment, and connected signaling and impacts on plants
represent a complex phenomenon, especially in perennial species and fruit trees [45,46].
It is necessary to mention that the location of the drippers in relation to the trunk in our
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study was not completely identical for individual trees; the differences in position were in
the range of centimeters, contributing to soil moisture spatial variability.

The total root length (TRLt) of all roots and young new vital roots (TRLv) to a depth
of 80 cm were significantly higher in both sampling terms and for all treatments in 2020
than in 2021. In 2020, a higher TRLt was manifested mainly near the trunk and, to a lesser
extent, at a distance of 30 cm. The reason for these differences is not clear, but 2020 was
characterized by very low precipitation in winter and spring (January, March, and April)
after the dry year of 2019. The soil moisture in spring (April, before the start of irrigation)
was lower in 2020 than in 2021 and 2019; the 0–30 cm layer was unusually dry (13.5%) in
comparison to moisture levels of about 20% and 25% in 2019 and 2021, respectively (not
shown). These conditions suggest the stimulation of root growth in spring as a response to
lower water availability. Later, exceptionally high precipitation in June 2020 (168 mm) and
August 2020 (121 mm) and near-average precipitation in May and July resulted in lower
calculated demand for water and applied irrigation in comparison to 2019 and 2021. The
analysis of variance showed a significant effect of the year on the TRLt and TRLv (Table 2),
but the significant differences among the years were confirmed only for the root length
near the trunk.

The question is the importance of the modification of root density in terms of water
uptake. The root system size, properties, and distribution determine the plant’s access
to water. Water uptake models based on root density distributions correspond very well
to observations, indicating the importance of possible changes caused by irrigation and
other agronomic measures [19,20]. On the other hand, the effect of differences in crop
root traits is expected to be more pronounced in the case of resource, water, or nutrient
scarcity [47–49]. Irrigation keeps the acceptable water content at an optimal level; so, the
demand for water should be saturated, and the significance of differences in density is
likely to be less pronounced.

The data on the depth and distribution of the roots of apple trees vary significantly
among different authors, depending on the age of the trees, the type of rootstock, the soil
type and species, and agro-technical practices. In our experiment, the density of roots
decreased with increasing depth and distance from the trunk, as is commonly observed
in apple trees [24,25,44]. On average, 48–69% of the total length to an 80 cm depth was
concentrated in the upper 20 cm, depending on the distance from the trunk. A similar root
distribution was described by Tanasescu and Paltineanu [24] for 7- to 14-year-old ’Golden
Delicious’ under comparable soil and climate conditions. However, in deep loess soils
without irrigation, Song et al. [50] observed a far greater rooting depth; 5.6% to 38% of the
total dry mass of the roots was in the 200–300 cm layer.

The distribution of the roots in the soil profile is an important indicator for determining
the optimal irrigation depth. Tsoulias et al. [51] concluded that the precise adjustment
of irrigation, including the plant data (rooting depth, root water potential), can optimize
water use. The results presented in this study demonstrate that, under the given mois-
ture conditions, the drip irrigation treatments did not systematically change the horizon-
tal or vertical distribution of the apple tree roots compared to the non-irrigated control.
Paltineanu et al. [23] derived, from a root study on the ‘Topaz’ apple cultivar, that when a
full irrigation regime was applied, a soil depth of 0.8 m was sufficient for water application,
and soil depths of 0.4 to 0.6 m were recommended for deficit irrigation. Zheng et al. [52]
showed, with simulation and water stable isotopes, that the main depth of root water
uptake was in the 0–60 cm layer during the growth season, with the main contribution
occurring in the 0–40 cm layer. The possible impact of root density differences observed in
our study on water uptake should be evaluated with respect to the plant’s ability to modify
the rate of water uptake by roots. [38].

An important feature of an effective irrigation system is the reduction of the unproduc-
tive seepage of water (with nutrients) outside the root zone. On the basis of experimental
data and modeling, Green et al. [38] found that more frequent irrigation in smaller doses
resulted in less water percolating, more efficient use of water, and a reduction in the
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percolation losses of nutrients beyond the grasp of the roots. Our data also suggest that
irrigation to a maximum soil depth of at least 40–60 cm (average RDt values of 0.56, 0.44,
and 0.31 cm·cm−3 at distances of 10 cm, 30 cm, and 60 cm, respectively) or 60–80 cm
(average RDt values of 0.27, 0.24, and 0.26 cm·cm−3 at distances of 10 cm, 30 cm, and 60 cm,
respectively) ensured that the water was available for and depleted by the apple roots. It is
assumed that even sparse root density in deep subsoil zones is able to deplete a significant
portion of available water, as observed in field crops [48,49,53,54], but irrigation water from
wetted topsoil with dense roots is depleted preferentially [55]. In wheat, Zhang et al. [56]
confirmed that a root length density of at least 1 cm·cm−3 (often assumed as a limit of the
effective root density) is needed to drain all the available water in the soil; in deeper layers
where the root length density was less than 1 cm·cm−3, water uptake by the roots was
proportional to the root density. We have no reliable data on the effective root density in
apple trees, but in analogy to the results of Zhang et al. [56], the effect of different irrigation
on the growth of new roots in deep subsoil may be important for the effective depletion of
soil water reserves.

There are several works dealing with the effect of variety or type of rootstock on the
root system of apple trees [25,39,44], but little attention has been paid to the importance of
the interaction of genotype and irrigation intensity in terms of root system development.
It can be expected that the rootstock will have a significant influence, as indicated, for
example, by the results of Nielsen et al. [57] or Rogers et al. [21]. It should be noted that
insufficient knowledge of the effect of different irrigation intensities on the root system
of apple trees limits the use of the knowledge obtained for one variety and rootstock for
other genotypes.

5. Conclusions

Irrigation treatments mostly did not have a significant effect on the total root length
under the given soil and climate conditions, which means that the validity of the working
hypothesis was not confirmed. However, the effects of irrigation on the root length of new
vital roots were observed in several cases (based on sampling terms and distances from the
trunk). The changes in the root length in the years of the experiment were not consistent,
and the treatments did not change the distribution of the roots to such an extent that it
would fundamentally modify the potential of apple trees for the depletion of water from
drip irrigation. The interpretation of the observed differences in the root density and total
roots between variants was complicated by the interactions of the biological properties of
the trees with environmental factors, adaptive responses of the root system, and highly
variable precipitation in the experimental years and during the vegetation. The practical
applicability of data obtained at one location, with one variety and rootstock, is thus limited.
From the point of view of drip irrigation technology, it is important that the irrigation
did not significantly reduce the extent and density of the roots, features important for the
efficiency of the use of water and nutrients from the entire rooted soil volume.

Monitoring the effect of irrigation over a longer period of time may contribute to a
better explanation of the impact of the interaction of environmental factors. The findings
from monitoring the new vital roots suggest that the influence of irrigation may have
a greater effect on root morphology. For this purpose, it will be necessary to examine,
for example, the surface of the roots or the vitality of the root tissues using appropriate
methods. From the point of view of the vertical and horizontal extent of the root system
for the use of irrigation management in orchards, however, root density appears to be the
primary indicator.
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