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Abstract: Crassulacean acid metabolism (CAM), one of three kinds of photosynthesis, is a water-
use efficient adaptation to an arid environment. CAM is characterized by CO2 uptake via open
stomata during the nighttime and refixation CO2 via the Calvin cycle during the daytime. Facultative
CAM plants can shift the photosynthesis from C3 to CAM and exhibit greater plasticity in CAM
expression under different environments. Though leaf thickness is an important anatomical feature
of CAM plants, there may be no anatomical feature changes during the C3–CAM transition for all
facultative CAM plants. The shift from C3 photosynthesis to CAM in facultative CAM plants is
accompanied by significant changes in physiology including stomata opening, CO2 gas exchange
and organic acid fluxes; the activities of many decarboxylating enzymes increase during the shift
from C3 to CAM; the molecular changes occur during the photosynthesis C3–CAM shift involved
DNA hypermethylation, transcriptional regulation, post-transcriptional regulation and protein level
regulation. Recently, omics approaches were used to discover more proceedings underling the C3–
CAM transition. However, there are few reviews on the mechanisms involved in this photosynthetic
shift in facultative CAM plants. In this paper, we summarize the progress in the comparative analysis
of anatomical, physiological, metabolic and molecular properties of facultative CAM plants between
C3 and CAM photosynthesis. Facultative CAM plants also show the potential for sustainable food
crop and biomass production. We also discuss the implications of the photosynthesis transition from
C3 to CAM on horticultural crops and address future directions for research.

Keywords: C3 photosynthesis; crassulacean acid metabolism (CAM); shift mechanisms; facultative
crassulacean acid metabolism (CAM) plants; environments

1. Introduction

In the plant kingdom, there are three kinds of photosynthetic pathways: C3, C4 and
crassulacean acid metabolism (CAM). CAM is characterized by CO2 uptake during the
nighttime via open stomata, when CO2 is combined with phosphoenolpyruvate (PEP) and
stored as organic acids (mainly malic acid). Then, organic acids are decarboxylated in the
vacuoles during daytime and CO2 is refixed via the Calvin cycle [1,2]. Some plants can
switch their photosynthesis between C3 and CAM, which are referred to as facultative
(inducible or C3/CAM intermediate) CAM plants. The first discovered facultative CAM
plant was Mesembryanthemum crystallinum, the common iceplant [3]. Other well-known
facultative CAM plants include Sedum album [4], Clusia minor [5], Talinum triangulare [6],
etc. These species are sampled as models to study other facultative CAM plants, as they
can shift their photosynthetic mode in response to water deficit and other environmental
stressors [7,8]. Furthermore, recent evidence suggests that facultative CAM plants may be
more widespread among vascular plants than previously thought [9].

As we all know, photosynthesis is one of the most important chemical reactions
on the earth [10]. Crassulacean acid metabolism (CAM), with higher photosynthetic,
water-use and possibly nutrient-use efficiency, represents higher carbon-concentrating
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mechanisms (CCMs) than C3 photosynthesis in response to a warmer and drier world [11].
The phenomena of CAM is a typical ecophysiological adaptation to arid conditions [12–14].
Expression of CAM modes includes obligate CAM, facultative CAM, CAM-idling and
CAM-cycling. Facultative CAM mode is one of the four plastic expressions of CAM modes.
Facultative CAM plants can struggle with variable environments through the facultative
CAM mode [14]. Recently, engineering CAM-related genes to C3 crops to improve water-
use efficiency (WUE) has caused extensive attention [15–17]. In order to engineer CAM into
C3 crops, a deep understanding of CAM-related genes and metabolic pathways is urgently
needed [18].

However, the shift mechanism underlying C3 photosynthesis to CAM in facultative
CAM plants is complicated, concerning the genetic changes required for the progression and
reversion of this shift [19]. In order to engineer CAM into C3 crops to increase the water-use
efficiency (WUE), a few facultative CAM species (such as M. crystallinum) were regarded as
key tools to identify the genes involved in the CAM pathway and their respective regulation
mechanisms [11,15,20,21]. In this paper, we review the signaling stress factors inducing
C3-photosynthesis to CAM in facultative CAM plants and assess progress in the analysis of
anatomical, physiological, metabolic and molecular differences for facultative CAM plants
between the C3 and CAM mode. We also review their implications on horticultural crops
and address directions for future research.

2. Signaling Stress Factors

CAM is a plastic photosynthetic adaptation found in plants in abiotic stress environ-
ments (such as drought, salinity, extreme temperature, etc.) [13]. Environmental, hormonal
and circadian changes can regulate the CAM expression in facultative CAM species [22]. In
facultative CAM species, photosynthesis can switch from C3 to CAM modes after induction
by abiotic stress, such as atmospheric CO2 concentration, drought, salinity, photoperiod
and light [12,23–25]. For instance, M. crystallinum switches its photosynthetic mode from
C3 to CAM under water or salinity stress [7]. Light intensity and quality also play a crucial
role for the C3–CAM transition [12,26]. All these signaling factors connect via a closed
network and directly or indirectly affect each other [2].

The exogenous application of ethylene or abscisic acid (ABA) could induce the C3–
CAM transition in a few facultative CAM species [27]. The degree of CAM expression was
positively correlated with ABA and trans-zeatin, but negatively correlated with cytokinins
and jasmonic acid (JA) [28,29]. Exogenous hydrogen peroxide (H2O2) and root signaling
also could induce the C3–CAM transition in M. crystallinum, respectively [30–32].

3. Anatomical Variations during the C3–CAM Shift in Facultative CAM Plants

Leaf thickness is an important anatomical feature for CAM plants. CAM is often associ-
ated with succulent leaves; indeed, the tissue succulence of CAM species has been observed
in many plant families, such as Crassulaceae, Orchidaceae and Clusiaceae [33–36]. Many
arid CAM plants with succulent nature are beneficial as they store more water than C3 and
C4 species [37]. A study reported, by analyzing the leaf thickness and leaf δ13C values in
173 tropical orchids, that the leaf was the thickest in the strong CAM species [36]. However,
some plants with thinner leaves can also fix CO2 through the CAM pathway; for example,
Dendrobium bigibbum (a CAM orchid) can yield δ13C with−11.9‰, despite the leaf thickness
being only 0.79 mm [34], which proved that the assumption about obligate CAM species
possessing more succulent leaves than facultative CAM species was not accurate [38]. In M.
crystallinum, leaf succulence increased during the C3 to CAM transition after 5 days of the
salt treatment [39], but some CAM species (e.g., bromeliads) do not have succulent photo-
synthetic organs [40,41]. Recently, it was also hypothesized that the evolution of facultative
CAM plants did not require major changes in anatomy [42,43]. Winter thought that strong
CAM plants needed significant anatomical modifications, whereas facultative or weak
CAM plants may not require them, suggesting there may be no anatomical feature changes
during the C3–CAM transition in facultative CAM plants [9]. Investigations showed that
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leaf anatomy was not correlated to CAM function in Yucca gloriosa (facultative CAM species,
a C3+CAM hybrid species) [44], and the relationships between leaf anatomy and degree of
CAM expression were not very close [45]. Herrera [39] reported that less succulence is not a
typical feature for facultative CAM plants. Thus, the leaf thickness, as an indicator, cannot
completely distinguish between plant species, suggesting that the relationship between
anatomical leaf features and CAM expression requires further investigation.

That being said, there may be some changes in vacuole and chloroplast anatomy dur-
ing the photosynthesis shift from C3 to CAM. Malic acid accumulates and releases in the
vacuole. More particularly, the fluidity of the tonoplast will reduce after the photosynthesis
shift from C3 to CAM, in turn decreasing the vacuolar mobilization of malic acid [46],
indicating that vacuole size may increase before the shift to CAM in the leaves [47]. Chloro-
plasts, the main sites of photosynthesis in plants, can regulate the facultative CAM plants
to acclimate to high salinity environments [48], and show a severe thylakoid swelling at
midday in CAM plants [49]. However, whether such changes in the ultrastructure level
also occur in other facultative CAM species remains unclear. Young leaves in obligate CAM
plants take up CO2 by C3 photosynthesis, while mature leaves take up CO2 by CAM. It is
worth exploring the changes in ultrastructure level (i.e., vacuole and chloroplast) that occur
throughout the development process of obligate CAM plants.

4. Physiological Mechanisms during the C3–CAM Shift in Facultative CAM Plants

Compared to C3 and C4 metabolism, CAM is characterized by CO2 uptake at night
and stomatal closure during the day. For facultative CAM species, the C3 photosynthesis
pathway is used to fix CO2 when the plants are under well-conditions. However, the
photosynthesis can shift to the CAM mode once induced by abiotic stress; stomata open at
night and atmospheric CO2 is absorbed by phosphoenolpyruvate carboxylase (EC 4.1.1.31;
PEPC) via oxaloacetate into malic acid. On the following day, stomata close and malic
acid is released from the vacuoles and decarboxylated, while CO2 is refixed by the Calvin
cycle [1]. Therefore, in facultative CAM plants, the CO2 gas exchange exhibits a difference
between daytime and nighttime, as well as the changes in the activities of PEPC and
Rubisco, which are important features to distinguish the C3 from the CAM mode. Figure 1
shows the physiological and metabolic shift of the facultative CAM plants from C3 to CAM
photosynthesis.

Since this C3 to CAM transition was first recognized, M. crystallinum was used as a
model plant to examine the associated changes in enzyme activities [50]. PEPC, one of the
key enzymes, is involved in primary carboxylation during both CAM and C4 photosynthe-
sis. PEPC is widely distributed across plants, algae and bacterial species; it catalyzes the
irreversible β-carboxylation of phosphoenolpyruvate (PEP) in the presence of HCO3

− to
yield oxaloacetate (OOA) and Pi. In CAM and C4 photosynthesis, this enzyme is responsi-
ble for the primary fixation of inorganic carbon. PEPC also is a major anaplerotic enzyme in
most non-photosynthetic organs and the leaves of C3 plants [51,52]. Furthermore, the activ-
ities of many decarboxylating enzymes increase during the shift from C3 to CAM, such as
the cytosolic NADP-malic enzyme (NADPME, EC 1.1.1.40), the mitochondrial NAD-malic
enzyme (NADME, EC 1.1.1.38) and PEP carboxykinase (PEPCK). This increased enzymatic
activity is thought to be an indicator of the start of CAM photosynthesis [22,50].

In the plant, reactive oxygen species (ROS), including the superoxide radicals (O2
−),

the hydroxyl radical (OH) and hydrogen peroxide (H2O2), are always formed in response
to environmental stress [53,54]. Oxidative stress could lead to the photosynthesis switch
from C3 to CAM in facultative CAM plants [55,56]. Enzymatic antioxidants and non-
enzymatic antioxidants are involved to protect the plants from oxidative damage by the
scavenging of ROS [57]. During the C3–CAM shift in facultative CAM plants (e.g., Sedum
album) induced by water stress, antioxidative enzymes, such as superoxide dismutase
(SOD), peroxidase (POD), ascorbate peroxidase (APX), catalase (CAT), etc. [4,58,59]. In M.
crystallinum, FeSOD activity increases more rapidly during the first few days before CAM
appearance; then, MnSOD and Cu/ZnSOD activity increases after CAM occurs, induced
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by salt [48,60]. CAT is not only responsible for the removal of H2O2, but presents diel
fluctuations [58]. Non-enzymatic antioxidants constituted by low molecular metabolites
include ascorbic acid (AsA), glutathione (GSH), carotenoids, γ-tocopherol, etc. [57]. In
M. crystallinum, a transition from C3 to CAM induced by H2O2 or salinity, α-tocopherol,
polyamines and proline showed accumulation and performed a crucial role in preventing
oxidative damage [31,61,62]. Likewise, during the C3–CAM shift in Guzmania monostachia
(a facultative CAM plant) induced by water stress under high light PFD, carotenoids were
proven to play an important role in the ROS scavenging system [63].
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CA, Carbonic anhydrase; PEP, Phosphoenol pyruvate; PEPC, Phosphoenolpyruvate carboxylase; 
PPCK, PEPC kinase; PPDK, Pyruvate phosphate kinase; ME, Malic enzyme; MDH, Malic dehydro-
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Figure 1. Physiological and Metabolic shift of the facultative CAM plants from C3 to CAM photo-
synthesis. For the facultative CAM plants, C3 state of photosynthesis is used to fix CO2 under well
conditions, when stomata open during the day and close at night. Once the facultative CAM plants
stressed by abiotic stress (such as atmospheric CO2 concentration, drought, salinity, photoperiod,
light, etc.), the carbon assimilation pathway will be induced to the CAM mode, when CO2 uptakes
during the nighttime via open stomata and stores as organic acids (mainly malic acid). Then, organic
acids are decarboxylated in the vacuoles during the daytime and CO2 is refixed via Calvin cycle. CA,
Carbonic anhydrase; PEP, Phosphoenol pyruvate; PEPC, Phosphoenolpyruvate carboxylase; PPCK,
PEPC kinase; PPDK, Pyruvate phosphate kinase; ME, Malic enzyme; MDH, Malic dehydrogenase;
OAA, Oxalacetic acid; RUBP, Ribulose-1,5-bisphosphate carboxylase; NAD, Nicotinamide adenine
denucleotide; NADP, Nicotinamide adenine denucleotide phosphate.

5. Metabolic Mechanism during the C3–CAM Shift in Facultative CAM Plants

CAM was controlled by the circadian clock and metabolites. Organic acids and car-
bohydrates are two kinds of major metabolites in facultative CAM plants [64]. Large diel
changes in malic acid and transitory starch are important characteristics of CAM photosyn-
thetic activity [65–67]. Plants, once stressed by adverse environmental factors, trigger their
ABA- and Ca2+-dependent signaling pathways, which leads to metabolite changes [28].
These diurnal changes in malic acid and/or citric acid regulate the expression of CAM
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photosynthesis [68], but the acid accumulation requires metabolic reprogramming [69].
Metabolic fluxes modeling of a starch/sugar-malate cycle was established to test whether a
C3–CAM continuum exists in CAM evolution [70].

Carbohydrates, including starch and sucrose or hexose, are produced by the CAM
pathway at a high energetic cost [65]. They are converted into PEP and provide substrates
for the nocturnal CO2 fixation [71]. In M. crystallinum, this transitory starch reserve is critical
for CAM photosynthesis and the oscillation in starch levels between day and night (when
the plant is in CAM mode) is 20% greater than in the C3 mode [72,73]. Starch-deficient
mutants of this plant are characterized by their inability to photosynthesize in the CAM
mode, as these mutant plants are deficient in leaf starch. It was reported that there was a
transitory starch breakdown by the hydrolytic pathway when plants were in the C3 mode,
but that a shift to the phosphorolytic pathway occurred during CAM photosynthesis [66].
In M. crystallinum, about half of the starch degraded during the night was used to supply
PEP to ensure CAM photosynthesis, and the others were exported as soluble sugars used
during plant respiration [74]. In another example, the Agave plant (Yucca aloifolia), a
CAM plant, uses soluble sugars as a carbohydrates during CAM photosynthesis, while
the C3 plant Y. filamentosa is thought to rely on starch pools. However, the diploid hybrid
species Y. gloriosa, a facultative CAM species, relies on starch for carbohydrates (like its
C3 parent Y. filamentosa), though many features are more similar to that of its CAM parent
Y. aloifolia [75,76]. In facultative CAM plants, the proportion of CO2 taken up between
nighttime and daytime is influenced by developmental and environmental factors (such
as drought, salinity and extreme temperature) [72,77]. Various studies have revealed
that many species express a low degree of CAM photosynthesis and a peak in C3-type
isotope signatures. Generally, the δ13C value has more C3-type isotope signatures than
CAM in facultative CAM plants. In S. nuttallianum, the δ13C value was −30.0‰ but
4H+ was significant under controlled conditions [36]. C. minor can shift from C3 to CAM
photosynthesis easily and reversibly, and its δ13C value was about −21‰ [78]. These
studies showed that carbon was mostly fixed through C3 photosynthesis in facultative
CAM plants, and dark CO2 fixation made up, at most, 30% [39].

6. Molecular Mechanisms during C3–CAM Shift in Facultative CAM Plants

The photosynthetic shift from C3–CAM is regulated by some enzymes and metabolite
transporters, making this process a part of complex metabolic adaptations to environmental
stress [22]. However, the relative expression of genes for enzymes and metabolites is
strictly regulated by environmental factors. Genes involved in the shift of C3–CAM may
be controlled by a co-expressed circadian master regulator [79]. Therefore, describing the
molecular mechanism behind the C3–CAM shift is important to understand the evolution
of CAM. Although every documented gene in the CAM also exists in the ancestral C3
species, the timing and magnitude are different between C3 and CAM species [80].

The PEPC gene is one of the most important genes in CAM and C4 photosynthesis. In
the past decades, the presence and function of this gene have been investigated in many
CAM and facultative CAM plants. PEPC is a ubiquitous enzyme in higher plants and
belongs to a small multigene family with several PEPC isozymes [52,81]. Plant PEPC
activity is regulated by PEPC kinase (PPCK) [82]. Boxall et al. found that silencing PEPC
(Ppc1) in the obligate CAM species Kalanchoë laxiflora can prevent CO2 uptake and malate
accumulation at night [83]. Here, the main molecular mechanisms that occur during the
photosynthesis transition from C3 to CAM in facultative CAM plants are as follows.

7. DNA Level Regulation

The photosynthesis shift from C3 to CAM involved DNA hypermethylation [84]. For
instance, variations in cytosine methylation were found in the Ppc1 promoter during the
transition from C3 to CAM in M. crystallinum [85].
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8. Transcriptional Regulation

Between obligate CAM and C3 photosynthesis plants, all of the CAM-related genes
exist in ancestral C3 species, but transcriptional regulation cascades are very important
for the C3–CAM transition, especially the expression of CAM-specific genes [86,87]. Some
enzymes and genes that are involved in some facultative CAM plants during the photo-
synthesis from C3 to CAM are shown in Table 1. The expression of CAM-specific PEPC,
NAD-GAPDH and PPDK is important for the onset during the CAM induction; for exam-
ple, PEPC mRNA accumulation occurs within 2–3 h, stressed by salinity in M. crystallinum
or K. blossfeldiana [27,88,89]. Additionally, there are discrete changes observed in protein
sequences [9,75,90]; the promoter regions of these CAM-specific genes contain GT motifs,
which may function in light-responsive or ABA-mediated gene expression events [91,92].
The promoter sequences were different in the CAM-specific PEPC (Ppcl) and the C3 “house-
keeping” PEPC, that is the former containing TATA and CAAT box motifs, but there was
absence in the latter [91]. For CAM-specific genes, there may be the same common cis-
acting regulatory elements for regulating the stress-induced expression patterns in different
facultative CAM plants. During CAM induction, the distal regions between −977 and
−721 control the expression of Ppcl for salt-responsiveness, while the regions between−735
and −675 control the expression of NADGAPDH(GapC1) induced by salt [93]. Therefore,
the Ppcl and GapCl promoters in the distal regions share multiple consensus binding sites
of transcription factor which control the salt-inducible gene expression. In Kalanchoë, PPC1
is essential for the practice of CAM [83]. In facultative CAM plant Talinum triangulare, tran-
scriptional regulation of the C3–CAM transition revealed that the levels of the CAM-cycle
enzyme transcripts are increased in response to drought stress [6]. In facultative CAM
plants, during CAM induction induced by abiotic stress, a few transcription factors may
control some transcriptional activation events to improve their tolerance [6,94].

Recently, several transcription factors (TF) families take part in regulating CAM
induction by salinity or drought stress, such as AP2/ERF, MYB, WRKY, NAC, NF-Y,
bZIP and McHB7 [93,95–98]. In T. triangulare, during CAM induction stressed by ABA,
transcription factors such as HSFA2, NF-YA9 and JMJ27 were identified as regulators for the
CAM induction [21]. Cushman and Bohnert [99] demonstrated that one factor (designated
PCAT-1) binds in the Ppcl promoter, and the PCAT-1 expressed is abundant and may play an
important role in the assembly of active transcription complexes during the photosynthesis
shift from C3 to CAM.

Table 1. Some enzymes and genes involved in some facultative CAM plants during the photosynthesis
shift from C3 to CAM.

Enzyme Gene Source/Species Inducer References

Phosphenolpyruvate
carboxylase

Ppc1 M. crystallinum salt, ABA, drought, cytokinin [25,100]

Kb-1, Kb-2 K. blossfeldiana short-day, drought [101]

Ppc 3 T. triangulare ABA [21]

C3-type PEPCs C. minor drought [102]

Alpha Carbonic Anhydrase 1 ACA1 T. triangulare ABA [21]

Beta Carbonic Anhydrase 5 BCA5 T. triangulare ABA [21]

Malic Enzymes MEs T. triangulare ABA [21]

PEPC Kinase PPCK1 M. crystallinum
T. triangulare

Salt
ABA [21,103,104]

Pyruvate orthophosphate
dikinase(PPDK) Ppdk1 M. crystallinum

T. triangulare salt, ABA [21,105]

Enolase Pgh1 M. crystallinum salt, drought, cold, hypoxia,
ABA, 6-BA [106]
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Table 1. Cont.

Enzyme Gene Source/Species Inducer References

phosphoglyceromutase
(PGM) Pgm1 M. crystallinum salt, drought, ABA, 6-BA [107]

GAD-Glyceraldehyde
3-phosphate dehydrogenase

(GAPDH)
GapC1 M. crystallinum salt [93,108]

NADP-Malic enzyme Mod1 M. crystallinum
T. triangulare

salt
ABA [21,109]

Mod4 T. triangulare ABA [21]

NADP-Malate
dehydrogenase MDH1 M. crystallinum salt [80]

NAD-Malate dehydrogenase MDH2 M. crystallinum salt [110]

H+-ATPase. c subunit Atpvc M. crystallinum,
K. daigremontiana salt, ABA, light [111–113]

H+-ATPase, E subunit AtpvE M. crystallinum salt [114]

SNF1 kinase MK9 M. crystallinum salt [115]

RNA-binding protein Rbp1 M. crystallinum salt [116]

Ribosome inactivating
proteins Rip1 M. crystallinum salt [117]

9. Post-Transcriptional Regulation

Post-transcriptional regulations also take part in regulating CAM expression, such
as that Ppc1 may facilitate long-term CAM build up by increasing mRNA stability in M.
crystallinum during salt stress [118,119]. In M. crystallinum, many cDNA libraries were
constructed with different tissues and stress treatments [120]. Large-scale steady-state
mRNA abundance was found to change significantly during CAM induction in plants
subjected to salinity-related stress [121]. There was at least one CAM-specific PEPC isoform
(Ppc1) responsible for CO2 fixation during the night, which is more abundant than during
the day and is responsible for CAM expression [75,122]. During the photosynthesis shifts
from C3 to CAM in T. triangulare, PEPC isoform 1(Ppc1) and isoform 3 (Ppc3) transcript
abundance increased and PPDK transcripts started to accumulate after 80 min, but the
Alpha Carbonic Anhydrase 1 (ACA1) transcript decreased [21]. When M. crystallinum was
treated for seven days with salt, Ppc1 and PPCK1 were up-regulated in guard cells [104].

Omics approaches were used by many scientists to explore the underlying molecular
mechanism during the transition from C3 to CAM [6,123]. Among monocot species, the
partial transcriptomes or genomes in the genus Phalaenopsis have been characterized [124].
The rapid reversible C3–CAM shift in the genus Clusia is based on the C3 isoform of
PEPC (a housekeeping gene) [102]. The post-transcriptional regulation of photosynthetic
genes is a key driver of C4 leaf ontogeny, determined by using exon–intron split analy-
sis [125]. In order to explore the complex regulatory mechanisms, Heyduk et al. elaborated
on a comparative analysis with closely related C3 and CAM species [86]. Aside from
PEPC, other enzymes are also important for CAM photosynthesis, which are the prod-
ucts of isogenes. Other studies showed that following CAM induction by salinity-related
stress, several CAM-related glycolysis/gluconeogenesis genes showed increasing tran-
script abundance [106–108]. In order to identify the genes involved during the transition
from C3 to CAM in M. crystallinum, genomics and transcriptomics analyses were com-
bined; twenty genes encoding six main enzymes were identified and one of four MDH
genes presented a specific function in CAM photosynthesis [126]. Many CAM-related
starch synthesis/degradation genes have been identified in M. crystallinum. During the
photosynthesis shift from C3 to CAM, ADP glucose pyrophosphorylase small (Agp1 and
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Agp2) and large subunit (Agp3) catalyzed the starch biosynthesis and showed an increase
in mRNA expression; additionally, there were three genes including AmyA1 (α-amylase
isogene), AmyB1 and AmyB2 which exhibited increased remarkable mRNA abundance
during nocturnal starch degradation [121].

Many microRNAs (miRNAs) also play a regulatory role in CAM photosynthesis in the
leaves of obligate CAM species, such as Ananas comosus [127]. MiRNAs in M. crystallinum
seedlings under salinity-related stress were analyzed by RNA sequencing and were found
to be involved in the post-transcriptional regulation of salt tolerance [128]. Hu et al.
identified some miRNAs that were involved in the regulation of CAM in Kalanchoë and
found that the miR530-TZPs module regulates CAM-related gene expression [129].

10. Protein Level Regulation

Regulatory proteins exist in C3, CAM and C4 species and are essential to the C3–
CAM photosynthesis shift in facultative CAM plants. In M. crystallinum, salt-stressed,
heat shock proteins and early light-inducible proteins were found increased in the cDNA
libraries, and a few proteins were found increased in guard cells but decreased in mesophyll
cells [130,131]. There were seven proteins with increased expression and four proteins
with decreased expression in M. crystallinum induced by salt [98]. Additionally, new
major phosphorylation events during the transition from C3 to CAM stressed by salt were
identified and characterized using proteomics and phosphoproteomics [132].

11. Implications in Horticultural Crops

CAM photosynthesis enables plants to assimilate carbon under environmental stress
conditions. In contrast to C3 and C4 plants, obligate CAM plants have a higher transpiration
efficiency and a lower photosynthetic rate; hence, obligate CAM plants often grow more
slowly than their C3 and C4 counterparts [133]. Thus, CAM is not the best choice for
highly productive plants [14]. However, facultative CAM plants can function in a C3
mode to increase photosynthetic rates and growth when there are no physical limitations
present, and shift to the CAM mode to decrease water loss and overcome environmental
stressors. For facultative CAM plants, the photosynthesis switching between C3 and CAM
has important ecological implications. Therefore, engineering CAM into C3 crops can
improve their WUE and sustain crop productivity in hot and dry climates [15,16,134].

CAM plants are widely distributed within the plant kingdom, i.e., 343 genera in
34 families, approximately 6.5% of flowering plant species [135]. In fact, most crops practice
either C3 or C4 photosynthesis, but not CAM photosynthesis, such as wheat, rice and maize,
which have higher production. However, many horticultural plants belong to obligate
CAM plants or facultative CAM plants; some of them (such as pineapple, an obligate
CAM plant, practice a facultative C3/CAM metabolism in the first 2 months of growth)
can also be very productive when cultivated under well-conditions [55]. However, there
was no exact number in facultative CAM plants. Winter (2019) reported that facultative
CAM plants exist in at least 15 families, and he thought there may be over 1000 facultative
CAM species in Aizoaceae alone [9]. Many orchids (Dendrobium spp., Oncidium spp. and
Phalaenopsis spp.) [52,124,136,137], with higher ornamental values or medicinal values,
were identified as facultative CAM plants since they could switch the pathway between
C3 and CAM according to the environmental condition. For example, D. officinale, an
important traditional herb with higher commercial value in China, uses the facultative
CAM pathway to increase its drought tolerance [138]. Many species of Portulacaceae
belong to facultative CAM plants [9]. Jatropha curcas, an oil crop, could also practice CAM
photosynthesis for survival in response to environmental stress [139]. Thus, this plastic
photosynthetic adaptation results in important implications for many horticultural crops.

12. Future Perspectives

For the facultative CAM plants, the photosynthesis switches from C3 to CAM have
important ecological implications. Facultative CAM can prevent CO2 loss and favors plant
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growth and reproduction in responses to environmental stress. During the C3–CAM shift
in facultative CAM plants, although there are some progresses in anatomy, physiological,
metabolic and molecular properties of facultative CAM plants, in the near future, there are
still some works that should be carried out. First, the argument on anatomical variations
should be comprehensive and ongoing, and studied with more genera that include obli-
gate C3, facultative CAM and obligate CAM plants. For example, many characters and
mechanisms can be explored in the genera Clusia (Clusiaceae), Dendrobium and Oncidium
(Orchidaceae) and Yucca (Asparagaceae), which are well known for containing the obligate
C3, facultative CAM and obligate CAM plants in a single genus [19,76,102,136]. Second,
molecular mechanisms underlying the transition from C3 to CAM in plants is still limited.
Recently, omics approaches including transcriptomic, genomic, proteomic, metabolomics
and ionomics were used frequently to reveal the molecular changes during the C3–CAM
transition (See Table 2). For example, altered gene regulatory networks and expression
profiles were found in the transition from C3 to CAM in Erycina (Orchidaceae) and Yucca
(Asparagaceae) [76,86], which will benefit the clarification of the key molecular switches
underlying this transition of C3 to CAM in facultative CAM plants. Third, understanding
the functional genomics of CAM plants is important to elucidate the relationship between
genotype and phenotype [9]. Synthetic biology toolboxes, such as the CRISPR/Cas 9
system which was confirmed to be effective for genome editing in K. fedtschenkoi, will accel-
erate the ongoing research about CAM and the C3 to CAM transition mechanisms [17,140].
Assisted with all this prior knowledge, we should obtain more genetic transformation
information on facultative CAM plants and transfer more CAM-related genes into C3 types
of horticultural crops in future.

Table 2. Omics approaches involved to reveal the molecular changes during the C3–CAM transition
in facultative CAM plants.

Omics Approaches Source/Species Photosynthesis Type Year Reference

Proteomics,
Metabolomics M. crystallinum facultative CAM plants 2013 [141]

Transcriptomics M. crystallinum facultative CAM plants 2015 [142]

Metabolomics M. crystallinum facultative CAM plants 2015 [143]

Transcriptomics M. crystallinum facultative CAM plants 2015 [144]

Proteomics,
Ionomics M. crystallinum facultative CAM plants 2016 [145]

Transcriptomics,
Metabolomics T. triangulare facultative CAM plants 2016 [6]

Transcriptomics D. catenatum facultative CAM plants 2016 [124]

Transcriptomics

Agave (CAM),
Polianthes (weak CAM),

Manfreda (CAM),
Beschorneria (weak CAM)

CAM plants 2018 [95]

Transcriptomics D. catenatum facultative CAM plants 2018 [137]

Transcriptomics Erycina pusilla (CAM),
Erycina crista-galli (C3),

CAM plants,
C3 plants 2019 [86]

Transcriptomics,
Metabolomics T. triangulare facultative CAM plants 2019 [21]



Horticulturae 2023, 9, 398 10 of 16

Table 2. Cont.

Omics Approaches Source/Species Photosynthesis Type Year Reference

Metabolomics
Transcriptomics

Y. gloriosa (C3+ CAM),
Y. filamentosa (C3),
Y. aloifolia (CAM)

facultative CAM plants,
C3 plants,

obligate CAM plants
2019 [76]

Genomics Sedum album facultative CAM plants 2019 [123]

Transcriptomics M. crystallinum facultative CAM plants 2020 [104]

Proteomics,
Metabolomics M. crystallinum facultative CAM plants 2021 [131]

Proteomics M. crystallinum facultative CAM plants 2021 [98]

Proteomics,
Phosphoproteomics M. crystallinum facultative CAM plants 2022 [132]

Transcriptomics Tamarix ramosissima facultative CAM plants 2022 [146]

Transcriptomics
Genomics M. crystallinum facultative CAM plants 2022 [126]

Transcriptomics 11 species of Agavoideae
facultative CAM plants,

C3 plants,
obligate CAM plants

2022 [147]
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