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Abstract: Agronomic biofortification, the application of fertilizer to increase micronutrient concen-
trations in staple food crops, has been increasingly promoted as a valuable approach to alleviate
micronutrient deficiencies, but its success inevitably depends on farmers’ acceptance and adoption.
By using iodine fertilizers as a case, this study aimed to understand vegetable farmers’ intentions to
adopt agronomic biofortification. Therefore, the focus is on the potential role of socio-psychological
factors, derived from two well-established theoretical models in explaining adoption intentions. Data
from a cross-sectional survey of 465 cowpea and cabbage farmers from a high-risk region of Uganda
were analyzed using binary logistic regression. The findings show that 75% of the farmers are likely
to adopt agronomic iodine biofortification and are willing to devote a substantial part of their land to
this innovation. Farmers’ intention to adopt strongly depends on their attitude and control beliefs
regarding iodine biofortification, vegetable type, access to extension services, and farmland size. This
study highlights the crucial role that behavioral and attitude factors play in communities at risk for
nutritional disorders’ potential acceptance and sustained implementation of vegetable biofortifica-
tion. To reinforce the observed positive inclination towards iodine biofortification among vegetable
farmers, it is essential to increase awareness of the benefits, potential risks, and consequences of
iodine deficiency, accompanied by motivational strategies to enhance farmers’ inherent beliefs in
their ability to implement this innovation.

Keywords: agronomic iodine biofortification; micronutrient malnutrition; behavioral intention;
iodine-enriched vegetables; smallholders; Uganda

1. Introduction

One of the most urgent issues with global development is still hunger and malnutrition,
along with the adverse effects they have on health and education [1,2]. Iodine deficiency is
one of the most common micronutrient deficiencies, resulting in insufficient thyroid hor-
mone secretion, which causes a variety of iodine deficiency disorders (IDDs). Globally an
approximated two billion people—accounting for 30–38% of the world’s population—are
estimated to have insufficient iodine intake [3]. Due to a lack of recent survey data,
Uganda’s current prevalence of iodine (I) deficiency is mostly unclear [4], similar to other
nations in Africa [5]. Iodine deficiency is considered to be a public health issue at a goiter
prevalence of 5% or above [6]. According to a USAID-funded initiative called the food
and nutrition technical assistance (FANTA II) research, the total goiter rate (TGR) among
school-going children between the ages of six and 12 in Uganda was 31% [7], which is
significantly higher than the 5% cut off. Additionally, current stakeholder surveys show
that goiter cases are frequently seen in the neighborhood [8]. The high incidence of IDD
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has typically been explained by the insufficient amounts of I in edible plant parts as well as
the limited availability of I-rich foods like marine foods [9].

Dietary supplements are a good way to combat the drawbacks of iodine deficiency in
people. In many nations, the iodine shortage has been reduced thanks to iodine prophylaxis
based on the iodization of table salt [10,11]. IDDs, however, continue to be widespread
and serious in many rural households in developing nations that are not served by the
salt iodization program and have low incomes [12]. Additionally, the implementation
of laws intended to restrict salt consumption to avoid hypertension and cardiovascular
diseases [13], as well as the instability and susceptibility to vaporization loss of iodine in
salt added to food products [14], represent some of the challenges associated with salt
iodization. A potential and complementary strategy to combat IDDs and other forms of
micronutrient malnutrition is to biofortify plant-based staples such as vegetables [15,16].
Since they contain essential phytochemicals like fiber, vitamins, antioxidants, and minerals,
vegetables are a cornerstone of a healthy diet [17]. By enhancing the nutritional value of
fruits and vegetables during plant growth as opposed to post-harvest handling and storage,
the biofortification of vegetables increases iodine consumption in humans [3,18]. Currently,
iodine-rich vegetables are recommended as part of the human diet to alleviate the problem
of Iodine Deficiency Disorders (IDDs) and improve the immunity of consumers [19,20].
To achieve this, agronomic biofortification using iodine fertilizers during crop cultivation
is being implemented [21]. Iodine fertilizers are known to improve the absorption and
accumulation of this essential yet scarce micronutrient, making it readily available in plant-
based foods. Foliar application of the fertilizer is highly preferred since it requires much less
fertilizer than soil application [22–24]. Previous studies have demonstrated the efficacy of
leafy vegetables to absorb and accumulate iodine through fertilizer application [25,26]. Field
trials on cabbage and cowpeas in the Gulu and Lira districts revealed that foliar application
of I-enriched fertilizers under farmer field conditions increased I concentrations by up to
109.1 mg kg−1 at 15 kg I ha− and (5854.2 mg kg−1) in cabbage and cowpea respectively [9].
This finding suggests that cowpea and cabbage can be effectively biofortified through
foliar application of both KI and KIO3. Furthermore, a projective analysis among Ugandan
vegetable farmers demonstrated iodine agronomic biofortification as a highly profitable
effort, generating average benefit-cost ratios (BCRs) of 3.13 and 5.69 for cabbage and cowpea
production, respectively, higher than the conventional production practice [27]. The same
study also highlighted consumers’ willingness to pay for iodine-rich cabbage and cowpeas.

In evaluating the importance of agronomic biofortification, it is imperative to consider
its adoption by farmers and acceptance by the final consumers of biofortified foods. This
viewpoint is because both stakeholders (consumers and producers) significantly influence
the adoption of food innovations [28]. A large body of literature has examined the in-
fluence of cognitively linked factors, such as attitude and perceptions on the (potential)
adoption of biofortified food products among consumers in developing countries with high
micronutrient deficiency prevalence rates [29,30]. Despite the fact that the benefits of bio-
fortification in terms of nutrition, cost-effectiveness, and socioeconomic impact are widely
documented in the literature, information regarding farmers’ perceptions of biofortification
remains scarce [31–33].

While supplementation and industrial fortification are nutritional approaches that
add minerals and vitamins to food products or as dietary supplements, biofortification
is an agriculture-based strategy [34,35]. Consequently, agronomic biofortification imple-
mentation must start at the input level where farmers are [36]. The main challenge with
biofortification is ensuring that farmers extensively adopt it after variety or fertilizer de-
velopment [16]. This perspective suggests that consumer acceptance of biofortified foods
alone is insufficient to guarantee the success of biofortification. Achieving the anticipated
health impacts (reduced micronutrient deficiency) is inextricably linked to farmers’ per-
ceptions of and actual adoption of agronomic biofortification [34]. Research highlights
that farmers’ adoption and acceptance of agronomic iodine biofortification are essential
for a participatory, effective, and sustainable implementation of agronomic biofortification
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because they are both the primary producers and consumers of biofortified crops [36]. Thus,
it is crucial to have a comprehensive understanding of the factors that influence farmers’
decisions to use iodine fertilizers for iodine biofortification.

Adopting biofortification will involve a cognitive process, leading to a motivated
decision made by farmers. Additionally, the relationship between farmers’ perceptions
(and/or attitudes) and potential adoption of iodine biofortification can be best predicted
based on a priori theory since iodine-biofortified food crops and iodine fertilizers are not yet
available on the market (other than for research purposes) in many developing countries.

In this regard, the current study combined two psychosocial theories, the Theory of
Planned Behavior (TPB) and the Health Belief model (HBM), to investigate the intention of
Ugandan farmers to adopt iodine agronomic biofortification. Specifically, we assessed the
role of (a) psycho-social behavioral factors on farmers’ intention towards the application of
iodine fertilizers, and (b) farm and farmer characteristics on farmers’ adoption of agronomic
iodine biofortification.

In various respects, this work advances the state of the art. Firstly, compared to the vast
body of literature on consumer attitudes, there are very few studies on farmers’ perceptions
of biofortification. Secondly, it focuses on iodine biofortification, a type of biofortification
that is hardly studied in the behavioral research field, compared to vitamin A, zinc, and
iron biofortification. Thirdly, the study uses a sizable sample of 465 farmers to focus on
a high-risk area for iodine deficiency. Lastly, our model is based on a synthesis of two
well-known theoretical models of behavioral change, enabling evaluation of its usefulness
in terms of, for example, significant determinants.

2. Theoretical Framework

The TPB builds upon the well-known Theory of Reasoned Action (TRA) [37]. TRA
hypothesizes that human behavior is a function of intention, which is determined by an
individual’s attitude towards the specified behavior and subjective norms [38,39]. Attitude
refers to an individual’s positive or negative assessment of a specific behavior, and is
derived from behavioral beliefs [40]. Subjective norms (SN) refer to the perceived social
pressure to perform or not perform a behavior based on the expectation of significant
others [41]. The TPB was birthed as an extension of the Theory of Reasoned Action by
utilizing the two original predictors (attitude and subjective norms), with the addition of a
third predictor (perceived behavioral control (PBC)) to explain behavior where barriers to
acting exist [38]. PBC is the degree of confidence or control individuals feel to perform a
specified action [42]. In the current study, PBC refers to farmers’ assessment of their ability
to apply iodine fertilizer in crop production.

On the other hand, the HBM posits that two sets of factors influence a person’s health
behavior: (1) their desire to avoid an illness (e.g., iodine deficiency) or get well in case
they are already sick and (2) the belief that a recommended health intervention (e.g.,
iodine biofortification) will effectively prevent or cure the disease [43–45]. To this end,
the HBM incorporates a motivational component and a set of related core beliefs [46].
Regarding motivation, the model suggests that individuals are most likely to perform a
recommended health behavior if they have a motivating force or rationale and hold specific
beliefs. Furthermore, individuals must believe that (1) they are at risk of developing a
health problem or illness (e.g., iodine deficiency disorders) (perceived susceptibility) or that
they are ill already; (2) the effect of the disease on their health and social life could be severe
(perceived severity); (3) the recommended health action will be feasible, beneficial, and
effective at minimizing the seriousness of the health problem; and (4) the recommended
preventive action is associated with more benefits than barriers [45,46]. Accordingly, the
core constructs of the HBM model are perceived severity, perceived susceptibility, perceived
benefits, perceived barriers, and cues to action [47,48]. Furthermore, knowledge about
the health condition under investigation and the proposed health behavior to prevent or
improve the situation is usually added to the HBM [49,50].
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Although they have been applied single-handedly in different contexts [51–54], several
authors [39,49] have observed that applying a combination of TPB and HBM (Figure 1)
to explain nutrition-related behavior increases their predictive ability, broadens under-
standing, and enables more variance of outcomes to be explained. Therefore, this study
investigated the influence of the constructs of the two theoretical models on farmers’ inten-
tion to apply iodine fertilizers to vegetable production in Uganda. Furthermore, based on
the consideration that the surveyed farmers are largely subsistent, it was necessary to use
more consumer-oriented models to study farmers’ adoption of agronomic biofortification.
Consequently, both models (TPB and HBM) have wide applications in consumer studies
on novel food products [55,56]. Figure 1 represents the model integrating the constructs of
the TPB and HBM and the proposed relationships between the model constructs.

Horticulturae 2023, 9, x FOR PEER REVIEW 4 of 18 
 

 

preventive action is associated with more benefits than barriers [45,46]. Accordingly, the 
core constructs of the HBM model are perceived severity, perceived susceptibility, per-
ceived benefits, perceived barriers, and cues to action [47,48]. Furthermore, knowledge 
about the health condition under investigation and the proposed health behavior to pre-
vent or improve the situation is usually added to the HBM [49,50]. 

Although they have been applied single-handedly in different contexts [51-54], sev-
eral authors [39,49] have observed that applying a combination of TPB and HBM (Figure 
1) to explain nutrition-related behavior increases their predictive ability, broadens under-
standing, and enables more variance of outcomes to be explained. Therefore, this study 
investigated the influence of the constructs of the two theoretical models on farmers’ in-
tention to apply iodine fertilizers to vegetable production in Uganda. Furthermore, based 
on the consideration that the surveyed farmers are largely subsistent, it was necessary to 
use more consumer-oriented models to study farmers’ adoption of agronomic biofortifi-
cation. Consequently, both models (TPB and HBM) have wide applications in consumer 
studies on novel food products [55,56]. Figure 1 represents the model integrating the con-
structs of the TPB and HBM and the proposed relationships between the model constructs. 

 
Figure 1. An integrated Theory of Planned Behavior and Health Belief Model for the prediction of 
farmers’ behavioral intention towards agronomic iodine biofortification (own compilation based on 
[37,39,43,45]). 

3. Materials and Methods 
3.1. Research Setting 

The study was conducted in the Gulu and Lira districts in Northern Uganda (Figure 
2). This region has the highest prevalence of malnutrition, especially micronutrient inad-
equacy, per the Uganda national demographic and health census [8,57]. Moreover, the 
area is predominantly rural and is home to a majority of poor smallholder farmers who 
practice agriculture on micro-nutrient deficient soils. A further risk factor for low iodine 
consumption and IDDs is the area’s remoteness from waterbodies, which limits access to 
iodine-rich foods like fish [7]. Finally, the districts of Gulu and Lira were chosen because 

Figure 1. An integrated Theory of Planned Behavior and Health Belief Model for the prediction of
farmers’ behavioral intention towards agronomic iodine biofortification (own compilation based
on [37,39,43,45]).

3. Materials and Methods
3.1. Research Setting

The study was conducted in the Gulu and Lira districts in Northern Uganda (Figure 2).
This region has the highest prevalence of malnutrition, especially micronutrient inade-
quacy, per the Uganda national demographic and health census [8,57]. Moreover, the
area is predominantly rural and is home to a majority of poor smallholder farmers who
practice agriculture on micro-nutrient deficient soils. A further risk factor for low iodine
consumption and IDDs is the area’s remoteness from waterbodies, which limits access to
iodine-rich foods like fish [7]. Finally, the districts of Gulu and Lira were chosen because
agronomic iodine biofortification experiments there revealed that cabbages (Brassica oler-
acea) and cowpeas (Vigna unguiculata), which are widely grown and consumed in the region,
are effective at absorbing iodine applied as foliar fertilizer [9]. Cowpeas and cabbages are of
great importance to the nutrition of rural households in Northern Uganda, where the diets
predominately consist of starchy foods, including cassava, maize, sorghum, and millet.
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These starchy foods have low nutrient density, making them poor sources of micronutrients
such as iodine [58,59]. On the other hand, cowpea is a good source of plant proteins [60],
while cabbage is a regular vegetable salad in many Ugandan diets.
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the Gulu district at the study time.

3.2. Sample and Data Collection

The sample consisted of 465 cabbage and cowpea farmers proportionately selected
from vegetable production sub-counties in the study districts. Two sub-counties were
chosen from each district using simple random sampling from a list of vegetable-producing
sub-counties. The farmers to be surveyed were sampled conveniently, as vegetable farmers
are fewer than cereal and other crop producers. Only farmers aged 18 years and above, and
who provided prior consent, were included in the study.

During data collection, a pre-tested structured questionnaire consisting of three sec-
tions was administered face-to-face to each farmer, as the majority had a low level of
education. The first section of the questionnaire elicited information on farmers’ socio-
demographic and farm-related characteristics. The farmers’ perceived or subjective knowl-
edge about IDDs and iodine fertilizer was obtained in the second section of the question-
naire. Finally, the last section of the questionnaire contained opinion statements investigat-
ing the farmers’ intention to apply iodine fertilizer to vegetable production based on the
constructs of TPB and the HBM.

3.3. Measurement of TPB and HBM Constructs

Farmers were requested to indicate their level of agreement on a five-point scale (“1”
strongly disagree and “5” strongly agree) to the following constructs of the TPB and HBM:
attitude (ATT), subjective norms (SN), perceived behavioral control (PBC), perceived sus-
ceptibility (PSus), perceived severity (PSev), perceived benefits (PBen), perceived barriers
(PBar), and cues to action (Cues). Based on earlier research [34,39,49,54,55,61], measure-
ment items for all constructs were formulated and refined using a pre-test in the research
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region. Additionally, the scales for negatively phrased questions were reversed to allow for
accurate statistical interpretation. For a list of the precise measurement elements, see Sup-
plemental Table S1. Four yes-or-no questions were used to gauge respondents’ knowledge
about IDDs and iodine fertilizer.

The farmers’ intention to use agronomic iodine biofortification was evaluated by first
asking the participants if they intended to use iodine fertilizer in their vegetable production
(yes/no). They were then asked to state how much land they would commit to producing
the vegetables using iodine fertilizer. Measuring intention to adopt by investigating how
much resources (land) farmers are willing to put into implementing iodine biofortification
is particularly important as most households in developing countries consume what they
produce. For example, Schnurr, et al. [36] showed that the potential producers of vitamin A
GM biofortified bananas would cultivate the crop both as a staple food and a cash crop,
as already done for conventional bananas, which further shows the need to investigate
their commitment to invest resources in biofortified food production. Oparinde, et al. [34]
applied the same approach in their study on farmers’ intention to cultivate Provitamin
A genetically modified (GM) cassava in Nigeria. The authors asked farmers to state the
percentage of their cassava land area they would be willing to dedicate to the cultivation of
Provitamin A GM cassava.

3.4. Statistical Analyses

The main evaluation instrument for this study was the Statistical Package for Social
Sciences (IBM SPSS statistics) version 23. The items from the primary questionnaires were
pre-screened and cross-checked for missing data and outliers as a precondition for the
subsequent analysis. To investigate the socioeconomic and agricultural characteristics of
the farming households, descriptive statistics were utilized. Multiple item constructs of
the integrated TPB and HBM model were examined for reliability and internal consistency
using Cronbach’s alpha and the item-total correlation [62]. If excluding an item from a
construct significantly increased the Cronbach’s α of the construct, and in case there was
a low item-total correlation (<0.3), the item was removed from that construct [61]. As
shown in Table 1, the Cronbach’s alpha for each factor was more than the suggested value
of 0.6 [63]. The lowest tolerance value was 0.591 and the Variance Inflation Factors (VIF)
ranged between 1.006 and 1.882, which is consistent with the maxim that tolerance values
greater than 0.1 and VIF values less than 5 suggest the absence of multicollinearity among
constructs [64]. The link between the model constructs and the behavioral intention to im-
plement agronomic iodine biofortification was examined using binary logistic regressions.
There were no appreciable differences between the farm sites and the target crops after
evaluating the models independently for cabbage and cowpea farmers in the two districts.
Thus, results are presented and discussed for the overall sample rather than sub-groups.

Table 1. Statistics of Construct Reliability.

Construct Number
of Items Tolerance VIF Cronbach’s

Alpha (α) Constructs Number
of Items Tolerance VIF Cronbach’s

Alpha (α)

ATT 5 0.591 1.692 0.718 PSev 4 0.59 1.695 0.771
SN 4 0.994 1.006 0.628 PBen 3 0.726 1.377 0.748

PBC 5 0.594 1.684 0.831 PBar 3 0.815 1.228 0.732

PSus 5 0.641 1.56 0.804 Cues to
Action 3 0.972 1.029 0.752

VIF = Value Inflator Factor; PBen = Perceived benefits; ATT = Attitude; PBC = Perceived behavioral control;
PSev = Perceived severity; SN = Subjective norms; PSus = Perceived susceptibility and PBar = Perceived barriers.

4. Results
4.1. Sociodemographic Profile of Respondents

The characteristics of the 465 farmers who were interviewed are presented below. As
indicated in Figure 3, most of the participants owned their farmland and had at least a
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primary level of education. Additionally, 59% and 76% of the farmers interviewed were
male and had the intention of adopting iodine agronomic biofortification, respectively. The
average age of the participants was 38.1 years. At the same time, the farming households
consisted of an average of seven members with a modest household monthly income of
331,558 Ugandan shillings (about 92 USD) (Table 2). Still, the income levels were highly
variable among the participants.
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Table 2. Farmers’ Socio-Demographic Characteristics.

Characteristic Mean SD

Age (complete years) 38.1 12.6
Household size 7 3.0

Household income (UGX.) 331,558 388,829
Farm size (hectares) 1.82 1.66

Experience applying fertilizers 3.2 3.4
Remarks: Only the category that responded “yes” was reported for knowledge, intention to apply iodine fertilizers,
and access to extension; IDDs = iodine deficiency disorders, UGX = Ugandan shillings (currency). Concerning the
household income, 1USD = 3700 UGX as of the data collection period.

4.2. Knowledge about Iodine Deficiency Disorders, Fertilizers and Sources

The majority of the participants did not know any food source of iodine (79.4%),
the different forms of iodine deficiency (70.0%), or iodine fertilizers (85.1%) as shown in
Figure 4. However, most farmers (76%) indicated an intention to apply iodine fertilizer to
bio-fortify their crops during production.

Farmers’ perception towards the use of iodine fertilizers to enhance the nutrient con-
tent of vegetables was assessed through predetermined opinion statements corresponding
to the constructs of the integrated TPB and HBM. The results in Table 3 indicate that the
mean scores for statements of most constructs were generally high. These high scores show
that many participants agreed and strongly agreed with most statements (3.02 to 4.43).
However, the knowledge score was low (1.41–1.95), showing that most participants did not
know about iodine fertilizers, food sources of iodine, and iodine deficiency disorders. The
poor knowledge regarding iodine fertilizers is attributable to the novel nature of iodine
fertilizers and their current absence in the Ugandan market. Farmers who answered yes to
this question participated in prior agronomic experiments conducted in the study areas.
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Table 3. Descriptive statistics of constructs and items.

Construct Mean S. D Constructs Mean S. D

Attitude 3.92 0.762 Perceived severity 4.41 0.621
ATT 1 4.35 0.844 PSev1 4.19 1.022
ATT2 4.09 0.942 PSev2 4.40 0.788
ATT3 4.31 0.895 PSev3 4.51 0.698
ATT 4 2.76 1.212 PSev4 4.55 0.671
ATT 5 4.11 0.950 Perceived benefits 4.43 0.580

Subjective norms 3.02 1.112 PBen1 4.48 0.710
SN1 2.95 1.757 PBen2 4.47 0.688
SN2 3.12 1.660 PBen3 4.36 0.736
SN3 2.97 1.643 Perceived barriers 4.16 0.823
SN4 3.05 1.453 PBar1 4.32 0.967

Perceived behavioral
Control 3.87 0.946 PBar2 3.98 1.115

PBC1 3.72 1.267 PBar3 4.19 0.972
PBC2 4.08 1.136 Cues to Action 4.36 0.618
PBC3 4.29 1.059 Cues1 3.97 1.316
PBC4 3.46 1.389 Cues2 4.50 0.799
PBC5 3.83 1.253 Cues 3 4.63 0.630

Perceived susceptibility 4.09 0.714 Knowledge 1.68 1.037
PSUS1 4.03 1.042 Know1 1.70 0.459
PSUS2 4.17 0.903 Know2 1.95 0.217
PSUS3 4.24 0.912 Know3 1.41 0.492
PSUS4 4.02 1.016
PSUS5 4.28 0.881

Remark: all statements were measured on a 5-point Likert Scale (1 = strongly disagree, 5 = strongly agree).
PBen = Perceived benefits; ATT = Attitude; PBC = Perceived behavioral control; PSev = Perceived severity;
SN = Subjective norms; PSus = Perceived susceptibility and PBar = Perceived barriers.

4.3. Determinants of Farmers’ Intention to Adopt Agronomic Iodine Biofortification

Four binary logistic regressions, including 465 cases, were performed to determine the
factors influencing farmers’ intention to adopt agronomic iodine biofortification.

The baseline model, which contains the predictions of the category that occurred most
often in the study dataset, was a statistically significant predictor of farmers’ adoption
intention. Since the proportion of farmers who had intentions to apply iodine fertilizer
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(76.3%) was higher than those who had no such intention (23.7%), the baseline model
guessed yes consistently and correctly classified 76.3% of the farmers with the intent to
apply iodine fertilizers. In addition, the overall model evaluation based on the omnibus
test of model coefficient (p = 0.000 < 0.005) and Hosmer and Lemeshow goodness of fit
statistics (p > 0.05) indicated that all four models are statistically significant for predicting
and differentiating farmers’ intention to apply iodine fertilizers and fit the data used well.

Regarding Model 1 (Figure 5), a three-predictor logistic model was fitted to the data
to test the research hypothesis regarding the relationship between a farmer’s intention
to apply iodine fertilizers and the TPB constructs of attitude, subjective norms, and PBC.
This model explained 65% (Nagelkerke R2) of the variance in farmers’ intention to adopt
iodine biofortification and correctly classified 89.7% of farmers intending to apply iodine
fertilizers. Attitude (β = 0.80; p < 0.001) and PBC (β = 0.90; p ≤ 0.001) were found to
make significant positive contributions to the model and, therefore, to influence farmers’
intention to apply iodine fertilizers. On the other hand, the influence of subjective norms
on the intention to adopt iodine fertilizers was insignificant.
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Model 2 (Figure 6) used the HBM constructs (perceived severity, perceived suscep-
tibility, perceived barriers, perceived benefits, and cues to action) to predict the farmers’
intention to apply iodine fertilizers to their vegetable crop production. This model cor-
rectly classified 76.3% of farmers with the intent and explained only 9% (Nagelkerke R2)
of the variance in farmers’ intention to adopt iodine biofortification. Out of the HBM
variables, only perceived barrier (β = −457) and perceived benefits (β = 592; p = 0.005)
had, respectively, a significant negative and positive effect on the intention to adopt
iodine biofortification.

Model 3 (Figure 7), based on the integrated TPB and HBM constructs, had an overall
categorization accuracy of 90.1% and explained 70% (Nagelkerke R2) of the variance in
farmers’ behavioral intention to adopt iodine biofortification. Attitude (β = 0.75; p ≤ 0.001)
and PBC (β = 0.90; <0.001) are the only factors that had a significant positive influence on
predicting farmers’ intention to apply iodine fertilizer. Compared to model 2, perceived
barriers and perceived benefits became insignificant in influencing farmers’ adoption
intention regarding agronomic iodine biofortification in model 3.
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Model 4 (Figure 8) looked at the role of external variables, including knowledge
and four socio-demographic variables. With a classification accuracy of 76.1%, the model
accounted for 14% (Nagelkerke R2) of the variance in farmers’ intention to adopt agronomic
iodine biofortification. Out of the factors tested, only crop type 1 (β = 0.630; p = 0.026),
farmland size (β = 0.101; p = 0.028), and access to extension (β = 0.801; p ≤ 0.001) were found
to be significant positive predictors of the behavioral intention to use iodine fertilizers
by farmers.
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5. Discussion

The success of nutrition-based interventions like biofortification inevitably depends
on farmers’ acceptance and adoption of it. Understanding the intentions of farmers and
the factors that influence them thereof allows for the needs of other stakeholders including
food industries, retailers, and consumers to be met, and facilitates the achievement of the
desired health/nutritional impacts of biofortification. Therefore, this study investigated
how the constructs of HBM and TPB could predict the intention of Ugandan farmers to
adopt iodine agronomic biofortification of food crops, achieved through the application of
iodine-rich fertilizers and their opinions on including iodine biofortified vegetables in their
family diets.

Attitude had a significant positive relationship with behavioral intention to apply
iodine fertilizers. Attitude was reported as a consistent determinant of willingness to adopt
or accept biofortification in past studies [34,39,65]. Thus, farmers who positively evaluate
iodine biofortification are more likely to accept and adopt the technology.

The significant positive effect of the perceived behavioral control means that farmers
who believe that the decision to adopt agronomic iodine biofortification is within their
volitional control to cultivate food crops by applying iodine fertilizers could be willing to
embrace the iodine biofortification. This effect also highlights that farmers should feel they
have control over production resources to cultivate iodine-biofortified foods. This finding
corresponds with previous studies that applied the TPB models in novel food consumption
or production. For instance, Talsma, et al. [55] found that control beliefs strongly predicted
caregivers’ intention to give vitamin A biofortified cassava to school children in Kenya,
similar to the study of Sulaiman, et al. [66]. It is not surprising that PBC had a favorable
impact on intention given that survey respondents had, on average, used fertilizers for
crop production for over three years. Farmers may be encouraged to use iodine fertilizers
by their prior experience using other chemical fertilizers. The positive influence of PBC
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also implies that extension services tailored towards improving the capability of farmers to
apply iodine fertilizer and manage the production process, including acquiring inputs such
as iodine fertilizer and seeds, might increase the likelihood of adoption.

It was anticipated that social pressure to biofortify vegetables by using iodine fertilizer
would positively affect behavioral intention [66]. However, subjective norms did not
significantly predict farmers’ intentions in this study. This finding is consistent with that of
Talsma, et al. [55] who reported a non-significant relationship between subjective norms
and intention to consume pro-vitamin A-rich cassava among primary school children in
Kenya. This result may be explained by the fact that iodine biofortification was not yet
being implemented and communicated in Uganda when the study was conducted. A
stronger influence of social pressure would be expected if the significant referents of the
farmers were already using the technology or if they knew much about it.

Within the group of external variables, access to extension, crop type, and farm size
were found to affect the intention of farmers to apply iodine fertilizers. While the literature
on the effect of farm size on adoption has been inconclusive, the significant positive impact
of farm size on farmers’ adoption of new technology has been reported in previous studies.
In the context of this study, land is a valuable asset in the Northern part of Uganda as it is
in Uganda generally. Farm size is associated with the kind of production one engages in,
i.e., subsistence or commercial. Therefore, people with smaller farms might find it hard
to dedicate a portion of it to agronomic iodine biofortification. They would instead use it
to produce the more traditional staples, including millet, cassava, and beans. However,
farmers with extensive farmland are shown to be more willing to allocate some of it for
agronomic iodine biofortification.

Regarding crop type, a change in crop choice from cabbage to cowpea would result in
0.507 higher odds for the intention to apply iodine fertilizer. This difference might be due
to the low cost associated with cowpea production relative to cabbage, which translates
into a higher benefit-cost ratio for iodine cowpea [27]. Even though cabbages are eaten all
over Uganda, cowpea, locally referred to as “boo,” is culturally produced and consumed in
Northern Uganda in larger proportions compared to other regions by smallholder farmers.
A total of 90% of cowpea production is from Uganda’s Northern and Eastern regions. Based
on this finding, future vegetable iodine biofortification initiatives may focus on cowpea
farmers initially since they are more likely to embrace the innovation.

The results show that the two predictors of intention in the integrated model (PBC and
attitude) belong to TPB. The HBM constructs were less valuable as predictors of intention
to adopt iodine biofortification. The model based on TPB constructs accounted for more
(65%) variance in intention than model 2, which accounted for only 9% of the variance
in farmers’ intention to adopt agronomic iodine biofortification. This finding conforms
with previous studies that have found that TPB constructs explained more variance in
behavioral intention than HBM when the two theories are applied together [61]. In their
study on the cultural acceptability of biofortified sweet potatoes using the combined
TPB and HBM, Hummel, et al. [61] found that only subjective norms and attitudes (both
belonging to the TPB) significantly predicted consumption among households with children
in Malawi. There are possibly two explanations for the dominance of the TPB model
over HBM in predicting intention to adopt iodine agronomic biofortification. Firstly,
intention is initially not part of the HBM [47], even though it has been previously used
in combination with other models, mainly when predicting behavioral intention towards
novel foods and novel food technologies through the use of TPB [39,49,55]. As such,
the ability of HBM to predict behavioral intention on biofortified food production needs
to be separately validated. Secondly, the participants in the current study, who were
farmers, may have considered more the production attributes of iodine biofortification
when indicating their intention to adopt and less the consumption attributes. Therefore,
the economic drivers could have outweighed the health drivers (perceived severity and
perceived susceptibility) in predicting farmers’ adoption intention, although they also
cultivate for their own consumption.
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Overall, the combined model predicted a higher variance in intention to adopt iodine
agronomic biofortification than when TPB and HBM were applied separately. The low
predictive power of the constructs of HBM in the combined model shows that a more
significant variation in the intention to adopt iodine biofortification can be predicted by
other factors which were not considered in this study. However, given that decision-making
is a process, the stated intention of farmers to adopt iodine biofortification can be regarded
as an immediate reaction to learning about the innovation. While many respondents
intended to adopt this iodine biofortification, their behavioral intentions may change
over time as farmers know more about the innovation. Therefore, future studies could
investigate how the behavioral reactions will change when more information becomes
available and awareness increases.

6. Study Limitations

Despite having a solid theoretical foundation and providing insights on factors crucial
for farmers to embrace and adopt agronomic iodine biofortification, the generalizability
of our study findings is subject to certain limitations. Firstly, neither iodine fertilizers nor
iodine biofortified cabbages/cowpeas were available on the Ugandan market at the time of
the study. As such, the farmers surveyed had neither used iodine fertilizers nor consumed
iodine-rich vegetables. Therefore, it was impossible to examine the relationship between
behavioral intention and actual behavior. It might be interesting for future research to
assess how behavioral intention would change over time and influence farmers’ actual
behavior regarding agronomic iodine biofortification.

Secondly, our study was conducted in a limited geographic context of two districts in
Northern Uganda. Assessing the validity of this model while incorporating other factors
with farmers from various cultural backgrounds in industrialized and emerging countries
would be theoretically and practically valuable because the factors that influence technology
adoption may vary from place to place.

Thirdly, we employed a cross-sectional design by which data were collected at only
one point. However, further research would allow a better understanding of whether
the significance of the constructs might alter with time or in different circumstances. For
example, the influence of subjective norms, barriers, perceived severity, perceived suscep-
tibility, and cues to action might become significant when (1) the iodine fertilizers and
iodine-rich vegetables become available on the Ugandan market, (2) information about the
technology and its benefits are being shared, and (3) government and other stakeholders
take affirmative actions towards the implementation of such an innovation.

Fourthly, Fanou-Fogny, et al. [67] noted that self-reports on behavioral intention, as
in our study, could be influenced by social desirability/approval, especially where the
desired response is obvious to the participant. Talsma, et al. [55] asserts that respondents
may occasionally find it difficult to disagree with statements made to them and end up
agreeing with nearly all of them.

7. Conclusions

The study aimed at determining the predictors of intention to adopt agronomic iodine
biofortification among cowpea and cabbage farmers in Uganda to gain acumens into how
the two vegetables can be successfully biofortified by applying iodine fertilizer in the future.
While the HBM could predict only a slight variance in behavioral intention, the relevance
of some of the critical factors of both TPB and HBM was established.

In general, most farmers were willing to dedicate some portion of their vegetable
farmland to implement iodine biofortification, which is a positive result for the future
deployment of this intervention. The significance of perceived behavioral control, attitude,
and perceived severity shows that the promotion of iodine biofortification could target
motivating farmers to have positive attitudes towards the intervention and the biofortified
food products through sensitization about agronomic biofortification and its benefits.
Secondly, farmers should feel they control production processes, including allocating
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resources such as land. In order to increase the consumption of iodine-biofortified foods
once they are made available, farmers should believe that they have control over what
is eaten in their homes and can therefore include the iodine-rich vegetables they grow in
their family’s diet. Finally, a focus on educating farmers about the advantages of iodine
biofortification should be made. This will alter their perspective of the technology and
could lead to wider adoption.

Although more research is needed to understand the motivation of farmers to adopt
iodine agronomic biofortification, this study has demonstrated the role of the cognitive-
based constructs of the HBM and TPB in predicting their adoption intention. It has further
shown high potential for adoption of the technology based on behavioral intention to adopt.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
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