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Abstract: Carbohydrates play a key role in apple fruit growth and development. Carbohydrates
are needed for cell division/expansion, regulate fruitlet abscission, and influence fruit maturation
and quality. Current methods to quantify fruit carbohydrates are labor intensive and expensive. We
quantified carbohydrates throughout a growing season in two cultivars and evaluated the use of
near infrared spectroscopy (NIR) to predict apple carbohydrate content throughout changes in fruit
development. Carbohydrates were quantified with high performance liquid chromatography (HPLC)
at five timepoints between early fruitlet growth and harvest in ‘Gala’ and ‘Red Delicious’ apples.
NIR spectra was collected for freeze-dried fruit samples using a benchtop near infrared spectrometer.
Sorbitol was the major carbohydrate early in the growing season (~40% of total carbohydrates).
However, the relative contribution of sorbitol to total carbohydrates rapidly decreased by 59 days
after full bloom (<10%). The proportion of fructose to total carbohydrates increased throughout fruit
development (40–50%). Three distinct periods of fruit development, early, mid-season, and late,
were found over all sampling dates using principal component analysis. The first (PC1) and second
(PC2) principal components accounted for 90% of the variation in the data, samples separated among
sampling date along PC1. Partial least squares regression was used to build the models by calibrating
carbohydrates quantified with HPLC and measured reflectance spectra. The NIR models reliably
predicted the content of fructose, glucose, sorbitol, sucrose, starch, and total soluble sugars for both
‘Gala’ and ‘Red Delicious’; r2 ranged from 0.60 to 0.96. These results show that NIR can accurately
estimate carbohydrates throughout the growing season and offers an efficient alternative to liquid or
gas chromatography.

Keywords: apple; fruit development; carbohydrate quantification; near infrared spectroscopy

1. Introduction

Carbohydrates are critical for apple fruit growth, abscission, quality at harvest, and
storage life [1–5]. Carbohydrate shortage has been identified as a key signal in the cascade
of events that lead to fruitlet abscission [3,5]. Early reduction of crop load increases
carbohydrate availability and size of remaining fruit [1]. Carbohydrates continue to play
a role following harvest, as dry matter content at harvest influence soluble solids content
following fruit storage [4].

Carbohydrate reserves stored in roots and woody tissues support development in
early spring [6,7]. As stored carbohydrates are exhausted after the bloom phase, early fruit
growth is supported by spur leaves [8]. Apples and other fruit have limited photosynthetic
capacity, primarily relying on imported carbohydrates for metabolism [9]. Carbohydrates
are most limiting early in the season as the pool of produced carbohydrates is relatively low
and there are newly developing shoots and fruits are competing for carbohydrates along
with roots and storage tissues [8,10]. Bourse shoot leaves become an increasingly larger
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contributor of carbohydrates as the growing season continues (Figure 1). Extension shoots
(those developing from the terminal bud of the main branch) begin to export carbohydrates
to fruit once 10–12 leaves have fully expanded [8]. Carbohydrates are transported to
actively growing shoot tips until the terminal bud is set, typically within a couple of
months after bloom. Fruit are a major sink for carbohydrates until they are harvested.
Carbohydrates are transported to support root growth and respiration throughout the
growing season. Following harvest, most carbohydrates are transported to roots and
storage tissue to support respiration during dormancy [11].
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Figure 1. Apples develop in clusters of 5–6 fruit. Spur leaves emerge first and are the main source
of photosynthates for early fruit development. As the bourse shoot develops, its larger leaves
produce more photosynthates than the smaller spur leaves, contributing a greater percentage of
photosynthates for fruit growth and development. K = king fruit; L = lateral fruit; S = spur leaf;
B = bourse shoot.

The primary carbohydrate translocated to apple fruit is sorbitol, a sugar-alcohol, which
is then metabolized into fructose, galactose, glucose, myo-inositol, raffinose, stachyose,
starch, or sucrose in the fruit [2,10]. For the first three weeks after bloom, carbohydrates
fuel cell division. Accumulation of sugars in the vacuole supports cell expansion by
creating osmotic pressure, pulling water into the cell. Starches and organic acids are stored
during mid-season fruit growth for use in fruit maturation and ripening. Carbohydrates
also provide the carbon source for amino acids and secondary metabolites [12] that aid
development of aroma and flavor volatiles.

Environmental, physiological, and genetic factors contribute to variability in apple fruit
carbohydrate levels. ‘McIntosh’, ‘Gala’, and ‘Mutsu’ fruit positioned in sun-exposed portions
of the canopy had lower starch, sorbitol and sucrose levels than interior, shaded, fruit [13].
Sun exposed fruit had correspondingly higher levels of glucose and fructose than interior
fruit [13]. The increased sugars of sun-exposed fruit may result from higher metabolic rates
and carbohydrate transport from leaves with higher rates of photosynthesis [13].

Apple fruits develop from clusters of 5–6 flowers (Figure 1). The central (king) flower
blooms first and is developmentally advanced relative to the lateral fruitlets. King fruitlets
have higher levels of carbohydrates compared to lateral fruitlets at bloom [14], and these
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early differences in carbohydrate availability and growth rates can lead to larger fruit at
harvest [1]. Additionally, carbohydrate levels vary within the fruit tissue. Starch, glucose,
and sucrose levels were found to be higher in the peel than in the cortex [13], while sorbitol
concentrations are lower in the cortex than in the pith throughout fruit development [2].

Carbohydrate levels vary among cultivars. Feng et al. [13] found that ‘McIntosh’
apples had lower concentrations of starch, but higher glucose and fructose than ‘Gala’ and
‘Mutsu’ at harvest. In a comparison of seven apple cultivars, total soluble carbohydrates
ranged between 615–716 g kg−1 dry matter [15]. A general inverse relationship was found
between sucrose and glucose/fructose levels, as cultivars with higher levels of sucrose at
harvest had lower levels of glucose and fructose [15].

Jing and Malladi [2] used principal component analysis to identify three distinct
periods of fruit development in ‘Golden Delicious’ metabolite concentration. These pe-
riods were defined in respect to days after full bloom (DAFB) and categorized as early
(11–37 DAFB); middle (37–58 DAFB); and late (58–118 DAFB) fruit development. Changes
in concentration of fructose, glucose and sorbitol contributed most to these temporal group-
ings [2]. In ‘Honeycrisp’, a rapid decrease in fruit sorbitol content was found over the
growing season [16]. In contrast, fructose and sucrose concentration increased through-
out the growing season, while starch reached a maximum at and then rapidly decreased
~7 weeks before harvest.

The multiple factors affecting type and amount of apple fruit carbohydrates poses
challenges when designing studies, as sugar extraction, identification, and quantification by
wet chemistry is laborious and costly. Efforts to provide low-cost, efficient methods to study
carbohydrates rely on reflectance spectroscopy that relate the absorbance of light by carbo-
hydrates to the prediction of their quantity in a sample. Organic constituents and water
absorb light differentially in these wavelengths and statistical models can be developed to
estimate constituent quantity of a sample based on differences in reflectance/transmittance.
The multivariate regression techniques of principal component regression, partial least
squares regression (PLS), or artificial neural networks are typically used to “calibrate” NIR
spectra to a destructive measurement [17].

Several spectroscopic methods have been evaluated for application in fruit. Fourier-
transformed infrared spectroscopy accurately estimated individual carbohydrate content
in multiple fruit juices [18]. An iodine stain was used to improve detection of starch in
woody with visible light spectroscopy [19]. Near infrared spectroscopy (NIRs) has been
used as a method to predict non-structural carbohydrate levels efficiently and rapidly in
multiple tree tissue types (e.g., woody and leaf) [14,20]; protein, water, and oil content
of soybean seeds [21]; and dry matter content in many fruit species [22]. NIRs measures
the reflectance or transmittance spectra of a sample with wavelengths between ~780 to
2600 nm. NIR has accurately predicted apple vitamin C, polyphenol, and soluble solids
content in mature fruit of 37 cultivars [23]. NIR models have also been built to predict
individual carbohydrates, including glucose, xylose, sucrose, and fructose, in ‘Braeburn’
and ‘Cripps Pink’ at harvest and throughout fruit storage [24]. Collectively, these works
show the utility of spectroscopy to predict plant constituents in a range of situations.

Development of NIR models to predict carbohydrate content throughout the growing
season for multiple cultivars offers a more efficient method to study apple carbohydrate
content. The goals of this study were to: (1) quantify carbohydrates throughout a growing
season in two cultivars and (2) develop robust NIR models that could be to predict carbo-
hydrate content. To the best of our knowledge, NIR models to predict carbohydrate content
throughout the growing season for multiple apple cultivars have not been developed. In
this study, carbohydrates in apple fruit of two cultivars at five sampling dates and two fruit
cluster positions were quantified by high performance liquid chromatography (HPLC). The
NIR models were developed by calibrating NIR spectra and carbohydrates obtained from
HPLC. The models were evaluated by model statistics.
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2. Materials and Methods
2.1. Plant Material

All fruit were collected from mature ‘Red Delicious Oregon Spur II’/‘MM.111′ and
‘Ultima Gala’/‘M.9′ trees at North Carolina State University’s Mountain Horticultural Research
and Extension Center in Mills River, NC (35.3884◦ N, 82.5668◦ W). ‘Red Delicious’ and ‘Gala’
blocks were eighteen and seven years old, respectively. Full bloom date was 7 April 2020 for
both cultivars. Trees were maintained in accordance with local recommendations. In 2020,
twenty king and twenty lateral fruits were randomly collected throughout each block for
each cultivar on 28 April, 6 May, 2 June, 13 July, and 4 August. There were no ‘Red Delicious’
king fruits collected on June 2 and no ‘Red Delicious’ collected on 4 August. Sampling dates
are summarized in Table 1. Upon collection, fruit were punctured with a dissecting needle
in multiple positions to aid in freeze-drying, stored at −20 ◦C then transported to Plant for
Human Health Institute, Kannapolis NC on ice. Samples were held at −80 ◦C overnight, then
freeze dried (VirTis LyoTroll, SP Scientific, Warminster, PA, USA).

Table 1. Sampling date in Days after full bloom (DAFB) of ‘Gala’ and ‘Red Delicious’ fruit by fruit
position in spur (king or lateral). Fruit collected from North Carolina State University’s Mountain
Horticultural Crops Research Station in Mills River, NC in 2020.

‘Gala’ ‘Red Delicious’

Sampling Date King z Lateral z King z Lateral z

Sample 1 21 DAFB y 21 DAFB 21 DAFB 21 DAFB
Sample 2 36 DAFB 36 DAFB 36 DAFB 36 DAFB
Sample 3 59 DAFB 59 DAFB - 59 DAFB
Sample 4 100 DAFB 100 DAFB 100 DAFB 100 DAFB
Sample 5 122 DAFB 122 DAFB - -

z 7 April 2020 is full bloom date; y DAFB = Days after full bloom.

2.2. Near Infrared Spectroscopy and Carbohydrate Quantification

NIR spectra from 3594 to 12,489 cm−1 were collected with a FT-NIR Spectrometer
(Multipurpose Analyzer (MPA); Bruker Optics, Billerica, MA, USA) in reflectance mode.
The MPA was equipped with an integrating sphere to provide diffuse reflectance mea-
surements and was controlled by OPUS software version 7.5.18 (Bruker Optics, Billerica,
MA, USA). More than 3 g of the frozen dried powder was transferred into NIR glass vials
(I17723; Bruker Optics, Billerica, MA, USA) and measured with resolution of 16 cm−1 and
64 scans. Spectral measurement was obtained at room temperature (22–23 ◦C) and 35–40%
relative humidity.

For the first three harvest dates, freeze-dried whole fruit were crushed in plastic bags
and transferred to 50 mL centrifuge tubes. Two 9 mm stainless steel balls were added, and
material was ground to a fine powder using a genogrinder (SPEX 2010, Metuchen, NJ,
USA). Fruit powders were combined, and 3 g of tissue measured into glass vials for NIR
analysis. For later harvest dates where apples were larger, each freeze-dried apple’s spectra
was captured with NIR, then 0.8 cm plug of cortex material was removed with a cork borer,
samples ground and measured on NIR as described above.

Soluble sugars (fructose, sucrose, glucose) and starch were extracted from 0.01 g of
powdered sample using a hot ethanol extraction method [25]. Starch was analyzed by
enzymatic digestion to glucose using α-amylase (Ref 10102914001; Sigma-Aldrich, St. Louis,
MO, USA) and α-amyloglucosidase (A4720–25MG; Sigma-Aldrich, St. Louis, MO, USA) [25].
The glucose was analyzed by HPLC and expressed as glucose equivalents. Sugar and starch
identification and quantification was done by HPLC (Hitachi LaChrom, Hitachi Ltd., Tokoyo,
Japan), following the method outlined in [26]. Briefly, the HPLC system was equipped
with a refractive index detector, controlled temperature auto sampler (4 ◦C), and column
compartment (65 ◦C). A Rezex RCM-Monosaccharide Ca + 2 (8%), OOH0130-KO column
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with Carbo-Ca 4 × 3.0 mm ID, AJO4493 guard cartridge (Phenomenex) was used to separate
sugars using a distilled deionized water mobile phase at a flow rate of 0.6 mL min−1.

2.3. Statistical Analyses

One-way analysis of variance (ANOVA) was used to identify significant differences be-
tween king and lateral fruits within each cultivar and sampling date combination. Principal
components analysis (PCA) was conducted on concentration of individual carbohydrates
from each sample (two cultivars, two cluster positions, and five sampling dates). Principal
components were calculated using the PCA function in FactoMineR package in RStudio
(21; Version 3.6.0). Principal components analysis (PCA) was done on concentration of
individual carbohydrates from each sample (two cultivars, two cluster positions, and five
sampling dates). NIR models were built by calibrating NIR spectra against carbohydrate
content with partial least squares (PLS) regression [27].

3. Results and Discussion
3.1. Measured Carbohydrate Content with HPLC

‘Red Delicious’ and ‘Gala’ had similar patterns of accumulation of individual carbo-
hydrates using HPLC data (Figure 2). Sorbitol was the main carbohydrate during early
fruit development, accounting for ~40% of total carbohydrates (Figure 2). Sorbitol levels
then rapidly decreased in the remaining sampling dates. In contrast, fructose and sucrose
increased throughout the growing season, with fructose the primary constituent from June
until the last sampling date. Although glucose content increased for ‘Red Delicious’ with
sampling date, it remained mostly constant for ‘Gala’ (Table 2). Starch levels increased
for both cultivars until July, then began to degrade for ‘Gala’ (Table 2). ‘Gala’ was ripe
by the last sampling date; a similar starch degradation pattern might have been seen just
before harvest for the later ripening ‘Red Delicious’. Similar trends in individual carbo-
hydrates throughout the growing season for ‘Golden Delicious’ [2], ‘Greensleeves’ [28],
‘Honeycrisp’ [16], and ‘McIntosh’ [29].
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Table 2. Total content of fructose, glucose, sorbitol, starch, and sucrose (g mg−1 dry weight) from
‘Red Delicious’ and ‘Gala’ fruit collected throughout the 2020 growing season in Mills River, NC.

‘Gala’

Fructose z Glucose z Sorbitol z Starch z Sucrose z

DAFB y King x Lateral King Lateral King Lateral King Lateral King Lateral

21 68.0 56.2 58.5 49.3 93.3 93.6 7.86 7.3 0.7 0.4
36 78.6 78.3 67.7 68.2 67.1 72.0 4.4 * 1.8 * 0 0
59 176.7 158.3 106.4 105.3 31.7 36.9 108.3 ** 65.2 ** 33.4 * 20.2 *
100 386.6 392.5 70.5 62.4 5.7 5.6 164.8 * 183.5 * 106.9 117.9
122 422.1 391.2 79.3 70.4 4.1 4.0 157.2 140.3 150.9 * 128.8 *

‘Red Delicious’

21 72.2 * 48.7 * 63.9 * 46.4 * 80.3 85.2 3.3 * 5.3 * 0 0
36 88.1 67.5 78.4 60.9 53.3 53.2 3.0 3.8 0 0
59 - 162.6 - 128.7 - 21.6 - 68.4 - 13.5
100 306.4 282.5 134.3 131.5 3.8 4.4 264.1 ** 229.9 ** 45.9 45.4

z Concentration in mg × g−1DW; y DAFB = Days after full bloom; 7 April 2020 was full bloom date; x Fruit
population compared within each cultivar and sampling date by position, king and lateral using one-way ANOVA;
* p < 0.05; ** p < 0.001.

Carbohydrate content was similar between fruit position (king vs. lateral) within
sampling dates and cultivar for all but a few instances (Table 2). Starch concentrations
were higher for king fruit at 36 and 59 DAFB for ‘Gala’ and 21 and 100 DAFB for ‘Red
Delicious’. ‘Gala’ lateral fruit had higher starch levels at 100 DAFB. ‘Red Delicious’ king
fruit collected on 21 DAFB had higher fructose and glucose concentrations than lateral
fruit. Sucrose levels were higher in ‘Gala’ king fruit compared to lateral fruit at 59 and
122 DAFB. Inconsistent carbohydrate differences between king and lateral fruit throughout
development align with previous results [11]. Early in fruit development carbohydrates
are consumed to support cell division and accumulate to drive cell expansion. The higher
levels of glucose and fructose at 21 DAFB in king ‘Red Delicious’ fruit may signal higher
cell expansion rates than in lateral fruit at this stage.

Principal component analysis (PCA) was used to analyze carbohydrate composition
between two cultivars, five sampling dates, and two fruit positions in the spur. Ninety
percent of the variance was explained by the principal components PC1 (65.3%) and PC2
(24.7%) that were derived from PCA. Variations among sampling dates accounted for the
major separations in data, separated across PC1 (Figure 3). The data grouped into three
areas consisting of: (1) 21 and 36 DAFB (early fruit development; EFD); (2) 59 DAFB (mid-
fruit development; MFD); (3) 100 and 122 DAFB (late fruit development; LFD). Cultivars
had minimal differences for EFD and MFD; the difference between cultivars expanded
LFD. These three temporal phases of fruit development align with results of Jing and
Malladi in ‘Golden Delicious’ [2] and distinct periods of metabolism in multiple fruit
species [30,31]. Accordingly, the nomenclature for EFD, MFD, and LFD is borrowed from
Jing and Malladi [2]. In this study and that of Jing and Malladi [2], fruit were grown in
the Southern Appalachian region of the United States, which is the southern commercial
most apple growing region in North America. Other growing regions, particularly those
with cooler nights than in the Southern Appalachian region, may have lengthened ripening
periods and a different temporal pattern of carbohydrate composition.

Sorbitol contributed most to variations along PC1 (Figure 3). The clear separation
of sorbitol from glucose, starch, fructose, and sucrose along PC1, which is the axis as-
sociated with variations throughout the season, supports the finding that sorbitol is the
major constituent during EFD and then rapidly decreases. This temporal separation of
sorbitol from the other carbohydrates analyzed in this study was also reported by Jing and
Malladi [2]. Individual carbohydrates, aside from sorbitol, separated along PC2 (Figure 3).
Glucose contributed most to PC2 and was clearly separated from fructose and sucrose,
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which clustered together (Figure 3). This finding differs from Jing and Malladi [2], who
found greater separation of sucrose from glucose and fructose along PC2 in ‘Golden Deli-
cious’. The relative contribution of fructose, glucose, and sucrose to total carbohydrates
appears to differ among apple cultivars. Suni et al. [15] found that seven apple cultivars
with high levels of sucrose at harvest had low glucose/fructose, while those higher in
glucose/fructose had lower sucrose. This variation in the inverse relationship between
sucrose and glucose/fructose between cultivars may contribute to the discrepancy between
the Jing and Malladi [2] and the current study in the relative contribution of sucrose and
glucose to temporal patterns in carbohydrate content.
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Figure 3. Principal component analysis of carbohydrate content for ‘Red Delicious’ and ‘Gala’ fruit
collected throughout the 2020 growing season in Mills River, NC. with loading plot of variables
(individual carbohydrates) used for PCA.

During LFD, cultivars separated along PC2. At 100 DAFB there is a clear separation
along PC2 of ‘Gala’ and ‘Red Delicious’. From the loading plot, glucose is contributing
most to variation along PC2. Glucose and starch concentrations at 100 DAFB are most
likely contributing to separation of cultivars at this time point (Figure 3). At 100 DAFB,
concentrations of glucose and starch were ~ 132 and 250 mg × g−1DW for ‘Red Delicious’
compared to ~ 66 and 170 mg × g−1DW, respectively, for ‘Gala’ (Table 2). We hypothesize
that this is mainly due to early degradation of starch and glucose in the earlier ripening
‘Gala’. These temporal patterns in carbohydrates signals that prediction of carbohydrates
destructively or non-destructively with NIR would be a valuable tool to forecast apple
maturity date.

3.2. Carbohydrate Prediction with Near Infrared Spectroscopy

Near infrared spectroscopy accurately predicted individual carbohydrate and total
soluble sugars (TSS) content across all measurement dates, cultivars, and fruit positions for
whole fruit samples (Figure 4). Table 3 summarizes the average, minimum, and maximum
measured values of carbohydrates determined using HPLC analysis of apple cultivars
across the growing season (n = 93). These values were used to construct and validate the
NIRs model. r2 values between predicted and measured carbohydrates ranged from 0.97
for sorbitol to 0.64 for glucose (Table 4). The usefulness and accuracy of developed NIRs
models is evaluated using the coefficient of determination (r2) and residual prediction
deviation (RPD) values [32]. Models with a r2 of 0.60–0.82 can be used for screening and
approximate quantitative predictions, models with r2 values between 0.83 and 0.90 can be
used for many applications, while models with r2 value of 0.92–0.96 are suitable for most
applications including quality assurance [32].



Horticulturae 2023, 9, 279 8 of 12

Horticulturae 2023, 9, x FOR PEER REVIEW 8 of 13 
 

 

cultivars across the growing season (n = 93). These values were used to construct and val-

idate the NIRs model. r2 values between predicted and measured carbohydrates ranged 

from 0.97 for sorbitol to 0.64 for glucose (Table 4). The usefulness and accuracy of devel-

oped NIRs models is evaluated using the coefficient of determination (r2) and residual 

prediction deviation (RPD) values [32]. Models with a r2 of 0.60–0.82 can be used for 

screening and approximate quantitative predictions, models with r2 values between 0.83 

and 0.90 can be used for many applications, while models with r2 value of 0.92–0.96 are 

suitable for most applications including quality assurance [32]. 

 

Figure 4. Fructose, glucose, sorbitol, starch, sucrose, and total soluble sugar obtained by HPLC 

quantification of cortex tissue versus NIR predicted values for all samples collected of ‘Gala’ and 

‘Red Delicious’ fruit throughout the 2020 growing season in Mills River, NC. Samples for NIR mod-

els are from whole fruit (peel, cortex, and pith). 

  

Figure 4. Fructose, glucose, sorbitol, starch, sucrose, and total soluble sugar obtained by HPLC
quantification of cortex tissue versus NIR predicted values for all samples collected of ‘Gala’ and
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are from whole fruit (peel, cortex, and pith).

Table 3. Soluble carbohydrates, starch, and sorbitol values obtained by HPLC from freeze dried apple
fruit powders (n = 93) used to construct NIR models.

Sugar Mean z Minimum z Maximum z

Fructose 291 43 496
Glucose 85 37 169
Sorbitol 21 2 101
Sucrose 78 0 207
Starch 133 1 299

Total Soluble Sugar 475 136 785
z Concentration in mg × g−1DW.
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Table 4. Performance statistics for NIR models using partial least squares regression from reflectance
spectra of cortex-only compared to whole apple (peel, cortex, and pith) samples (n = 93).

r2 z RMSEP y RPD x

Sugar Cortex w Peel, Cortex, Pith Cortex Peel, Cortex, Pith Cortex Peel, Cortex, Pith

Fructose 0.89 0.87 36.70 39.40 3.12 2.80
Glucose 0.88 0.60 10.40 22.40 2.92 1.60
Sorbitol 0.97 0.96 3.62 3.97 5.72 5.47
Sucrose 0.92 0.84 15.00 21.30 3.54 2.47
Starch 0.94 0.85 16.90 26.80 4.05 2.63

Total Soluble Sugar 0.92 0.87 49.60 61.90 3.58 2.83
z r2 = coefficient of determination; y RMSEP = Root Mean Square Error of prediction; x RPD = Residual Prediction
Deviation; w Sufficient cortex tissue for measurement of NIR spectra could only be obtained on 100 and 122 days
after full bloom.

The prediction accuracies seen with benchtop NIR in the current study were higher
than a previous study using a portable visible/NIR spectrophotometer [33]. Zhang et al. [33]
built individual models for 8 cultivars to predict TSS and dry matter content for fruit at
harvest and following storage. The r2 values for TSS were 0.81 and 0.06 for the ‘Gala’
and ‘Red Delicious’ models, respectively [33]. The r2 values for the models developed in
this study for TSS were 0.92 and 0.87 for the cortex-only and whole fruit scanned dataset,
respectively (Table 4). These differences in prediction accuracy are likely due to greater
variability in reflectance spectra and the influence of water content with non-destructively
sampled fruit compared to freeze dried tissue used in the current study.

Better prediction was obtained with the models constructed from NIR spectra obtained
from cortex-only, freeze dried powder samples compared to whole fruit samples (Figures 4 and 5).
Sufficient cortex was only available for fruit at 100 and 122 DAFB. Whole fruits were ground
and spectra were captured for 21, 36, and 59 DAFB and this spectra was used for calibration
of both the cortex-only and whole fruit prediction models. Jing and Malladi [2] found that
carbohydrate content varied from cortex to pith and Feng et al. [13] saw greater starch
concentrations in the peel than in the cortex. The variations among tissues might contribute
to the higher accuracy of cortex-only samples, due to those tissues being more homogenous.
Glucose values differed the most between values from HPLC and those from NIR whole
fruit samples (r2 = 0.64) or NIR cortex only (r2 = 0.88). For all other carbohydrates and total
soluble sugar, the difference in r2 was less than 0.07 between whole fruit and cortex-only
NIR models. NIR models developed by Eisenstecken et al. [24] for combined ‘Braeburn’
and ‘Cripps Pink’ had similar r2 to predict glucose (r2 = 0.83), and lower r2 values for
sucrose (r2 = 0.74) and fructose (r2 = 0.55) than in the current study.

Whole fruit compared to cortex-only samples showed a relatively small decrease in
accuracy of carbohydrate prediction with the exception of glucose. Feng et al. [13] found
that glucose, starch, and sucrose had higher concentrations in the peel than in the flesh,
while fructose was higher in the flesh than in the peel. These results may similarly explain
the drop in r2 for glucose, starch, and sucrose. The differences across tissue type for glucose,
starch, and sucrose may have added greater variability for the whole fruit compared to
cortex-only samples. As cortex tissue was the major constituent of samples, higher levels of
fructose in the cortex may indicate that fructose levels between cortex-only and whole fruit
samples differ minimally.
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Figure 5. Fructose, glucose, sorbitol, starch, sucrose, and total soluble sugar values from HPLC
quantification of cortex tissue versus predicted value with NIR for all samples collected of ‘Gala’ and
‘Red Delicious’ fruit throughout the 2020 growing season in Mills River, NC. Samples for NIR models
from cortex only for collection dates 100 and 122 days after full bloom.

Using freeze dried whole fruits offer the advantage of increased efficiency compared
to preparing cortex-only samples. The decrease in accuracy between cortex-only and whole
fruit models may have been further increased had sufficient cortex tissue been able to
be sampled for NIR measurement on the first three measurement dates. In this case the
cortex-only model would have more tissue specific over the entire growing season. A
cortex-only sample may be more appropriate where higher accuracy with NIR is needed,
particularly in early season fruit development when the cortex is a smaller constituent of
the fruit and differences between tissue types are magnified.

4. Conclusions

This study was designed to follow the changes in apple fruit carbohydrate content
and the ability of NIR to efficiently predict carbohydrates throughout a growing season in
two economically important cultivars. In this experiment using ‘Gala’ and ‘Red Delicious’
apples grown in the Southeastern United States, the seasonal stage of growth contributed
the most to fruit carbohydrate composition. The temporal patterns in fruit carbohydrate
concentration throughout the growing season align with numerous studies in other culti-
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vars. Sorbitol was the main constituent of carbohydrates early in the growing season, and
decreased through the rest of fruit development. Sucrose and fructose increased throughout
the growing season. Starch and glucose concentrations increased until mid-season, then
glucose remained constant and starch decreased. This study supports the findings of Jing
and Malladi [2] who established an early, middle, and late developmental period for apple
fruit. Carbohydrate variation occurred between cultivars and appeared to relate to ripening
patterns, while fruit carbohydrate composition was similar between physical positions of
king or lateral fruit cluster position. NIR offers a rapid method for researchers to quantify
carbohydrates and robustly predicted individual carbohydrates and total soluble sugars
between apple cultivars, fruit cluster position, and fruit development throughout the grow-
ing season. NIR can facilitate more efficient study of individual carbohydrates as it relates
to support for cell division/expansion, ripening patterns of starch degradation, and fruit
quality parameters during harvest and fruit storage.
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