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Abstract: The double-petal varieties of ornamental pomegranate have higher ornamental value and
garden development potential than the single-petal varieties but there has been no study on the
genomic variation between them. This study aimed to determine the genomic variation between the
two kinds of varieties and the relationship between the variation and phenotype by identifying the
DNA variation of three single-petal varieties and three double-petal varieties using re-sequencing
technology. The results showed that the variation number of each variety was in the order of
single nucleotide polymorphisms (SNPs) > insertions and deletions (InDels) > structural variations
(SVs) > copy number variations (CNVs). The number of SNPs and InDels in the double-petal varieties
was significantly higher than that in the single-petal varieties, and there was no significant difference
in the number of SVs and CNVs. The number of non-synonymous SNPs in the coding region
(Nonsyn_CDS_SNPs) and InDels with a 3X length in the coding region (3X_shiftMutation_CDS_InDel)
was significantly higher in the double-petal varieties than that in the single-petal varieties. The
number of the two variants was strongly positively correlated with each morphological index
that was related to the phenotypic difference between the two varieties. Nonsyn_CDS_SNPs and
3X_shiftMutation_CDS_InDel were enriched in the cell membrane system, cell periphery, and signal
transduction, from which 15 candidate genes were screened. Our results provide genomic data for
the study of the formation mechanism of the double-petal flower and lay a theoretical foundation for
new variety breeding of ornamental pomegranate.
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1. Introduction

Pomegranate has rich germplasm resources. At present, the research on the pheno-
typic and genetic diversity of pomegranate varieties mainly focuses on the shape, quality,
and related molecular markers of fruit [1–3], while the research on the main ornamental
character—the flower—has received less attention. The single-petal varieties of ornamental
pomegranate (Punica granatum L.) have a narrow flower shape and single-petal layer, while
the double-petal varieties have a full flower shape, more petaloid stamens, and numerous
petals [4]. Thus, the double-petal varieties have higher ornamental value and garden
development potential. The phenotypic differences between the two kinds of varieties are
mainly manifested in the petalization of the stamens and the growth of the petal transi-
tional form. Currently, research on the mechanism of double-petal flower formation mainly
focuses on the regulation of transcription factors, while there is little research on DNA
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variation [5–7]. For example, scholars have established the ABCDE flower development
model to explain how transcription factors regulate flower organ morphogenesis [8–11].
In recent years, second-generation sequencing technology, which is fast, efficient, and
low cost, has realized the whole genome sequencing of many plants, and, thus, provided
technical support for genomic research on flower types [12–17]. For instance, Xing [18]
screened out flowering-related genetic variation by comparing the genomes of two apple
varieties using re-sequencing technology. Then, Huang [13] screened out genes that are
related to lip petal development by comparing the genomes of two Phalaenopsis aphrodite
varieties and the transcriptomes of 21 tissues, and Wu [14] screened out single nucleotide
polymorphism (SNP) variations that are related to sterile flowers and continuous flow-
ering in Hydrangea macrophylla using a genome-wide association study of 82 bigleaf hy-
drangea cultivars. Currently, the whole genome sequences of three pomegranate vari-
eties, ‘Taishanhong’ [19], ‘Dabenzi’ [20], and ‘Tunisia’ [21], have been published. However,
pomegranate genome-based research has mainly focused on the fruit character [21], stress
resistance [22], and the chloroplast genome [23], and a comparative study on the genomic
variation between the single- and double-petal varieties of ornamental pomegranate has
yet to be carried out.

Using re-sequencing technology, this study determined the genomic variation between
single and double-petal varieties and the relationship between the variation and phenotype,
thus contributing to the molecular mechanism of pomegranate petalization and further
providing a reference for new breeding varieties of pomegranate.

2. Materials and Methods
2.1. Plant Material

Six ornamental pomegranate varieties with similar plant types and ecological habits
were collected from the Chinese pomegranate germplasm resource nursery (Yicheng;
34◦49′49.195′′ N, 117◦21′18.701′′ E) for genome re-sequencing. The six ornamental pomegranate
varieties included three single-petal varieties (‘Taiansanbaitian’, ‘Yichengdanbanfenhongtian’,
and ‘Zipitian’) and three double-petal varieties (‘Luoyangbaimasi’, ‘Yichengfenhongmudan’,
and ‘Taianhongmudan’; Table 1). Among them, ‘Taiansanbaitian’ and ‘Luoyangbaimasi’
are white flower varieties, ‘Yichengdanbanfenhongtian’ and ‘Yichengfenhongmudan’ are
pink flower varieties, and ‘Zipitian’ and ‘Taianhongmudan’ are red flower varieties.

Table 1. Six ornamental pomegranate varieties.

Variety Type White Flower Variety Pink Flower Variety Red Flower Variety

Single-petal variety
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2.2. Collection of the Morphological Parameters of Six Varieties

Three plants were randomly selected from each variety for the investigation of mor-
phological parameters. The morphological parameters included: the flower length, flower
width, flower width/flower length, calyx length, calyx width, calyx width/calyx length,
sepal number, petal number, and petaloid stamen number. A ruler or vernier caliper
was used to measure the length, and two significant figures were retained after the
decimal point.

2.3. Sample Collection, Library Establishment, and Genome Re-Sequencing

A one-leaf sample from mixed shoots for each variety were collected and immediately
frozen using liquid nitrogen and then stored in an ultra-low temperature refrigerator at
−80 ◦C. The improved cetyltrimethylammonium bromide (CTAB) method was used to ex-
tract the total DNA of the samples [24]. Then, the DNA samples were randomly fragmented
by Covaris and the fragments were collected by magnetic beads. Adenine was added to
3′ end of end-repaired DNA fragments before adaptor ligation. The ligation products were
then cyclized and then amplified by linear isothermal Rolling-Circle Replication and DNA
NanoBall technology. Then, agarose gel electrophoresis was used to screen the size of the
fragments. A 200–300 bp small fragment library was established using polymerase chain
reaction amplification. The qualified library was sequenced on the BGISEQ platform.

2.4. Data Filtering and Mapping

We used SOAPnuke (v1.4.0) to obtain clean data. The BWA [25] software was used
to match the clean reads to the reference genome of ‘Dabenzi’. Then, Picard tools (v1.118;
http://broadinstitute.github.io/picard/, accessed on 5 March 2020) were used to sort
the SAM files according to the reference genome and convert them into BAM files. The
BAM files were used to detect genomic variation after repairing the mate-pair information,
adding the read group information, and labeling the repetitive reads.

2.5. Detection of the Single Nucleotide Polymorphisms, Insertions and Deletions, Structural
Variation, and Copy Number Variation Polymorphisms

The GATK [26] software was used to detect the SNPs and insertions and deletions
(InDels). The SNP filtering parameters were: “QD < 2.0 || FS > 60.0 || MQ < 40.0 ||
MQRankSum < −12.5 || ReadPosRankSum < −8.0”. The InDel filtering parameters
were: “QD < 2.0 || FS > 200.0 || ReadPosRankSum < −20.0”. Additionally, Breakdancer [27]
was used to detect the structural variations (SVs) using the parameters “–m 100 –x 1,000,000 –s
30 –d 5”. Moreover, SOAPcnv [28] was used to detect the copy number variations (CNVs)
using the parameters “–u 2 –z”.

2.6. Data Processing and Bioinformatics Analysis

Microsoft Excel 2020 was used for the basic statistics and mapping of the morphologi-
cal parameters and the number of SNPs, InDels, SVs, and CNVs. The SPSS 24.0 software
(IBM, Armonk, New York, NY, USA) was used to conduct an analysis of variance (ANOVA)
by Duncan’s multiple-range test and Pearson correlation analyses. The differences between
the means were considered statistically significant at both p < 0.05 and p < 0.01. Non-
synonymous SNPs in the coding (CDS) region and InDels causing a frameshift mutation
with a length of 3X in the CDS region between ‘Taiansanbaitian’ and ‘Luoyangbaimasi’,
‘Yichengdanbanfenhongtian’ and ‘Yichengfenhongmudan’, and ‘Zipidian’ and ‘Taianhongmudan’
were compared. The common genes in the three comparison groups with important
genetic variation between the single- and double-petal varieties were identified, and
ggVennDiagram in the R software (http://cran.r-project.org/web/packages/cluster/,
accessed on 10 February 2021) was used to make a Venn diagram. Online software
(https://www.omicshare.com/tools, accessed on 4 December 2022) was used to carry
out Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) classifi-
cation and enrichment analysis.

http://broadinstitute.github.io/picard/
http://cran.r-project.org/web/packages/cluster/
https://www.omicshare.com/tools
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3. Results
3.1. Flower Morphological Parameters for the Two Types of Varieties

The results of the flower morphological parameters for the single and double-petal
varieties of ornamental pomegranate are shown in Figure 1. The results of the variance
analysis showed that the variety had significant effects on the flower length, flower width,
flower width/flower length, calyx length, calyx width, calyx width/calyx length, sepal
number, petal number, and petaloid stamen number. The flower length, flower width,
flower width/flower length, calyx length, calyx width, calyx width/calyx length, sepal
number, petal number, and petaloid stamen number of the double-petal varieties were
significantly higher than those of the single-petal varieties. Flower color had no significant
effect on the flower morphological parameters.
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Figure 1. Morphological flower parameters of 6 ornamental pomegranate varieties. One asterisk and
two asterisks indicated significant differences at p < 0.05 and p < 0.01, respectively, between the two
types of flowers (single- and double-petals) according to the Duncan test. The standard deviation
was also indicated.

3.2. Quality Evaluation and Mapping of the Sequencing Data

The re-sequencing data of the pomegranate varieties were filtered and quality control
was conducted, and the results are shown in Table 2. A total of 98.40 GB of original
sequencing data were obtained from the six ornamental pomegranate varieties, and the
average ratio of the clean data to the original sequencing data was 92.72%. In addition,
the average rate of high-quality (Q30) bases was 91.27%, and the average GC content was
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40.96%. Moreover, 95.69% of the clean reads were aligned to the reference genome, with a
mean sequencing depth of 51.38-fold and a mean coverage of 95.24%.

Table 2. Summary of the sequencing data of 6 ornamental pomegranate varieties.

Variety Name Original Data (G) Clean Data (G) Q30 (%) GC (%) Mapped (%) Depth Coverage (%)

‘Taiansanbaitian’ 13.99 12.74 91.19 41.43 99.70 57.53 95.29
‘Yichengdanbanfenhongtian’ 17.49 16.37 91.43 40.67 93.45 55.25 95.06

‘Zipidian’ 18.36 17.26 91.70 40.09 81.81 58.23 95.36
‘Luoyangbaimasi’ 14.90 13.55 90.89 41.28 99.71 45.73 95.18

‘Yichengfenhongmudan’ 15.53 14.39 90.50 41.35 99.65 48.56 95.23
‘Taianhongmudan’ 18.13 17.05 91.88 40.95 99.83 42.97 95.29

3.3. Basic Analysis of the Four Variation Types

In this study, the SNPs, InDels, SVs, and CNVs of the ornamental pomegranate
varieties were identified and counted. The results are shown in Figure 2. The average SNP
number (463,840) in the double-petal varieties was significantly higher than that in the
single-petal varieties (339,904). Furthermore, the average InDel number (111,995) in the
double-petal varieties was significantly higher than that in the single-petal varieties (80,288).
In addition, the average SV number in the single and double-petal varieties was 27,835 and
29,606, respectively, whereas the average CNV number in the single and double-petal
varieties was 10,974 and 11,864, respectively. The variety had no significant effect on the SV
and CNV numbers. The trend of the various types in the genome of the six ornamental
pomegranate varieties was in the order of SNP > InDel > SV > CNV. Additionally, the
variety had no significant effect on the number of SNPs, InDels, SVs, and CNVs. The
trend of the various types in the coding sequences of the six ornamental pomegranate
varieties was in the order of SNP_CDS > SV_CDS > CNV_CDS > InDel_CDS. On the other
hand, there was no significant difference in the variable number of SNP, InDel, SV, CNV,
SNP_CDS, InDel_CDS, SV_CDS, and CNV_CDS among varieties of different colors.
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asterisks indicated significant differences at p < 0.01, between the two types of flowers (single- and
double-petals) according to the Duncan test.
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We conducted a Pearson correlation analysis between the number of different variation
types identified in six varieties of genomes and the morphological parameters of 6 varieties
in order to show the relationship between the variation and phenotype (Figure 3A). The
SNP and InDel numbers were positively correlated with each morphological index, and
the correlation coefficients ranged from 0.83 to 0.96 and 0.84 to 0.95, respectively. The
correlation coefficients between the number of SNPs and InDels and the flower width,
calyx width, petal number, and petaloid stamen number were higher than 0.90. The SV
and CNV numbers were positively correlated with each morphological index, and the
correlation coefficients ranged from 0.32 to 0.77 and 0.20 to 0.68, respectively. The trend of
the correlation between the SNP number and each morphological index was similar to that
between the InDel number and each morphological index, and the trend of the correlation
between the SV number and each morphological index was similar to that between the
CNV number and each morphological index.
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Figure 3. Correlation analysis between four variations of number and phenotypic parameters of
ornamental pomegranate. (A) Correlation between the number of four types of variations in genome
region and phenotypic parameters; (B) Correlation between the number of four types of variations in
CDS region and phenotypic parameters.

The relationship between the number of the four variation types ©n the CDS and the
morphological parameters was also analyzed, and the results are shown in Figure 3B. The
SNP_CDS, InDel_CDS, SV_CDS, and CNV_CDS numbers were all positively correlated
with each morphological index, and the correlation coefficients between them and the
flower width, flower width/flower length, calyx width, calyx width/calyx length, petal
number, and petaloid stamen number were higher than those between them and the flower
length, calyx length, and sepal number. The correlation coefficients between the number
of the four variation types in the intergenic region and the morphological indicators were
also calculated (Table S1). The correlation coefficients between the SNP number in the
intergenic region and the morphological parameters and between the InDel number in the
intergenic region and the morphological parameters were much higher than those in the
CDS region, indicating that a large number of SNPs and InDels that are closely related to
the morphological parameters occur in the intergenic region.

3.4. Annotation Analysis of the Single Nucleotide Polymorphisms

Our results showed that the SNP heterozygosity of the single and double-petal va-
rieties of ornamental pomegranate ranged from 55.36% to 75.38% and 67.46% to 72.38%,
respectively (Table 3). The single and double-petal varieties had no significant effect on the
SNP heterozygosity. Furthermore, the ranges of the number of synonymous SNPs in the
CDS region (Syn_CDS_SNP) of the single- and double-petal varieties were 6340–16,142 and
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9140–9416 respectively, and the variety had no significant influence on the Syn_CDS_SNP
number (Figure 4A). The ranges of the number of non-synonymous SNPs in the CDS
region (Nonsyn_CDS_SNP) of the single and double petal varieties were 10,118–11,254 and
14,566–15,162, respectively. The single-petal varieties had a very significant impact on the
Nonsyn_CDS_SNP number (p < 0.01; Figure 4B). Moreover, the correlation analysis showed
that the Syn_CDS_SNP number was negatively correlated with most of the morphologi-
cal parameters, while the Nonsyn_CDS_SNP number was strongly positively correlated
with all the morphological parameters (Figure 4C), indicating that the Nonsyn_CDS_SNP
were closely related to all the morphological parameters and had a great impact on the
phenotypic traits. Additionally, the variety had extremely significant effects on the SNP
variations that involved the loss of a start codon, acquisition of a start codon, loss of a stop
codon, and acquisition of a stop codon and the SNP variations that were located at the
splicing site, in the region within 5K upstream/downstream of the gene, and in the gene
region (p < 0.01). There were also positive correlations between these SNPs and each of the
morphological indicators (Tables S2 and S3).

Table 3. SNPs statistics of six ornamental pomegranate varieties.

Variety Type Variety Name Total SNPs Homozygous Heterozygous Heterozygosity Rate (%)

Single-petal variety ‘Taiansanbaitian’ 329,045 112,214 216,831 65.90
Single-petal variety ‘Yichengdanbanfenhongtian’ 347,440 155,103 192,337 55.36
Single-petal variety ‘Zipidian’ 343,226 84,488 258,738 75.38

Double-petal variety ‘Luoyangbaimasi’ 460,355 127,643 332,712 72.27
Double-petal variety ‘Yichengfenhongmudan’ 456,143 125,983 330,160 72.38
Double-petal variety ‘Taianhongmudan’ 475,022 154,553 320,469 67.46

Horticulturae 2023, 9, x FOR PEER REVIEW 8 of 17 
 

 

cating that the Nonsyn_CDS_SNP were closely related to all the morphological parame-
ters and had a great impact on the phenotypic traits. Additionally, the variety had ex-
tremely significant effects on the SNP variations that involved the loss of a start codon, 
acquisition of a start codon, loss of a stop codon, and acquisition of a stop codon and the 
SNP variations that were located at the splicing site, in the region within 5K up-
stream/downstream of the gene, and in the gene region (p < 0.01). There were also posi-
tive correlations between these SNPs and each of the morphological indicators (Tables S2 
and S3). 

Table 3. SNPs statistics of six ornamental pomegranate varieties. 

Variety Type Variety Name Total SNPs Homozygous Heterozygous Heterozygosity 
Rate (%) 

Single-petal variety ‘Taiansanbaitian’ 329,045 112,214 216,831 65.90 
Single-petal variety ‘Yichengdanbanfenhongtian’ 347,440 155,103 192,337 55.36 
Single-petal variety ‘Zipidian’ 343,226 84,488 258,738 75.38 

Double-petal variety ‘Luoyangbaimasi’ 460,355 127,643 332,712 72.27 
Double-petal variety ‘Yichengfenhongmudan’ 456,143 125,983 330,160 72.38 
Double-petal variety ‘Taianhongmudan’ 475,022 154,553 320,469 67.46 
 

      

Figure 4. Statistics of synonymous and nonsynonymous SNPs in coding regions and their correla-
tion analysis with morphological parameters. (A) Statistics of Syn_CDS_SNP number in six varie-
ties; (B) Statistics of Nonsyn_CDS_SNP number in six varieties; (C) Correlation analysis between 
the number of Syn_CDS_SNP/Nonsyn_CDS_SNP and morphological indicators. Two asterisks in-
dicated significant differences at p < 0.01, between the two types of flowers (single- and dou-
ble-petals) according to the Duncan test. 

3.5. Annotation Analysis of the Insertions and Deletions 
The annotation statistics of the InDels in the six varieties are shown in Table 4. The 

results of the analysis of variance showed that the variety had a very significant impact 
on the number of InDels in the whole genome (p < 0.01) but there was no significant im-
pact on the number of InDels in the CDS region. Additionally, the variety had a very 
significant effect on the InDels that were located in the region within 5K up-
stream/downstream of the gene, gene region, exon region, intron region, and pseudogene 
region (p < 0.01; Table S4), and there were positive correlations between these InDels and 
the morphological parameters (Table S5). 

  

Figure 4. Statistics of synonymous and nonsynonymous SNPs in coding regions and their correlation
analysis with morphological parameters. (A) Statistics of Syn_CDS_SNP number in six varieties;
(B) Statistics of Nonsyn_CDS_SNP number in six varieties; (C) Correlation analysis between the
number of Syn_CDS_SNP/Nonsyn_CDS_SNP and morphological indicators. Two asterisks indicated
significant differences at p < 0.01, between the two types of flowers (single- and double-petals)
according to the Duncan test.

3.5. Annotation Analysis of the Insertions and Deletions

The annotation statistics of the InDels in the six varieties are shown in Table 4. The
results of the analysis of variance showed that the variety had a very significant impact on
the number of InDels in the whole genome (p < 0.01) but there was no significant impact on
the number of InDels in the CDS region. Additionally, the variety had a very significant
effect on the InDels that were located in the region within 5K upstream/downstream
of the gene, gene region, exon region, intron region, and pseudogene region (p < 0.01;
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Table S4), and there were positive correlations between these InDels and the morphological
parameters (Table S5).

Table 4. Annotation statistics of InDels in six varieties.

Variety Type Variety Name Insertion in
CDS/Genome

Deletion in
CDS/Genome

InDel in
CDS/Genome

Single petal variety ‘Taiansanbaitian’ 602/34,084 849/43,142 1451/77,226
Single petal variety ‘Yichengdanbanfenhongtian’ 722/37,739 976/46,177 1698/83,916
Single petal variety ‘Zipidian’ 892/35,653 1065/44,068 1957/79,721

Double petal variety ‘Luoyangbaimasi’ 807/50,503 1127/59,038 1934/109,541
Double petal variety ‘Yichengfenhongmudan’ 834/51,256 1092/59,718 1926/110,974
Double petal variety ‘Taianhongmudan’ 849/53,643 1137/61,826 1986/115,469

Figure 5A shows that the ranges of the number of InDels with a 3X length that caused
a frameshift mutation in the CDS region (3X_shiftMutation_CDS_InDel) of the single and
double-petal varieties were 517–593 and 697–738, respectively. The variety had a very
significant impact on the number of 3X_shiftMutation_CDS_InDel (p < 0.01). In addition,
the correlation analysis results showed that the number of 3X_shiftMutation_CDS_InDel
was strongly positively correlated with the morphological parameters, and the correlation
coefficients (0.72–0.95) between them were higher than those (0.32–0.74) between the InDels
in the CDS region and the morphological parameters (Figure 5B), indicating that the
3X_shiftMutation_CDS_InDel had a great influence on the phenotypic characters of the
ornamental pomegranates.
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Figure 5. Quantitative statistics of 3X_shiftMutation_CDS_InDels and its correlation with phenotypic
parameters. (A) Quantitative statistics of 3X_shiftMutation_CDS_InDels; (B) Correlation analysis
between two types of InDels and morphological parameters. Two asterisks indicated significant
differences at p < 0.01, between the two types of flowers (single- and double-petals) according to the
Duncan test.

Figure 6 shows that the number of InDels of different lengths in the genome and
CDS conforms to the normal distribution, with the largest number of one-base insertions
or deletions. The analysis of variance showed that the variety had a significant impact
on the number of InDels of different lengths in the genome (p < 0.05), while the variety
had no significant impact in the CDS region. The number of InDels of each length in the
single-petal varieties was significantly lower than that of the double-petal varieties. As
shown in Figure 6A,B, within 15 bases that were inserted or deleted in the genome, the
number of InDels of an even length was more than the number of adjacent InDels of an
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odd length (except for the one base InDels). As shown in Figure 6C,D, in the CDS region,
the number of InDels with a length of a multiple of three was more than the number of
adjacent InDels with a length that was not a multiple of three.
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3.6. Annotation Analysis of the Structural Variations

A total of 172,324 SVs were identified in the six ornamental pomegranate varieties
(Table S6). The type with the largest number was inter-chromosomal translocation (CTX),
followed by inversion (INV), deletion (DEL), and intra-chromosomal translocation (ITX),
and no insertions were detected. The variety had no significant effect on the total SVs,
DELs, INVs, and ITXs but it had a significant effect on the CTXs (p < 0.05). The CTX number
in the single-petal varieties was significantly higher than that in the double-petal varieties.
Moreover, the correlation analysis results showed that each morphological index was
positively correlated with the number of DELs, INVs, and ITXs, while each morphological
index was negatively correlated with the number of CTXs (Figure 7A).

3.7. Annotation Analysis of the Copy Number Variations

A total of 68,517 CNVs were identified in the six ornamental pomegranate varieties, of
which the number of CNVs with an increased copy number was lower than that with a
decreased copy number (Table S7). The analysis of variance showed that the variety had no
significant effect on the number of total CNVs, CNVs with an increased copy number, and
CNVs with a decreased copy number. Additionally, the correlation analysis results showed
that the correlation coefficients between the morphological parameters and the number of
CNVs with an increased copy number were lower than those between the morphological
parameters and the number of CNVs with a decreased copy number (Figure 7B). In addition,
the number of CNVs with a decreased copy number was positively correlated with the
flower width, flower width/flower length, calyx width, calyx width/calyx length, petal
number, and petaloid stamen number (R > 0.56).



Horticulturae 2023, 9, 361 10 of 16

Horticulturae 2023, 9, x FOR PEER REVIEW 10 of 17 
 

 

        

Figure 6. Length distribution statistics of insertion or deletion. (A) Length distribution map of in-
sertion or deletion in genome region of single-petal varieties; (B) Length distribution map of inser-
tion or deletion in genome region of double-petal varieties; (C) Length distribution map of inser-
tion or deletion in CDS region of single-petal varieties; (D) Length distribution map of insertion or 
deletion in CDS region of double-petal varieties. 

3.6. Annotation Analysis of the Structural Variations 
A total of 172,324 SVs were identified in the six ornamental pomegranate varieties 

(Table S6). The type with the largest number was inter-chromosomal translocation (CTX), 
followed by inversion (INV), deletion (DEL), and intra-chromosomal translocation (ITX), 
and no insertions were detected. The variety had no significant effect on the total SVs, 
DELs, INVs, and ITXs but it had a significant effect on the CTXs (p < 0.05). The CTX 
number in the single-petal varieties was significantly higher than that in the double-petal 
varieties. Moreover, the correlation analysis results showed that each morphological in-
dex was positively correlated with the number of DELs, INVs, and ITXs, while each 
morphological index was negatively correlated with the number of CTXs (Figure 7A). 

   

Figure 7. The correlation coefficient between SV/CNV types and morphological parameters. (A) 
The correlation coefficient between SV types and morphological parameters; (B) the correlation 
coefficient between CNV types and morphological parameters. 

Figure 7. The correlation coefficient between SV/CNV types and morphological parameters. (A) The
correlation coefficient between SV types and morphological parameters; (B) the correlation coefficient
between CNV types and morphological parameters.

3.8. Variation Analysis between the Single- and Double-Petal Varieties

According to the above results, the variety had a significant effect on the number of
Nonsyn_CDS_SNP and 3X_shiftMutation_CDS_InDel, so we compared these two vari-
ations in three groups and screened out the genes that were important for determin-
ing the single- or double-petal variety of ornamental pomegranate. Among them, there
were 548 variations (belonging to 228 genes) between the genomes of ‘Taiansanbaitian’
and ‘Luoyangbaimasi’, 792 variations (belonging to 345 genes) between the genomes of
‘Yichengdanbanfenhongtian’ and ‘Yichengfenhongmudan’, and 314 variations (belong-
ing to 181 genes) between the genomes of ‘Zipidian’ and ‘Taianhongmudan’. In total,
37 common variants (belonging to 15 genes) were finally obtained from the three groups
of genes. The GO enrichment analysis found (Figures S1–S9) that the enrichment of the
variant genes among the three groups was similar. In terms of the cellular component
GO terms, the three groups of mutant genes were enriched in the cell membrane system
and cell periphery. Then, in terms of the biological process GO term, the three groups of
mutant genes were enriched in signal transduction, and in terms of the molecular function
GO terms, the three groups of mutant genes were enriched in transferase activity and
GTP hydrolase activity. Finally, 15 mutant genes were screened from the three groups of
comparison, and they were mainly involved in hormone pathways and stress responses,
transcription and post-transcription regulation, translation, and post-translation regulation,
and purine metabolism (Table 5).

Table 5. Classification of variant genes between single- and double-petal pomegranate.

Function Category Gene Annotation Gene ID

Hormone pathway and stress response

Indole-3-pyruvate monooxygenase, YUC CDL15_Pgr015667
CBS domain-containing protein, CBSX6 CDL15_Pgr010955

Phosphate transporter, PHO1 CDL15_Pgr020531
Receptor-like kinases, RLK CDL15_Pgr015627

Transcription and
post-transcriptional regulation

transcription factor, TGA2.3 CDL15_Pgr003069
CCCH-type zinc finger protein, C3H20 CDL15_Pgr015624

Werner Syndrome-like exonuclease, WEX CDL15_Pgr003048
Pentatricopeptide repeat protein, PPR CDL15_Pgr003067

Translation and
post-translation regulation

Tryptophan-tRNA ligase, TrpS CDL15_Pgr015628
Valine-tRNA ligase, ValS CDL15_Pgr020557
Ribosomal protein, L23 CDL15_Pgr004206

Serine/threonine-protein phosphatase, STPK CDL15_Pgr005655
Palmitoyltransferase, PAT CDL15_Pgr003037

Charged multivesicular body protein, CHMP CDL15_Pgr015621

Purine metabolism phosphoribosylaminoimidazole-succinocarboxamide
synthase CDL15_Pgr015078



Horticulturae 2023, 9, 361 11 of 16

4. Discussion

The rapid development of bioinformatics and sequencing technology makes it possi-
ble to sequence the whole genome of many ornamental plants, which provides a starting
point for revealing genetic variation at the genome level and exploring the relationship
between genetic variation and phenotypic diversity [12,29,30]. When compared with the
single-petal varieties, the double-petal varieties of ornamental pomegranates have higher
ornamental value and wider garden application potential. Therefore, the genetic variation
characteristics between the two varieties of ornamental pomegranates deserved further
study. In this study, we found that the number of SNPs and InDels in the double-petal
varieties was significantly higher than that in the single-petal varieties using whole genome
re-sequencing technology, but there was no significant difference in the number of SNPs
and InDels between varieties of different flower colors, indicating that the genetic variations
among varieties of different flower types of ornamental pomegranates were more abundant
than that among varieties of different flower colors. This also supported the previous
researchers’ finding that the single-petal varieties and the double-petal varieties were
clustered in different branches through quantitative classification and molecular markers.
In cluster analysis and principal component analysis, pomegranates were first classified
according to flower type, and flower color was the second classification standard [18]. We
also found that the number of genomic SNPs and InDels had a strong positive correlation
with the morphological parameters, and the correlation coefficient was higher than that
of SNPs and InDels located in the coding regions. These results indicated that the genetic
differences between the two kinds of varieties were closely related to the flower type
phenotype in the whole genome regions, but the variations that were related to the flower
type phenotype might be only a small part of the differences in the coding regions. Further
research also showed that SNPs and InDels closely related to flower phenotypic traits were
mainly located in the intergenic region. This result supported the previous findings that
miRNAs targeting transcription factors and hormone-related regulatory factors involved
in pomegranate fruit development were located in the intergenic region [31], indicating
that the intergenic region has an important role in pomegranate development. In addition,
we found that the variety had no significant effect on the number of CNVs in the genome
or coding region, but the numbers of CNVs in the red flower varieties were the largest,
followed by the pink flower varieties, and the white flower varieties were the least, indi-
cating that CNVs affecting gene expressions by disturbing gene activities and changing
gene dosages might not participate in the flower development, but in the anthocyanin
accumulation process.

Single nucleotide polymorphism heterozygosity is related to the abundance of parental
resources, and SNP heterozygosity in citrus, soybean, and other plants is significantly
related to phenotypic characteristics [18,32,33]. However, this study found that the single-
or double-petal variety had no significant effect on the SNP heterozygosity in ornamental
pomegranate, indicating that ornamental pomegranate varieties may have undergone a
complex natural selection and artificial breeding. Further analysis showed that the variety
had no significant impact on the number of synonymous SNPs in the coding region but had
a very significant impact on the number of non-synonymous SNPs in the coding region.
Furthermore, it was found that Nonsyn_CDS_SNP were strongly positively correlated
with the morphological parameters, indicating that Nonsyn_CDS_SNP was important to
distinguish between single- and double petal-varieties.

According to genome variation studies of tomato, rice, apple, and other plants, it was
found that the InDels number was generally less than the SNP number [24,34,35], which was
consistent with our results. As with the SNPs, this study found that single- or double-petal
variety had a very significant impact on the InDel number in the whole genome but had no
significant impact on the InDels number in the CDS region. With further investigation, we
found that the variety had a significant impact on the 3X_shiftMutation_CDS_InDel number,
and the 3X_shiftMutation_CDS_InDel number was strongly positively correlated with the
phenotypic parameters, indicating that 3X_shiftMutation_CDS_InDel were important for
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distinguishing between the single-petal and double-petal varieties. Interestingly, within
15 bases that were inserted or deleted in the genome, the number of InDels of an even
length was more than the number of InDels that were adjacent to them of an odd length.
However, the law between the length and number of InDels in apples, millet, and other
plants is different from this study. They generally follow the law that the longer the length
is, the less the number of InDels [36,37]. Therefore, it is speculated that the findings in this
study may be specific to pomegranates and very different from species such as grapes [38].
Additionally, we also found that the number of InDels with a length of three or a multiple
of three was more than the number of adjacent InDels with a length that was not a multiple
of three. This is because DNA mutations with lengths of three or multiple of three will not
cause a frameshift, thus, avoiding fatal damage.

This study screened 15 candidate genes that were related to petalization, most of
which were reported to be involved in reproductive development. Auxin affects stamen
development and petal growth and YUC1 encodes an important rate-limiting enzyme in
the auxin synthesis pathway [39,40]. Yan [41] found that the overexpression of YUC1 led
to the overproduction of auxin and the poor development of the stamens, while variation
in YUC1 led to serious defects in the flower type development [42]. The cystathionine
β-synthase domain proteins have the function of maintaining the balance of the redox
reaction in the cells. In mutant plants, the scavenging capacity of active oxygen is reduced,
the anthers are short and white, and there are no pollen grains [43]. Then, the phospho-
rus transporter gene, PHO1, can regulate grain filling and phosphorus distribution in
crops [44,45] but there have been no studies on flower development. Additionally, the
receptor-like protein kinase gene, RLK, regulates a series of biological processes, such as
plant development, stress resistance, and hormone perception. It also plays an important
role in the development of petunia pollen [46]. Moreover, the CCCH-type zinc finger pro-
tein is a transcription factor with a typical zinc finger structure. Liu [47] found that the C3H
gene had the highest expression in the stamens of Chimonanthus praecox, and transgenic
Arabidopsis thaliana had early flowering and abnormal stamen. Then, the pentatricopeptide
repeat protein is an RNA-binding protein that participates in many post-transcriptional
regulatory processes, such as splicing, editing, stabilization, and translation, and it plays
a key role in cytoplasmic male sterility [48,49]. Furthermore, the ribosomal protein L23 is
involved in the secretion and folding of new proteins. Moreover, the L23 gene is expressed
in inflorescences and other tissues in Arabidopsis thaliana, and the reproductive organs in
mutant plants are deformed [50]. Additionally, STPK catalyzes the phosphorylation of
serine and threonine residues on proteins, which is negatively regulated by the flower
development gene AGAMOUS in Arabidopsis thaliana [51] and determines the number of
female flowers and spike length in maize [52]. Moreover, AGAMOUS, APETALA1, and
APETALA2 resulted in more expression in brebas than in the main crop as reported in a
recent investigation on Ficus carica [53]. Palmitoyltransferase catalyzes the palmitoylation
modification of proteins [54], and pollen tube growth is defective in mutant plants [55].
The effect of these mutant genes on the petalization of ornamental pomegranate is worthy
of further study.

5. Conclusions

In this paper, the genomic variation between single- and double-petal varieties was
identified. The results showed that the number of SNPs and InDels caused by the mu-
tation was larger than the number of SVs and CNVs caused by the recombination. The
number of SNPs and InDels in the double-petal varieties was significantly higher than
that in the single-petal varieties, and there was no significant difference in the number
of SNPs and InDels between varieties of different flower colors, supporting the previous
classification of pomegranate according to flower type. The variety had no significant
effect on the SV and CNV numbers. In addition, the number of Nonsyn_CDS_SNP and
3X_shiftMutation_CDS_InDel was strongly positively correlated with the morphological
parameters, showing that these two kinds of variants have an important influence on the
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phenotypic difference between the single- and double-petal varieties. Lastly, fifteen mutant
genes were screened out from Nonsyn_CDS_SNPs and 3X_shiftMutation_CDS_InDels
among the three groups of varieties and they were mainly involved in hormone pathways
and stress responses, transcription and post-transcription regulation, translation, and post-
translation regulation, and purine metabolism. This paper provides genomic mutation
data between the single- and double-petal varieties and lays a theoretical foundation for
double-flower molecular breeding in ornamental pomegranate. Further functional verifica-
tion of mutation genes will provide insight and enable a deeper understanding of genetic
involvement in the regulation of floral organ development.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/horticulturae9030361/s1, Table S1: Correlation coefficient between
SNP, InDel, SV, CNV and morphological parameters; Table S2: SNP annotations of six ornamental
pomegranate varieties; Table S3: Correlation coefficient between different SNP types and morphologi-
cal parameters; Table S4: InDel annotations of six ornamental pomegranate varieties; Table S5: Correlation
coefficient between different InDel types and morphological parameters; Table S6: Statistics of SV
type in six ornamental pomegranate varieties; Table S7: Statistics of CNV type in six ornamen-
tal pomegranate varieties; Figure S1: Enrichment map of GO cell components of variant genes
between ‘Taiansanbaitian’ and ‘Luoyangbaimasi’; Figure S2: Enrichment map of GO biological
process of variant genes between ‘Taiansanbaitian’ and ‘Luoyangbaimasi’; Figure S3: Enrichment
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