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Abstract: This study investigated how salicylic acid (SA) mediates the response of melon (Cucumis
melo) seeds to salt stress using physiological and transcriptomic methods. The effects of SA on
the antioxidant enzymes, osmoregulatory substances, and transcriptome of melon seeds under salt
stress were investigated using sodium chloride (NaCl, 100 mmol·L−1) as the stress stimulant and
SA + NaCl (0.25 mmol·L−1 + 100 mmol·L−1) as the alleviation treatment. The results showed that
SA positively influences salt tolerance by increasing the activity of superoxide dismutase activity
(SOD) and catalase activity (CAT) while decreasing proline content (Pro). Differentially expressed
genes (DEGs) were identified by transcriptome data analysis, of which 2958 were up-regulated, and
2157 were down-regulated. These genes were mainly involved in the mitogen-activated protein
kinase (MAPK) signaling pathway and plant hormone signal transduction, lipid metabolism (linoleic
and α-linolenic fatty acid metabolism), biosynthesis of secondary metabolites (phenylpropanoid
pathway and flavonoid biosynthesis), and related pathways. Further analysis revealed that SA might
alleviate salt stress by initiating a series of signaling pathways under salt stress, participating in lignin
biosynthesis to improve cell wall stability, and positively regulating lipoxygenase (LOX) genes. These
results provide valuable information and new strategies for future salt resistance cultivation and high
melon yield.
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1. Introduction

Soil salinity is a serious constraint to sustainable agricultural development, which
impedes agricultural production and threatens agricultural profits and global food security.
Approximately 20% of arable land worldwide is adversely affected by soil salinity [1,2].
The high concentration of sodium (Na+) ions in saline soils induce osmotic stress and ion
toxicity, leading to dysfunctional plant metabolism, as well as oxidative stress and impaired
photosynthesis [3–6]. Furthermore, it significantly inhibits seed germination, lateral root
formation and biomass and can even lead to plant death [7]. Therefore, improving the salt
resistance of crop plants has attracted widespread attention worldwide.

Seed germination is the first and most critical stage of plant morphogenesis, growth
and development, as well as a key link that determines the quality of seedling growth [8].
Unsuitable environmental conditions such as salt stress can readily compromise seed
germination rate, leading to weak seedling growth and yield reduction [9]. Therefore,
studying the germination of melon seeds under salt stress is highly important for pro-
duction. Previous studies have shown that the accumulation of reactive oxygen species
(ROS) in seed species severely inhibits seed germination [10,11]. Additionally, superoxide
dismutase (SOD), peroxidase (POD), and catalase (CAT) are essential enzymes involved
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in ROS metabolism, and an increase in their activity contributes to the scavenging of re-
active oxygen species [12]. Lipoxygenase (LOX) is closely related to plant physiological
and biochemical processes such as plant seeds and resistance to adversity stress. It has
been found that the plant LOX metabolic pathway can produce substances such as hy-
droperoxides and oxygen radicals, which have an important role in plant resistance to
environmental stress [13].

Salicylic acid (SA) is a natural phytohormone signaling molecule that has an important
role in regulating plant responses to biotic and abiotic stresses [14,15]. Physiological
mechanisms of SA to alleviate salt stress include the induction of an antioxidant defense
system and alleviation of membrane lipid peroxidation [16], reduction of ion toxicity [17],
and regulation of cross-talk between hormones or signaling substances [18]. However,
hardly any studies have reported that SA mediated the molecular response to salt stress
on the germination of melon seeds. With the rapid development of molecular biology and
high-throughput sequencing technology, plant adversity research has entered the era of
transcriptomics. Using transcriptome sequencing (RNA-seq) technology, researchers can
comprehensively and dynamically detect plants’ overall gene expression changes during
different developmental stages and conditions [19].

Melon is a widely cultivated economic crop with a sweet taste and high nutritional
value [20,21]. Yet, soil salinity and other adversities often affect seed germination and the
growing period, constituting a prominent problem in melon production. In the present
study, we noted that SA promoted melon seed germination under salt stress. The possible
mechanism of action was further explored through integrated physiological and transcrip-
tomic analyses to further elucidate the role of SA in regulating seed germination and salt
tolerance. These results provide valuable information and new strategies for future salt
resistance cultivation and high melon yield.

2. Materials and Methods
2.1. Plant Materials and Germination Treatments

The melon variety “Nasmi” was provided by the Hami Melon Research Center of
Xinjiang Academy of Agricultural Sciences, China.

The full, uniform-sized seeds were disinfected with 1% sodium hypochlorite, washed
3–5 times with distilled water, placed in a 9 cm sterile Petri dish containing two layers of
filter paper, and germinated under dark conditions in a constant temperature incubator
at 28 ◦C. Based on the pre-test, the following four treatments were set up: distilled wa-
ter (CK), 0.25 mmol·L−1 salicylic acid (SA), 100 mmol·L−1 sodium chloride (NaCl) and
NaCl + SA (100 mmol·L−1 + 0.25 mmol·L−1) for seed germination test. Seeds were con-
sidered to germinate when the radicle length exceeded 2 mm, and 90 seeds were evenly
placed in each treatment with four replications. The germination potential was calculated
on the 2nd day of germination, and the germination rate was calculated on the 4th day of
germination with the following equations [22]:

Germination rate (%) = (number of germinated seeds by day 4/total number of test seeds) × 100.

Germination potential (%) = (number of germinated seeds by day 2/total number of test seeds) × 100.

At 4 days of germination, 30 seedlings were randomly selected from each treatment.
The full length of the shoot (from the bottom of the radicle to the tip of the embryo axis)
was measured with a straightedge, the surface water was blotted out with absorbent paper,
and the fresh mass was weighed with an electronic balance.

2.2. Determination of SOD, CAT, POD Activities, and Proline (Pro) Content

A total of 1 g (approximately 100 seeds) of seeds with the seed coat removed were
collected at 0 h, 6 h, 48 h, 60 h and 72 h, and physiological indicators such as antioxidant
enzymes were determined.

SOD (U/g FW) activity was measured with a superoxide dismutase activity test kit
(Norminkoda Biotechnology Co., Ltd., Wuhan, China). First, crude enzyme extract was
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prepared. We weighed 0.1 g tissue, added 1 mL 0.5 mol/L phosphate buffer (pH 7.8), and
mixed it via 10,000× g 4 ◦C centrifugation for 10 min. The supernatant was the crude
enzyme solution. Then, 45 µL of 100 µmol/L EDTA-Na2 solution, 100 µL of 750 µmol/L
nitroblue tetrazolium solution, 3 µL of xanthine oxidase, 18 µL of the sample, and 35 µL of
130 mmol/L methionine solution were added to 96-well plates. The control tube included
18 µL of double-distilled water instead of the sample. After mixing, the samples were
incubated for 30 min at room temperature, and absorbance was read at 560 nm. SOD
enzyme activity was calculated based on fresh weight. At a percentage inhibition in the
above xanthine oxidase conjugate reaction system of 50%, SOD enzyme activity in the
reaction system was defined as unit enzyme activity [23].

CAT (U/g FW) was measured with a catalase activity test kit (Norminkoda Biotech-
nology Co., Ltd., Wuhan, China). H2O2 has a characteristic absorption peak at 240 nm.
Catalase can decompose H2O2, making the absorbance of the reaction solution at 240 nm
decrease with reaction time. The activity of catalase can be characterized according to the
change rate of absorbance [24].

POD (U/g FW) was measured with a peroxidase activity test kit (Norminkoda Biotech-
nology Co., Ltd., Wuhan, China). First, 50 mmol/L acetate buffer (pH 5.5), 0.5 mol/L H2O2
solution, and 25 mol/L guaiacol solution were placed at 25 ◦C for more than 10 min. For
the test, 120 µL of 50 mmol/L acetate buffer, 30 µL of 0.5 mol/L H2O2 solution, 30 µL of
25 mol/L guaiacol solution, 60 µL of distilled water, and 5 µL of the sample were added
successively into EP tubes and mixed. Then, 200 µL of the reaction was immediately
transferred to 96-well plates, and absorbance at 30 s was read at 470 nm (A1). Absorbance
A2 was obtained after 1 min 30 s with the activity defined as POD activity per gram of
fresh tissue. A change of 0.005 in POD was defined as unit enzyme activity [25]. Pro (µg/g
FW) content was determined by the biochemical kits (Norminkoda Biotechnology Co., Ltd.,
Wuhan, China) [26].

2.3. RNA-Seq Library Preparation and Sequencing

Three replicates of each NaCl and SA + NaCl treatment were collected at 48 h and
stored at −80 ◦C after a quick freeze in liquid nitrogen for transcriptome sequencing and
reverse transcription-quantitative PCR (qRT-PCR) analysis. The transcriptome sequencing
was performed by Metware Biotechnology Co., Ltd. (Wuhan, China). The eukaryotic
mRNA was enriched by magnetic beads with Oligo (dT) beads; the mRNA was broken
into short fragments by adding an interruption reagent. Then, the single-strand cDNA
was synthesized with six-base random primers using it as a template; the double-stranded
cDNA was purified, and the polymerase chain reaction (PCR) was amplified. Raw data
obtained from the sequencing platform were filtered to remove reads with adapter and
N ratios > 10% to remove low-quality reads (the number of bases with quality Q ≤ 10
accounted for more than 50% of the entire reads) and to obtain high-quality clean data for
subsequent information analysis.

2.4. De Novo Assembly, Functional Annotation, and Enrichment Analysis of Differentially
Expressed Genes

The melon genome database (http://cucurbitgenomics.org/organism/18, accessed
on 20 May 2021) was used as the reference sequence for the annotation of high-quality
clean reads. The threshold value of |log2 Fold Change| ≥ 1 and p-value ≤ 0.05 was used.
The false discovery rate (FDR) was obtained by correcting for the p-value. The accepted
Benjamini–Hochberg correction method was used to correct the p-values for the original
hypothesis test, and the FDR was finally adopted as the key indicator for differentially
expressed gene screening. The UniGene sequences in the KEGG, NR, Swiss-Prot, GO, and
KOG databases were annotated for gene function using DIAMOND BLASTX software
(San Francisco, CA, USA). The expression levels of genes were estimated using the FPKM
(fragments per kilobase of transcript per million mapped reads) formula.

http://cucurbitgenomics.org/organism/18
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2.5. qRT-PCR Analysis

To verify the accuracy and reliability of transcriptome sequencing, 12 significantly
differentially expressed genes were randomly selected and analyzed using qRT-PCR. RNA
was extracted using a TIANGEN RNAsimple (Tiangen Biotech, Beijing, China) kit [27], and
cDNA was synthesized using PrimeScript TM1ST Strand cDNA Synthesis Kit (TaKaRa,
Kusatsu, Japan). The primer sequences used for the qRT-PCRanalysis were designed by
Primer ExpressV3.0 (Table S1). The CmADP gene was used as an internal reference [28], and
the ABI7500 quantitative PCR instrument was used for real-time fluorescence quantitative
PCR. Each sample was repeated three times. The relative expression was calculated
according to the 2′−∆∆Ct method [29].

2.6. Statistical Analysis

Statistical analysis was carried out with SPSS 22.0 software (Chicago, IL, USA) by
using one-way analysis of variance (ANOVA), followed by Tukey’s test. Differences were
considered significant at p≤ 0.05. Data are presented here as means± SD from at least three
measurements. Heatmaps of DEGs were generated using the TBTools software (version
1.068, San Francisco, CA, USA).

3. Results
3.1. Effect of Different Treatments on Germination of Melon Seeds

As shown in (Table 1), salt stress significantly reduced the germination index and
seedling quality of melon seeds. Compared with the CK treatment, the germination rate
and germination potential under salt stress decreased by 43.34% and 51.78%, respectively.
SA significantly increased the germination rate and germination potential of melon seeds
under salt stress, as well as the fresh weight and seedling length. On the other hand, SA
application alone increased the germination potential of seeds; however, germination rate,
fresh weight, and seedling length were all slightly lower compared to the control treatment
but with non-significant differences.

Table 1. Effect of different treatments on germination of melon seeds.

Treatment Germination Potential/% Germination Rate/% Fresh Weight/g Seedling Length/cm

CK 91.75 ± 0.04 ab 99.75 ± 0.00 a 4.39 ± 0.08 a 8.91 ± 0.29 a
SA 97.00 ± 0.00 a 99.25 ± 0.04 a 4.35 ± 0.05 a 8.31 ± 0.29 a

SA + NaCl 89.50 ± 0.01 b 93.75 ± 0.01 a 3.80 ± 0.16 b 6.75 ± 0.37 b
NaCl 44.25 ± 0.02 c 56.50 ± 0.03 b 1.55 ± 0.03 c 0.96 ± 0.17 c

Note: Different lowercase letters indicate significant differences at the 0.05 probability level (p < 0.05) according to
and Tukey’s multiple range tests.

3.2. Salicylic Acid (SA)-Mediated Physiological Response to Salt Stress

As shown in Figure 1A–C, salt stress decreased the POD, SOD, and CAT activities of
melon seeds at 6–48 h of germination compared to CK. SA treatment increased SOD and
CAT activities of melon seeds under salt stress throughout the treatment period, and both
were the first to show significant differences at 48 h, with a 1.23- and 1.03-fold increase
compared to NaCl. In this experiment, only POD activity was found to be significantly
increased at 48 h and 72 h. SA application alone significantly increased SOD and CAT
activities at 60 h. Under salt stress, the overall trend of Pro content was “rising-declining-
rising”, while SA reduced Pro content under salt stress throughout the treatment time,
reaching the maximum difference value at 48 h with a significant reduction of 30.72%. No
significant difference between SA and CK was observed (Figure 1D).

From 0 to 6 h, no seeds of melon germinated under four treatments; yet, from 48 to 60 h,
SA obviously promoted the germination of melon seeds under salt stress, and the difference
appeared first at 48 h (Figure S1). Combining the phenotypes and the above physiological
indicators, 48 h was finally selected as the sampling point for transcriptome samples.



Horticulturae 2023, 9, 375 5 of 11

Horticulturae 2023, 9, x FOR PEER REVIEW 5 of 12 
 

 

3.2. Salicylic Acid (SA)-Mediated Physiological Response to Salt Stress 
As shown in Figure 1A–C, salt stress decreased the POD, SOD, and CAT activities of 

melon seeds at 6–48 h of germination compared to CK. SA treatment increased SOD and 
CAT activities of melon seeds under salt stress throughout the treatment period, and both 
were the first to show significant differences at 48 h, with a 1.23- and 1.03-fold increase 
compared to NaCl. In this experiment, only POD activity was found to be significantly 
increased at 48 h and 72 h. SA application alone significantly increased SOD and CAT 
activities at 60 h. Under salt stress, the overall trend of Pro content was “rising-declining-
rising”, while SA reduced Pro content under salt stress throughout the treatment time, 
reaching the maximum difference value at 48 h with a significant reduction of 30.72%. No 
significant difference between SA and CK was observed (Figure 1D). 

From 0 to 6 h, no seeds of melon germinated under four treatments; yet, from 48 to 
60 h, SA obviously promoted the germination of melon seeds under salt stress, and the 
difference appeared first at 48 h (Figure S1). Combining the phenotypes and the above 
physiological indicators, 48 h was finally selected as the sampling point for transcriptome 
samples. 

 
Figure 1. Effect of SA on physiological indicators of melon seeds under salt stress. (A) Superoxide 
dismutase activity (SOD); (B) catalase activity (CAT); (C) peroxidase activity (POD); (D) proline 
content (Pro). Different lowercase letters indicate significant differences at the 0.05 probability level 
(p < 0.05) according to and Tukey’s multiple range tests. 

3.3. Transcriptome Data Analysis 
Three replicates of two treatments treated for 48 h were analyzed by RNA-seq tech-

nology with reference transcriptome sequencing. By raw read detection and filtering, 
more than 50,782,597 reads were obtained from each sample (Table 2). After filtering, the 
number of valid bases exceeded 90.85%, the GC content reached 43.52%, and the nucleo-
tides with Cycle Q30 values exceeded 90.85% for each sample. The accuracy of the meas-
ured data was high, which facilitated the analysis of the data at a later stage.  

Figure 1. Effect of SA on physiological indicators of melon seeds under salt stress. (A) Superoxide
dismutase activity (SOD); (B) catalase activity (CAT); (C) peroxidase activity (POD); (D) proline
content (Pro). Different lowercase letters indicate significant differences at the 0.05 probability level
(p < 0.05) according to and Tukey’s multiple range tests.

3.3. Transcriptome Data Analysis

Three replicates of two treatments treated for 48 h were analyzed by RNA-seq technol-
ogy with reference transcriptome sequencing. By raw read detection and filtering, more
than 50,782,597 reads were obtained from each sample (Table 2). After filtering, the number
of valid bases exceeded 90.85%, the GC content reached 43.52%, and the nucleotides with
Cycle Q30 values exceeded 90.85% for each sample. The accuracy of the measured data
was high, which facilitated the analysis of the data at a later stage.

Table 2. Statistics of SA-mediated transcriptome sequencing of melon in response to salt stress.

Sample Raw Reads Clean Reads Q30 Content GC Content (%)

NaCl 50,782,597 46,390,802 90.85 43.52
SA + NaCl 61,157,746 56,421,838 92.10 43.58

3.4. Differential Gene Expression Analysis

Differential gene expression analysis was performed for all expressed genes, as shown
in Figure 2A. A total of 5115 differentially expressed genes (DEGs) were obtained, including
2958 genes with up-regulated expression and 2157 genes with down-regulated expression.
Gene ontology (GO) analysis of differentially expressed genes revealed that NaCl 48 h
vs. SA + NaCl 48 h were significantly different in terms of biological processes, cellular
components, and molecular functions. In the category of cellular components, the top
three enriched GO terms were plasma membrane (GO:0031226), cytoskeleton microtubules
(GO:0015630), and plant-type cell wall (GO:0009505). In the category of molecular function,
the top three enriched GO terms were tubulin binding (GO:0015631), oxidoreductase activ-
ity, acting on peroxide as an acceptor (GO:0016684), and microtubule binding (GO:0015631).
In the category of biological processes, the top three enriched GO terms were the cell cycle
process (GO:0022402), cell division (GO:0051301), and mitotic cycle (GO:1903047).
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Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis of the DEGs showed that lipid metabolism (linoleic and α-linolenic fatty acids
metabolism), signaling transduction (mitogen-activated protein kinase (MAPK) signaling
pathway and plant hormone signal transduction), and biosynthesis of secondary metabo-
lites (phenylpropanoid pathway and flavonoid biosynthesis) were the main pathways
contributed by the DEGs.

3.5. DEGs Related to Lipid Metabolism

Seeds contain many lipoxygenases (LOXs), which have an important role in abiotic
stresses. As shown in Figure 3A, Table S2, seven LOX-related genes, i.e., MELO3C014627.2,
MELO3C000684.2, MELO3C014634.2, MELO3C004250.2, MELO3C014637.2, MELO3C031048.2,
and MELO3C000770.2, were mapped to the pathways related to linoleic and α-linolenic
fatty acid metabolism. Interestingly, all of these genes were up-regulated in SA + NaCl.

3.6. DEGs Related to Biosynthesis of Secondary Metabolites

The pathway of phenylpropane biosynthesis is one of plants’ most important secondary
metabolic pathways. As shown in Figure 3B, Table S3, ten DEGs, all being proteins re-
lated to lignin synthesis (PER), were detected, with two down-regulated (MELO3C003377.2,
MELO3C028619.2) and eight up-regulated genes (MELO3C008187.2, MELO3C002391.2,
MELO3C019612.2, MELO3C008188.2, MELO3C023613.2, MELO3C021914.2, MELO3C018804.2,
and MELO3C020841.2) in SA + NaCl. In the flavonoid anabolic pathway, only one UDP-
glycosyltransferase gene (UGT) (MELO3C019888.2) was detected, with down-regulation in
SA + NaCl.
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3.7. DEGs Related to Signal Transduction

In this important pathway, we found three DEGs, including one serine/threonine
protein kinase SRK2J gene (MELO3C008884.2), one abscisic acid (ABA) receptor PYL4
gene (MELO3C002656.2), and one ethylene response factor EIL4 (MELO3C017592.2) gene,
whereas only the SRK2J gene was up-regulated in SA + NaCl (Figure 3C, Table S4).

3.8. Validation of Gene Expression Using qRT-PCR

To verify the accuracy of the sequencing results, 12 randomly selected differential
genes were subjected to qRT-PCR. The qRT-PCR results were strongly correlated with the
RNA-seq data (R2 = 0.90, Figure S2), indicating that transcriptome sequencing results were
accurate and reliable.

4. Discussion

Soil salinity has become one of the most harmful issues to cultivatable land. Enhancing
salt tolerance in melon by genetic means is an effective remedy; however, the selection
of new varieties is relatively lengthy due to long breeding cycles and limited germplasm
resources. In addition, applying exogenous regulatory substances is a simple and feasible
method to improve salt tolerance in crops with a broad application prospect. Therefore, it
is necessary to elucidate the mechanism through which SA promotes the seed germination
of melon under salt stress. Although SA can induce salt resistance, which has also been
reported in various plants [30–34], knowledge of the molecular mechanism of melon is
limited, just as potential candidate genes. Herein, aiming to explore the SA-mediated
molecular response to salt stress, we performed an RNA-seq-based comparative transcrip-
tome analysis between NaCl and SA + NaCl treatment and analyzed the transcriptomic
differences between these two contrasting treatments.

SOD, POD, and CAT are important protective enzymes of the enzymatic defense
system in plants, which can scavenge reactive oxygen species and have an important role
in resisting abiotic stresses, such as drought, salt, cold, and heat [35]. SOD is the first
line of defense against reactive oxygen radical-mediated oxidative damage; it catalyzes
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the dismutation of superoxide anion radicals to H2O2 and O2. POD is a heme-containing
enzyme that oxidizes various substrates, such as phenolic compounds and antioxidants
using H2O2 and prevents excess accumulation of H2O2 [36,37]. Topical SA application
increased SOD and CAT activities throughout the treatment period; however, POD enzyme
activity did not show a clear pattern, which implies that CAT and SOD may be key
enzymes in the antioxidant enzyme system of melon during seed germination under salt
stress regulated by SA, which is consistent with Torun’s study [38].

Pro is an ideal organic osmoregulatory substance that can mitigate the damage caused
by excessive water loss to cells under salt stress and guarantee the normal supply of water in
plants [34]. Yet, conclusions regarding the correlation between changes in Pro content and
stress resistance are not consistent across crops [39,40]. In the present study, we found that
SA reduces the Pro content over time, which is similar to the effect of TDM (triadimefon) in
ameliorating cold damage in cucumber seedlings [41].

The key enzyme in seeds during germination is lipoxygenase (EC 1.13.11.12, LOX),
and the catalytic substrates are linolenic acid and linoleic acid. Early studies found that
abiotic stresses, such as drought, can induce LOX gene expression, suggesting that the
LOX pathway may mediate plant responses to abiotic stresses [42]. In Arabidopsis thaliana,
LOX genes were highly associated with salt tolerance, and LOX3 deletion mutants showed
salt sensitivity at both germination and growth stages [43]. Furthermore, in Arabidopsis
overexpression plants, CaLOX1-OX showed enhanced salt tolerance along with less H2O2
accumulation and significant upregulation of stress response gene expressions, such as
RD22, RD29A, RD29B, and P5CS, suggesting that CaLOX1 may be positively regulating salt
stress response by regulating H2O2 accumulation and stress response gene expression [44].
In this study, seven LOX-related genes were mapped to the pathways related to linoleic
and α-linolenic fatty acid metabolism, and all of these genes were up-regulated in SA +
NaCl. These results suggest that exogenous SA may defend against salt stress by positively
regulating LOX gene expression.

Phenylpropanoid biosynthesis is a major source of several defensive secondary metabo-
lites (e.g., lignin) in plants, and intermediates of this pathway may provide raw materials
for lignin metabolism [45]. Lignin is the main component of the plant cell wall that has an
important role in mechanical support and water transport [46,47], reducing damage from
abiotic cellular stresses. It is also the first structure to sense and respond to environmental
stresses [48]. It has been shown that the lignification of plant root cell walls increases
under salt stress, which can effectively prevent ion uptake inside the cells, enhance the
structural rigidity and robustness of conduction tissues and improve the salt tolerance of
plants [49]. In the present study, we found that the ten DEGs, all being proteins related to
PER associated with lignin synthesis, were significantly detected in this pathway, and eight
genes were up-regulated in SA + NaCl. The cell wall is an important determinant of cell
form and function and is the first natural barrier against stress [50]. In the face of abiotic
stresses (e.g., salt stress), plant cell walls are mainly subject to structural and compositional
changes [4]. In general, plant cells have dedicated systems (LRX3/4/5-RALF22/23-FER,
THE1, MIK2 protein system, etc.) for monitoring the functional integrity and composi-
tional changes of the cell wall, and some induce mechanisms to repair the damaged cell
wall, including cell wall metabolism, cytoskeletal organization changes, vesicle transport,
and other processes [51]. Interestingly, in the GO entry, we also found the plant cell wall
(GO:0009505) and cytoskeleton microtubule (GO:0015630). The above results suggest that
SA may regulate cytoskeletal dynamics and improve cell wall stability, thus contributing to
cellular resilience. It has been shown that overexpression of the CrUGT87A1 gene of Carex
rigescens in Arabidopsis thaliana enhances plant salt tolerance by increasing the content of
flavonoid substances [52]. In this experiment, one UDP-glycosyltransferase (UGT) gene
(MELO3C019888.2) in the flavonoid synthesis metabolic pathway was highly expressed
under salt stress. The reduction in gene expression levels after SA addition may be an
indirect effect of SA to alleviate salt stress damage in melon rather than an active regulation.
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The transcripts of one serine/threonine protein kinase SRK2J gene, one ABA receptor
PYL4 gene, and one ethylene response factor EIL4 gene were significantly detected in the
MAPK signaling pathway and plant hormone signal transduction. It has been shown that
the MAPK pathway activates ACS genes required for ethylene biosynthesis and regulates
salt tolerance [53]. The role of ABA as a central hormone in plant stress response, its syn-
thesis, and the signal transduction pathway in salt stress response have gained increasing
interest among researchers [54,55]. Under salt stress, accumulated ABA and PYL receptors
in plants bind to form ABA-PYL complexes, which bind to PP2C-like phosphatases and re-
lease SnRK2 kinases (SnRK2.2, 2.3, and 2.6), thus phosphorylating numerous transcription
factors downstream and in turn causing physiological responses, such as ABA-responsive
gene expression, stomatal closure, and germination inhibition [56,57].

5. Conclusions

In this study, we used a combination of physiological and transcriptomic to investigate
how SA promotes melon seed germination under salt stress. Our data indicated that SA
positively affects salt tolerance by increasing the activity of SOD and CAT and decreasing
the content of Pro. Further analysis revealed that SA might alleviate salt stress by initiating
a series of signaling pathways under salt stress, participating in lignin biosynthesis to
improve cell wall stability, and positively regulating lipoxygenase (LOX) genes. These
results provide valuable information and new strategies for future salt resistance cultivation
and high melon yield.
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of DEGs; Table S2: Differentially expressed genes related to lipid metabolism; Table S3: Differentially
expressed genes related to biosynthesis of secondary metabolites; Table S4: Differentially expressed
genes related to signal transduction; Figure S1: Response of SA-mediated phenotypes to salt stress;
Figure S2: Validation of 12 DEGs by qRT-PCR.
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