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Abstract: Salinity is one of the major abiotic stresses in plants. The aim of the present study was
to determine the effects of salinity on relatively sensitive Zinnia elegans Jacq. ‘Zinnita Scarlet’ and
relatively tolerant Zinnia marylandica D.M. Spooner et al. ‘Double Zahara Fire Improved’ through
a comparative analysis of morphological, physiological, anatomic, and biochemical traits. Plants
were irrigated at five levels of salt concentrations (0 [control], 50, 100, 150, 200 mM NaCl) for three
weeks at one-day intervals in pots under greenhouse conditions. The effects of salinity stress on plant
growth parameters, ion leakage, the loss of turgidity, minimum fluorescence (FO

′), plant nutrient
elements, leaf anatomic parameters, stoma response to the application of light and abscisic acid
perfusion, proline content, chlorophyll a, b and total chlorophyll, and carotenoid content were
investigated. Differences in the stages and levels of plant response in the relatively sensitive and
relatively tolerant cultivar were determined. Proline accumulation appeared to be higher in Double
Zahara Fire Improved (D.Za.F.I.) than Zinnita Scarlet (Zi.S.) in the low concentration of salinity. After
the application of abscsic acid perfusion to intact leaf surfaces, the stomata of the relatively tolerant
cultivar D.Za.F.I. closed earlier (7 min) than Zi.S. (29 min). Ion leakage (32.3%) and Na accumulation
(0.9%) in the aerial parts increased dramatically for Zi.S in the 50 mM NaCl treatment. Moreover,
values of plant growth parameters, minimum fluorescence (FO

′), photosynthetic pigments, and plant
nutrient elements all showed a greater decreasing percentage in Zi.S. compared to D.Za.F.I. Stomatal
densities for both the abaxial and adaxial surfaces of the leaf decreased in parallel with the increase
in salt stress. Palisade parenchyma cell height and leaf thickness values decreased in Zi.S. as salinity
increased. In D.Za.F.I., leaf thickness increased by up to 100 mM NaCl while the height of palisade
parenchyma cells decreased under high salt stress conditions (100 mM and above). Recommendations
for future research include molecular-level evaluations and the study of how to increase salt tolerance
in these potentially valuable ornamental cultivars.

Keywords: abscisic acid; ion leakage; photosynthetic pigments; plant nutrients; proline; stoma

1. Introduction

Abiotic stress in plants can affect growth, quality, and yield. The salinity of soil and
water, already an important problem in arid and semiarid regions, is increasing due to
climate change, irrigation, and fertilization. Salinity caused by ≥4 dS m−1 EC (electrical
conductivity) negatively affects all plant growth stages, from seed germination through
phenological stages and productivity [1]. Under saline conditions, plants cannot take water
from the soil and can accumulate toxic levels of Na+ and Cl− ions. This osmotic and ionic
stress leads to reductions in cell and tissue elongation, and nutritional imbalance and
oxidative stress occur [2,3]. The negative effects of these physiological and biochemical
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processes cause plant growth to slow. Ratios of Na/K and Na/Ca are important for the
homeostasis of plants [4], but calcium and potassium uptake are reduced by sodium
uptake. High concentrations of chloride can cause chlorophyll to degrade, which leads to
a reduction in photosynthesis [5]. In combination, these effects significantly reduce plant
productivity. Plants respond to salinity in two phases: (1) stomata closure and reduced
growth and (2) a cytotoxic stage leading to death [6]. Many anatomical characteristics
that help the plant cope with salinity is found in salt-tolerant plants [7]. Anatomical
modifications of leaf tissues defined as markers of adaptation to abiotic stress include
the thickness of the mesophyll and epidermis and the size and density of the stomata [8].
Plants exposed to salinity generally show traits of succulence, thick cuticles, hairs on
stems and leaves, salt glands, and sunken stomata. Some reports indicate that salt stress
reduces the number of stomata, while others have determined that stomata and epidermis
cell numbers increase with the degree of salinity [7,9–11]. Waqas et al. [12] reported that
morphological traits, such as stomata density and aperture on the upper and lower sides
of leaves, greatly influence the response of the plant to changes in salinity. Abscisic acid
(ABA) is a hormone that helps plants respond to environmental stressors such as salinity
and drought by regulating stomatal closure and gene expression. Under environmental
stress, ABA plays a significant role in regulating the water status of plants by controlling
stomatal movement. ABA does this by manipulating the ion fluxes of the guard cells of
the stomata, which, in turn, controls the transpiration water loss of the plant and helps
it conserve water [13]. In this case, the determination of ABA perception capability with
stomata behavior might be important for the detection of the plant’s tolerance.

The determination of the salt stress tolerance of ornamental plants is crucial for
their selection and use in salty areas, as well as for the use of alternative (saline) water
sources. Bedding plants are an important group of ornamental plants that are widely
used in landscaping. Zinnia (Asteraceae family) is grown as an annual bedding plant used
throughout the world during the summer season. It can also be used as a cut flower and
potted plant. Zinnia has a wide diversity of vegetative characteristics, flower colors, and
flower morphology. These features make Zinnia a popular choice for use in landscaping,
gardening, and as a cut flower [14].

Studies examining the tolerance of Zinnia cultivars against salinity are limited to a
few cultivars. Markovic et al. [15] found that Z. elegans (MagellanTM Scarlet) was sen-
sitive under saline conditions. They revealed that this cultivar should not be planted in
saline areas due to negative effects on plant growth and flower parameters. In previous
work [16], we reported on antioxidant defense mechanisms of Zinnia marylandica ‘Double
Zahara Fire Improved’ and Zinnia elegans ‘Zinnita Scarlet’ cultivars under saline condi-
tions. These two cultivars can tolerate salinity up to 150 mM NaCl in terms of antioxidant
defense, SOD, and CAT enzyme activities, which increased significantly with 150 mM
NaCl in both Zinnia species but decreased with 200 mM NaCl. The highest GR enzyme
activity was found in 200 mM salinity at Z. marylandica ‘Double Zahara Fire Improved’.
In another work, 20 Zinnia cultivars were screened for germination under saline condi-
tions [17]. While the majority of Zinnia cultivars showed relatively high sensitivity to
salt stress at the germination stage, Dreamland Ivory and Dreamland Coral were more
tolerant. Macherla and McAvoy [18] determined that Zinnia elegans ‘Dreamland’ could be
irrigated with saline water up to 0.5 g L−1 NaCl (an EC of 1 dS m−1) in a 5-week production
cycle without negative effects on plant growth. Manivannan et al. [19] suggested that salt
stress led to important decreases in plant growth, biomass, photosynthetic parameters,
and pigments and increased the electrolyte leakage potential (ELP), lipid peroxidation,
and hydrogen peroxide level. Escalona et al. [20] found that salinity negatively affected
plant growth but not flowering in Zinnia elegans. Z. elegans cv. ‘Magellan’ was shown to
be relatively tolerant to salinity [21]. Niu et al. [22] reported that Z. marylandica ‘Zahara
Yellow’, ‘Zahara White’, ‘Zahara Scarlet’, ‘Zahara Rose Starlight’, ‘Zahara Fire’, and ‘Zahara
Coral Rose’ and Z. maritima ‘Solcito’ cultivars were sensitive to salinity (investigated saline
concentrations were 1.4 dS m−1 (nutrient solution, control), 3.0, 4.2, 6.0, and 8.2 dS m−1
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EC). Villarino and Mattson [23] reported that Z. angustifolia ‘Star Gold’ was sensitive
to salinity. Zivdar et al. [24] found that salinity reduced the germination parameters of
Zinnia, in contrast to Carter and Grieve [25], who showed that marketable flowers could
be produced up to 10 dS m−1 salinity when using Z. elegans cv. ‘Benary’s Giant Salmon
Rose’ and ‘Benary’s Giant Golden Yellow’. Based on these studies of Zinnia and the reports
that plants react differently to salinity at different developmental stages, we aimed to
determine the differences in the effects of salt stress on two cultivars, Z. elegans ‘Zi.S.’ and
Z. marylandica ‘D.Za.F.I’, which are considered to be relatively salt-sensitive and rela-
tively salt-tolerant [26], respectively. The study compared the morphological, biochemical,
anatomical, and physiological changes in the two cultivars in response to irrigation with
saline water.

2. Materials and Methods
2.1. Plant Material and Experimental Conditions

This study was carried out in the greenhouse of the Department of Horticulture,
Cukurova University in Adana, Turkey, during the summer of 2019 (19 May 2019–6 July
2019). In this study, seeds of Zinnia elegans Jacq. ‘Zinnita Scarlet’ (Z.S.) and Zinnia marylandica
D.M. Spooner et al. ‘Double Zahara Fire Improved’ (D.Za.F.I.) cultivars obtained from a
local seed distributor (Tasaco Farm, Antalya, Turkey) were used as plant material. The
average temperature was 32.9/19.7 ◦C; the average humidity was 54%.

2.2. Experimental Design and Treatments

In May 2019, the seeds of Zinnia cultivars were germinated in trays of peat-filled
cells, each with a diameter of 3 cm and a height of 4.5 cm. Municipal water was used for
irrigation. Once the seedlings had developed four leaves, they were transferred to 2-L
plastic pots containing a mixture of peat and perlite in a 2:1 ratio. After a 5-day adaptation
period, irrigation with NaCl solutions of different concentrations (0 mM [control], 50 mM,
100 mM, 150 mM, and 200 mM) was initiated and continued for three weeks on a daily basis.
Irrigation solutions were prepared using municipal water. The control group and the salt
treatment group were provided with macro and micronutrient solutions. The experiment
was conducted in a completely randomized design, with four replicates of five plants each,
for a total of 20 plants. The salinity treatments were terminated as soon as the first visible
symptoms of the damage, such as necrosis on the leaves or differences in plant height,
were observed.

2.3. Plant Growth Parameters

At the end of the study, the harvested plants were gently washed first with tap water
and then with distilled water to remove any remaining peat and perlite. Shoot length,
stem diameter, branch number, branch length, leaf width, and leaf length were determined.
After plants were divided into roots and shoots (leaves and stems), the fresh weights
of plants were recorded. The plants were then dried in an oven, and their dry weight
was determined.

2.4. Physiological Parameters
2.4.1. Ion Leakage

In order to determine ion leakage of plants, leaf discs (1 cm diameter) were taken from
young, fully expanded, and same-type leaves (second and third leaves from the apex). The
leaf discs were washed in distilled water and gently blotted dry. Leaf discs (n = 3) were
placed in each test tube, and the tubes were shaken for 4 h. The ion leakage in each sample
was determined with the EC meter (EC600 model, Extech Instruments) and accepted as the
first measurement (EC1). Leaf discs in the same solution were autoclaved; ion leakage at
room temperature was determined, and the final measurement (EC2) was accepted. Ion
leakage was calculated using the following Equation (1) [27].



Horticulturae 2023, 9, 247 4 of 24

Ion leakage (%) = (EC1/EC2) × 100 (1)

2.4.2. Loss of Turgidity

Fully expanded and young leaves (second and third leaves from the apex) were used
to determine the loss of turgidity under salt stress. First, the fresh weight (FW) of the leaf
discs (1 cm) was recorded, and the turgor weight (TW) was determined after the leaf discs
were soaked in distilled water for 4 h. The leaves were dried at 70 ◦C for 24 h, after which
the dry weight (DW) was determined [28].

For the calculation of turgor loss, the following Equation (2) was used:

Loss of Turgidity (%) = [(TW − FW)/TW] × 100 (2)

FW: Fresh Weight, TW: Turgor Weight

2.4.3. Minimum Fluorescence

The OJIP curve is a graph that shows how Chl fluorescence changes over time when
measured on dark-adapted samples. It has four distinct stages: “O”, “J”, “I”, and “P”.
“O” represents the minimal fluorescence (FO

′) caused by energy loss in antenna pigments
before it reaches the reaction centers. “J” represents the fluorescence at 2 ms, “I” represents
the fluorescence at 30 ms, and “P” represents the highest fluorescence. The OJIP curve
is a useful tool for understanding the process of photosynthesis [29]. In this study, we
measured the minimum fluorescence (FO

′) using a FluorPen FP100 fluorimeter (FluorPen
FP100, Photon System Instruments Ltd., Drasov, Czech Republic). At the end of the
experiment, readings were made on three leaves from each plant [30].

2.4.4. Ion Concentration Analysis

The dried sample of the roots and shoots was used to determine plant nutrient con-
centrations. The dry materials were ground and digested using the dry digestion method.
Sodium (Na+), calcium (Ca2+), magnesium (Mg2+), potassium (K+), phosphorus (P), Copper
(Cu2+), manganese (Mn2+), iron (Fe2+), and zinc (Zn2+) concentrations were determined by
inductively coupled plasma-atomic emission spectrometry (ICP-AES) [31]. After determin-
ing the ion concentrations, the Na+/K+ and Na+/Ca2+ ratios were calculated. Furthermore,
Cl− concentration was determined with a scientific chloride analyzer—Sherwood [32].

2.5. Anatomical Parameters
2.5.1. Preparation for Stomatal Examination

Leaf samples were taken early in the morning for stoma counting and measurements.
The stomatal density and size were measured from replicas of the abaxial and adaxial
epidermis of the leaf. In these samples, a piece of nail polish (transparent) was applied to
both sides of the lamina. The molds of the leaves were removed by pressing the leaves with
tape. The image of the removed molds was taken with a light microscope (Motic, BA210
Trinocular, Xiamen, Hong Kong, China). The Motic Images Plus 2.0 analyzer program
was used to determine the number, length, and width of the stomata in the photographed
preparations. Stoma width and length on the upper and lower surface of the leaf were
measured and determined as µm in the preparation photographs. In the preparations
photographed under the microscope, the stomata on the upper and lower surface of the
leaf were determined by counting the number of stomata per mm2.

2.5.2. Investigation of Stoma Behaviors against Light Application

In order to verify the behavior of the stomata against ABA perfusion, the responses
of the closed stomata in plant leaves to light were investigated. In order to examine the
motility of the stoma, the leaf of the intact plant was placed on a vertical microscope table
(Leica DM1000 LED, Leica Microsystems GmbH, Wetzlar, Germany) and images were
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recorded automatically every 60 s with the camera (Leica ICC500W) which equipped by
microscope. In order to test the ability of stomata to open under light and to observe
the differences resulting from the application under light, the white light intensity was
obtained from the microscope lamp with approximately 300 µ mol m−2 s−1. The upper
surface of the plant leaves was fixed on an acrylic glass block using double-sided adhesive
tape. Stomatal openings were determined from the images taken using the ImageJ program.
Then, the measurements taken were graphed. Stoma clearance measurements were carried
out on control plants of both cultivars between 08:00 and 16:00 h [33].

2.5.3. Investigation of Stoma Behaviors against ABA Perfusion

In order to observe the instantaneous effect of ABA application on stoma behaviors,
intact Zinnia plants were fixed on the microscope table as described above, and control
(pure water) and (±) ABA (50 µM) applications were carried out on the leaf surface using
the perfusion system as described by [33] and [34]. Aqueous-immersion lenses were used
to examine the stomata and apply the ABA solution. During the studies, the working
solution (5 mM KCl, 5 mM potassium citrate (pH 5.0), 0.1 mM CaCl2, and 0.1 mM MgCl2]
was perfused to allow 0.3 mL of the solution to flow between the leaf and the lens at a
continuous flow of 1.5 mL [33,34]. The closing times of the stomata were observed after
perfusing ABA from the leaf surface (intact) on the plant in the D.Za.F.I and Zi.S cultivars.
After perfusing a solvent of the ABA solution, as a control, the stomata were not closed.
This process was carried out to support the ABA. Measurements were carried out at least
8 times on control plants of both cultivars. Stomatal behaviors were investigated using the
Image J program.

2.5.4. Preparation for Leaf Cross-Section Examinations

The young and fully expanded leaves (third leaf from the apex) were collected at
the end of the study. The leaves were cut from the central part of the middle leaflet, near
the widest point of each leaf [35]. Paraffin embedding and microtome sectioning were
performed in order to obtain leaf cross sections [36]. The samples were transferred to
FPA-70 fixation liquid. All the leaf samples were dehydrated using ethanol and tertiary
butyl alcohol series (70, 85, 95, 100%) for 4–5 h in each solution, then embedded in paraffin,
sectioned longitudinally (10 µm) with a rotary microtome (Leica RM2245), stained with
0.125% hematoxyline, and mounted in Entellan [37]. Serial sections of 10 µm thickness were
made from the leaf samples with a microtome (Leica RM2245; Leica Microsystems GmbH,
Wetzlar, Germany). Leaf thickness, upper and lower epidermis length, the length of the
palisade parenchyma, and the width of sponge parenchyma from five predetermined points
of five randomly chosen photographs of each leaf lamina cross-section were determined.
The measurements were made using image processing software (Motic Images Plus 2.0
analyzer program).

2.6. Biochemical Parameters
2.6.1. Proline Content

Plant samples (250 mg) were crushed and ground in a mortar in 5 mL 3% sulfosal-
icylic acid solution. The ground samples were centrifuged at 3000 rpm for 4 min. After
centrifugation, 1 mL of the supernatant part of the samples was taken, and the reaction
mixture was prepared by adding acid ninhydrin (1 mL) and glacial acetic acid (1 mL). This
prepared mixture reacted in a water bath at 100 ◦C for 1 h, and the reaction was terminated
in an ice bath. The reaction mixture was extracted with 2 mL of toluene while in an ice bath.
The spectrophotometer readings were performed at 520 nm irradiance [38].

2.6.2. Photosynthetic Pigment and Total Carotenoid Content
The total chlorophyll, chlorophyll a, chlorophyll b, and carotenoid contents were

determined according to the Arnon [39] and Lichtenthaler and Wellburn [40] methods. In
brief, 150 mg of fresh leaf samples taken from equal points from the plants were crushed
and ground in 15 mL of an 80% acetone solution. After the samples were filtered through
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filter paper, they were read in a spectrophotometer (Shimadzu, UV 1800, Japan) at 470, 645,
and 663 nm wavelengths. The obtained data were calculated according to Arnon [39] and
Lichtenthaler and Wellburn [40] using the following Equations (3)–(6)

Total chlorophyll = [(20.2 × Abs645) + (8.02 × Abs663)] × (−Acetone (mL))/Leaf (mg) (3)

Chlorophyll-a = [(12.7 × Abs663) − (2.6 × Abs645)] × (Acetone (mL))/Leaf (mg) (4)

Chlorophyll-b = [(22.9 × A645) − (4.68 × A663)] × (Acetone (mL))/Leaf (mg) (5)

Total Carotenoid = [(1000 × A470) − (3.27 × Chl-a) − (104 × Chl-b)]/229 (6)

2.7. Statistical Analysis

Stress treatment was carried out in a completely randomized experimental design with
two factors (salinity and cultivar). Each treatment had four replicates of five plants. Data
were subjected to ANOVA, and the means were separated using the LSD (least significant
differences) multiple range test at p < 0.05. All the statistical analyses were performed using
the JMP8.1 Software package.

3. Results
3.1. Morphological Parameters

The effects of salt stress on the plant growth parameters and physiological, anatomical,
and biochemical properties of two Zinnia cultivars grown under different salt concentrations
(0, 50, 100, 150, and 200 mM) were investigated. The effects of salinity and cultivar on
plant growth parameters were important statistically, but we focused on salt and cultivar
interaction results to see the different response stages and levels in the study. So, separately,
the effects of cultivar and salt on all parameters are given in Tables S1–S10. The effects of
the salinity and cultivar interaction were not important in terms of plant growth parameters
except for branch length, stem diameter, and root collar diameter (Table 1). Branch length
was higher in 0 mM NaCl—D.Za.F.I (9.92 cm) and 50 mM NaCl—D.Za.F.I (9.72 cm) and
0 mM NaCl—Zi.S (9.48 cm). The percentage of the decrease in branch length from the control
to 200 mM NaCl was higher in Zi.S (52.6%) than in D.Za.F.I (36.5%). The percentage of the
decrease from the control to 200 mM NaCl of root fresh (71.7%), and dry (72.9%) weights,
shoot fresh (65.3%) and dry (57.4%) weights were also higher in Zi.S. The appearance of
D.Za.F.I and Zi.S under the application of saline irrigation is shown in Figure 1.
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Table 1. Effects of salinity and cultivar interaction on plant growth parameters of D.Za.F.I and Zi.S.

Plant NaCl (mM)
Shoot

Lenght
(cm)

Branch
Number

(Unit)

Branch
Length

(cm)

Stem
Diameter

(mm)

Root Collar
Diameter

(mm)

Leaf Width
(mm)

Leaf
Length
(mm)

Root Fresh
Weight (g)

Root Dry
Weight (g)

Shoot
Fresh

Weight (g)

Shoot Dry
Weight (g)

D.Za.F.I

0 15.6 ± 1.4 14.9 ± 1.6 9.92 + 1.4 a 5.22 ± 0.2 a 6.16 ± 0.2 a 30.4 ± 1.7 99.6 ± 6.3 6.66 ± 0.7 0.48 ± 0.06 30.7 ± 0.7 3.51 ± 1.0
50 12.7 ± 1.1 14.8 ± 0.9 9.72 ± 0.8 a 4.97 ± 0.5 ab 5.77 ± 0.3 ab 28.2 ± 3.2 92.5 ± 6.0 6.51 ± 0.6 0.39 ± 0.02 22.1 ± 1.5 2.04 ± 0.2
100 11.4 ± 0.8 13.1 ± 1.1 8.73 ± 0.4 b 5.01 ± 0.2 ab 5.71 ± 0.1 bc 25.7 ± 3.0 84.5 ± 6.9 6.11 ± 0.5 0.38 ± 0.02 19.4 ± 3.1 2.14 ± 0.0
150 10.3 ± 0.5 11.9 ± 1.3 6.82 ± 0.7 d 4.44 ± 0.2 c 5.33 ± 0.1 cd 24.8 ± 2.5 80.0 ± 6.1 5.39 ± 0.5 0.31 ± 0.04 14.9 ± 1.1 1.57 ± 0.1
200 9.9 ± 0.6 11.8 ± 0.9 6.30 ± 0.7 d 4.64 ± 0.1 bc 5.26 ± 0.3 d 22.3 ± 2.2 78.2 ± 3.8 4.78 ± 0.8 0.28 ± 0.05 13.3 ± 2.6 1.49 ± 0.2

Zi.S

0 14.9 ± 2.2 8.6 ± 2.2 9.48 ± 1.2 a 5.21 ± 0.4 a 5.63 ± 0.4 bcd 41.4 ± 5.1 74.7 ± 9.8 7.90 ± 3.6 0.59 ± 0.24 24.8 ± 3.2 2.70 ± 0.4
50 13.4 ± 1.2 8.4 ± 1.3 7.53 ± 1.3 c 4.82 ± 0.5 abc 4.71 ± 0.1 e 39.2 ± 4.1 67.1 ± 7.1 5.62 ± 2.3 0.36 ± 0.11 20.0 ± 2.0 2.07 ± 0.3
100 12.8 ± 3.1 7.0 ± 1.1 6.46 ± 1.0 d 4.82 ± 0.2 abc 4.49 ± 0.2 e 36.0 ± 5.8 63.4 ± 7.4 3.88 ± 1.6 0.30 ± 0.10 12.4 ± 4.3 1.59 ± 0.3
150 10.2 ± 1.3 7.0 ± 1.2 5.06 ± 0.9 e 4.74 ± 0.1 bc 4.43 ± 0.1 e 33.8 ± 3.6 60.9 ± 6.7 3.99 ± 0.5 0.28 ± 0.05 12.0 ± 0.7 1.55 ± 0.1
200 10.1 ± 1.0 6.7 ± 1.3 4.49 ± 0.6 e 3.64 ± 0.1 d 3.39 ± 0.1 f 33.3 ± 5.3 58.1 ± 6.6 2.23 ± 1.0 0.16 ± 0.07 8.6 ± 1.4 1.15 ± 0.1

LSD —NS —NS 0.708 ** 0.445 ** 0.404 ** —NS —NS —NS —NS —NS —NS

** p < 0.01, —NS: nonsignificant. The differences between the averages were indicated by separate letters.
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3.2. Anatomical Parameters
3.2.1. Leaf Stomatal Parameters on Abaxial and Adaxial Epiderma

The results of the study revealed that there were statistically significant differences
in stomatal parameters between the two cultivars under varying salinity levels, as seen in
Table 2. The abaxial stomata width was higher in 0 mM NaCl—D.Za.F.I cultivar (27 µm).
The abaxial stomata width decreased slightly in D.Za.F.I as the salt stress increased. A
slight increase was observed at 50 mM (20.2 µm) and 100 mM (22.8 µm) of NaCl in the Zi.S.
cultivar. The longest abaxial stomata length was found in 0 mM NaCl—D.Za.F.I cultivar
(46.3 µm); in this cultivar, abaxial stomata length remained stable under saline conditions.
In contrast, the abaxial stomata length of Zi.S decreased as salinity increased. The highest
stomatal density was under 0 mM (227 units) and 50 mM (238 units) NaCl for Zi.S, with
dramatic decreases observed up to 100 mM NaCl (117 units). The abaxial stomatal density
of D.Za.F.I was stable from 0 mM NaCl to 150 mM NaCl, but it dramatically decreased
at the 200 mM NaCl (88 units) level. Adaxial stomata width and length were greater
at 100 mM (width: 28.5 µm—length: 52.6 µm) and 150 mM (width: 28.0 µm—length:
51.0 µm) NaCl in the D.Za.F.I cultivar. Adaxial stomatal width and length increased at
150 and 200 mM NaCl in both cultivars. Adaxial stomatal density was higher in 0 (85 unit)
and 50 (71 unit) mM NaCl in Zi.S cultivar. However, when compared with the control
group, the decreasing percentage in adaxial stomatal density was found at 27% in 150 mM
NaCl and 25% in 200 mM NaCl treatments in D.Za.F.I plants. The adaxial stomata density
decreasing percentage was found at 14%, 13%, and 29% under 100, 150, and 200 mM NaCl
treatments, respectively, in the Zi.S. cultivar. Stoma width, length, and density on the
abaxial and adaxial epiderma of cultivars are shown in Figure 2.

Table 2. Effects of salinity and cultivar interaction on stomatal parameters of D.Za.F.I and Zi.S.

Cultivar NaCl (mM)
Abaxial Stomatal Parameters Adaxial Stomatal Parameters

Width
(µm)

Length
(µm)

Density
(unit)

Width
(µm)

Length
(µm)

Density
(Unit)

D.Za.F.I

0 27.0 ± 3.0 a 46.3 ± 4.4 a 147 ± 32 c 25.4 ± 2.4 b 46.7 ± 3.4 b 85 ± 24 d
50 24.2 ± 2.0 bc 44.4 ± 3.9 ab 135 ± 30 c 22.3 ± 1.8 c 46.5 ± 2.8 b 71 ± 11 de
100 24.1 ± 1.7 bc 43.1 ± 4.6 b 141 ± 17 c 28.5 ± 3.9 a 52.6 ± 3.4 a 66 ± 10 e
150 24.3 ± 2.0 bc 43.3 ± 5.6 b 139 ± 18 c 28.0 ± 3.2 a 51.0 ± 3.5 a 62 ± 15 e
200 24.9 ± 2.4 b 44.6 ± 5.3 ab 88 ± 16 d 25.3 ± 3.7 b 48.6 ± 3.9 b 64 ± 14 e

Zi.S

0 19.7 ± 2.2 d 32.1 ± 2.9 d 227 ± 34 a 17.9 ± 1.6 d 30.4 ± 2.1 ef 175 ± 19 a
50 20.2 ± 2.1 d 32.4 ± 3.7 d 238 ± 36 a 20.5 ± 1.7 c 32.5 ± 2.2 de 173 ± 25 a
100 22.8 ± 2.8 c 36.4 ± 2.4 c 177 ± 9 b 18.6 ± 2.1 d 33.5 ± 2.9 cd 150 ± 16 b
150 19.8 ± 1.9 d 30.3 ± 1.9 de 179 ± 20 b 21.2 ± 3.0 c 35.5 ± 5.2 c 152 ± 28 b
200 19.5 ± 2.7 d 28.3 ± 3.5 e 182 ± 25 b 17.9 ± 2.0 d 29.4 ± 2.0 f 124 ± 17 c

LSD 1.612 *** 2.802 *** 23.811 *** 1.314 *** 2.290 ** 17.590 *

* p < 0.05, ** p < 0.01, *** p < 0.001. The differences between the averages were indicated by separate letters.

In the study, the opening stomatal aperture behavior of the control (0 mM) group
plants was investigated by shining light on the closed stomata on the abaxial surface
of the leaves. As a result of microscopic examinations, the opening duration of the
stomatal aperture of D.Za.F.I and Zi.S. were found to be close to each other under ap-
plications of light. The maximum opening of the stomatal aperture was obtained after
36 min in both cultivars (Figure 3a, Supplementary data Video S1). After ABA perfu-
sion, the stomatas of D.Za.F.I (7 min) closed more quickly than Zi.S (29 min) (Figure 3b,
Supplementary data Videos S2 and S3). In Figure 4, sample views in two cases with the
stomata open and closed in the control group of D. Za.F.I and Zi.S cultivars are presented.
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Figure 3. The change in stomatal aperture of D.Za.F.I and Zi.S under light application (a) and
ABAperfusion (b).



Horticulturae 2023, 9, 247 10 of 24

Horticulturae 2023, 9, x FOR PEER REVIEW 10 of 25 
 

 

In the study, the opening stomatal aperture behavior of the control (0 mM) group 
plants was investigated by shining light on the closed stomata on the abaxial surface of 
the leaves. As a result of microscopic examinations, the opening duration of the stomatal 
aperture of D.Za.F.I and Zi.S. were found to be close to each other under applications of 
light. The maximum opening of the stomatal aperture was obtained after 36 min in both 
cultivars (Figure 3a, Supplementary data Video S1). After ABA perfusion, the stomatas of 
D.Za.F.I (7 min) closed more quickly than Zi.S (29 min) (Figure 3b, Supplementary data 
Videos S2 and S3). In Figure 4, sample views in two cases with the stomata open and 
closed in the control group of D. Za.F.I and Zi.S cultivars are presented. 

  

Figure 3. The change in stomatal aperture of D.Za.F.I and Zi.S under light application (a) and 
ABAperfusion (b). 

 
Figure 4. The view of open and closed stomata of intact control (0 mM NaCl) plants of D.Za.F.I and 
Zi.S. 

3.2.2. Leaf Cross-Sections 
The study found that the salinity levels had a significant effect on leaf anatomical 

parameters, with the exception of the length of the lower surface epidermal cells in both 
cultivars (Table 3). The highest leaf thickness (LT) value was found at 0 mM NaCl (359.7 
µm)—Zi.S. cultivar, and the lowest values were at 150 mM (246.2 µm) and 200 mM (247 
µm) NaCl—D. Za.F.I cultivar. When the control (0 mM NaCl) and 200 mM NaCl treat-
ments were compared, leaf thickness decreased by a total of 9% in D.Za.F.I and 28% in 
Zi.S. The length of the palisade layer (LPL) was lower in 150 mM (54 µm) and 200 mM 
NaCl (54.4 µm)—D.Za.F.I. The width of spongy parenchyma was higher in the 100 mM 
NaCl—Zi.S cultivar (23.9 µm). The lowest values were obtained from 100 mM, 150 mM, 
and 200 mM NaCl—D.Za.F.I cultivar. The length of adaxial epidermal cells was higher in 

0
0.5

1
1.5

2
2.5

3
3.5

1 6 11 16 21 26 31 36

St
om

at
al

 a
pe

rtu
re

 (µ
m

)

Time (min)

a

0

0.5

1

1.5

2

2.5

3

1 6 11 16 21 26 31

St
om

at
al

 a
pe

rtu
re

 (µ
m

)

Time (min)

D.Za.F.I.

Zi.S.b

Figure 4. The view of open and closed stomata of intact control (0 mM NaCl) plants of D.Za.F.I
and Zi.S.

3.2.2. Leaf Cross-Sections

The study found that the salinity levels had a significant effect on leaf anatomi-
cal parameters, with the exception of the length of the lower surface epidermal cells in
both cultivars (Table 3). The highest leaf thickness (LT) value was found at 0 mM NaCl
(359.7 µm)—Zi.S. cultivar, and the lowest values were at 150 mM (246.2 µm) and 200 mM
(247 µm) NaCl—D. Za.F.I cultivar. When the control (0 mM NaCl) and 200 mM NaCl
treatments were compared, leaf thickness decreased by a total of 9% in D.Za.F.I and 28%
in Zi.S. The length of the palisade layer (LPL) was lower in 150 mM (54 µm) and 200 mM
NaCl (54.4 µm)—D.Za.F.I. The width of spongy parenchyma was higher in the 100 mM
NaCl—Zi.S cultivar (23.9 µm). The lowest values were obtained from 100 mM, 150 mM,
and 200 mM NaCl—D.Za.F.I cultivar. The length of adaxial epidermal cells was higher in
100 mM NaCl—D.Za.F.I cultivar (19.8 µm). The aspects of leaf cross-sections of D.Za.F.I
and Zi.S are presented in Figure 5. As salinity increased, glandular hairs (trichomes) were
observed on the leaves of the Z. marylandica Double Zahara Fire Improved cultivar (data
not presented) (Figure 6).

Table 3. Effects of salinity and cultivar interaction on stomatal parameters of D.Za.F.I and Zi.S.

Cultivar NaCl
(mM)

LT
(µm)

LAbEC
(µm)

LPL
(µm)

WSPC
(µm)

LAdEC
(µm)

D.Za.F.I

0 272.8 ± 21 c 25.5 ± 5 73.0 ± 5 b 17.4 ± 4 de 15.6 ± 3 cd
50 270.5 ± 12 c 24.8 ± 6 73.0 ± 8 b 15.7 ± 2 ef 15.1 ± 3 d

100 292.1 ± 23 b 33.5 ± 8 57.8 ± 7 d 14.2 ± 4 f 19.8 ± 6 a
150 246.2 ± 12 d 28.1 ± 5 54.0 ± 5 e 14.4 ± 2 f 18.1 ± 3 abc
200 247.0 ± 26 d 27.6 ± 6 54.4 ± 8 de 14.5 ± 3 f 18.3 ± 5 ab

Zi.S

0 359.7 ± 22 a 20.5 ± 3 84.1 ± 7 a 22.0 ± 3 ab 11.3 ± 6 e
50 303.1 ± 10 b 23.9 ± 4 72.2 ± 4 b 20.0 ± 3 bc 18.2 ± 7 ab

100 303.4 ± 36 b 33.1 ± 5 82.2 ± 4 a 23.9 ± 5 a 17.2 ± 5 bcd
150 302.5 ± 57 b 28.5 ± 5 80.5 ± 7 a 19.2 ± 3 cd 15.7 ± 8 bcd
200 255.6 ± 33 cd 25.0 ± 4 67.5 ± 4 c 17.6 ± 4 de 15.2 ± 7 d

LSD 17.996 *** —NS 3.826 *** 2.180 *** 2.611 **

** p < 0.01, *** p < 0.001, —NS: nonsignificant, LT: leaf thickness, LAbEC: length of abaxial epidermal cells,
LPL: length of palisade layer, WSPC: width of spongy parenchyma cells, LAdEC: length of adaxial epidermal
cells. The differences between the averages were indicated by separate letters.
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3.3. Physiological and Biochemical Parameters

Ion leakage, proline content, FO
’, and photosynthetic pigments were all affected by

salt stress and cultivar interactions, as shown by the statistical analysis (Figure 7). Ion
leakage had the lowest value in the control group of D.Za.F.I (25.8%), and the control group
of Zi.S (27.9%) and 50 mM NaCl of D.Za.F.I (28.1%) followed. The ion leakage increased
drastically in 100 mM NaCl of Zi.S cultivar (50.9%); the increasing rate from the control
to 100 mM NaCl was 82%. The ion leakage increase was in 150 mM NaCl for D.Za.F.I
cultivar (41.7%) (Figure 7A). The loss of turgidity increased in both cultivars, but interaction
effects did not differ between the cultivars (Figure 7B). While proline content increased
in the 50 mM NaCl level in D.Za.F.I (7.14 mg/g FW), it was 3.74 mg/g FW in the same
concentration of Zi.S. The proline increased in 100 mM NaCl in Zi.S (12.3). A greater proline
content was found in the D.Za.F.I cultivar (20.7 mg/g FW) compared to Zi.S (14.7 mg/g FW)
under 200 mM NaCl. (Figure 7C). The minimum fluorescence value (FO’) had important
differences in both cultivars under different salt concentrations. While FO’ was stable and
slightly increased in 100 mM NaCl in D.Za.F.I, it decreased as the salinity increased in Zi.S
(Figure 7D). It was found that the content of photosynthetic pigments in both cultivars was
affected by salinity, and this effect was statistically significant. Photosynthetic pigments
were stable and slightly increased by 150 mM NaCl in D.Za.F.I. As the salinity increased,
photosynthetic pigment contents decreased in Zi.S (Figure 7E–H).

Based on the data presented in Table 4, it was determined that there were no statistically
significant differences in the root content of P, K, Ca, Mg, Fe, Cu, Mn, and Zn among the
Zinnia cultivars that were evaluated when subjected to salt stress conditions.

Table 4. Effects of salinity and cultivar interaction on plant nutrient elements in roots of D.Za.F.I
and Zi.S.

Plant NaCl
(mM) P K Ca Mg Fe Cu Mn Zn

D.Za.F.I.

0 0.59 ± 0.10 1.86 ± 0.6 0.25 ± 0.02 1.36 ± 0.2 278.2 ± 72 40.1 ± 2.5 24.4 ± 5 117.0 ± 19
50 0.61 ± 0.12 2.16 ± 1.0 0.29 ± 0.09 1.12 ± 0.2 270.2 ± 76 41.5 ± 1.5 24.4 ± 2 166.2 ± 40

100 0.70 ± 0.05 0.97 ± 0.9 0.34 ± 0.06 1.05 ± 0.4 252.7 ± 6 41.1 ± 1.2 28.8 ± 11 150.8 ± 65
150 0.79 ± 0.01 1.42 ± 0.4 0.32 ± 0.05 0.88 ± 0.2 165.8 ± 18 38.2 ± 2.9 23.0 ± 6 132.3 ± 14
200 0.61 ± 0.11 0.75 ± 0.4 0.31 ± 0.06 0.92 ± 0.3 215.4 ± 42 42.3 ± 0.5 28.5 ± 12 163.7 ± 54

Zi.S.

0 0.55 ± 0.15 1.51 ± 0.5 0.34 ± 0.08 1.12 ± 0.3 237.8 ± 90 44.7 ± 7 63.7 ± 23 86.9 ± 15
50 0.55 ± 0.02 1.45 ± 0.9 0.42 ± 0.09 1.30 ± 0.1 277.3 ± 63 56.9 ± 24 68.2 ± 32 86.8 ± 13

100 0.49 ± 0.15 0.62 ± 0.0 0.53 ± 0.07 0.83 ± 0.2 260.6 ± 110 45.5 ± 8 57.2 ± 28 94.1 ± 24
150 0.52 ± 0.25 1.28 ± 0.9 0.50 ± 0.14 0.77 ± 0.3 255.2 ± 74 48.4 ± 7 57.9 ± 24 95.4 ± 6
200 0.39 ± 0.19 0.85 ± 0.1 0.70 ± 0.30 0.45 ± 0.3 191.6 ± 52 59.9 ± 13 43.8 ± 25 84.6 ± 11

LSD —NS —NS —NS —NS —NS —NS —NS —NS

—NS: nonsignificant.
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Figure 7. The change in ion leakage (A), turgidity (B), proline content (C), minimum fluorescence
(FO’) (D) Chlorophyll-a (E), Chlorophyll-b (F), total chlorophyll (G), and total carotenoids (H) of
D.Za.F.I and Zi.S under different levels of salinity. —NS: nonsignifcant, ** p < 0.01 *** p < 0.001. The
differences between the averages were indicated by separate letters.
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Under saline stress conditions, the concentrations of P, K, Ca, Mg, Fe, Cu, Mn, and Zn
in the aerial parts of both cultivars exhibited similar trends of decline or enhancement, with
no statistically significant variation between the cultivars. (Table 5). However, the cultivar
and salinity interaction effect were important for the N content. The highest N content was
in 200 mM NaCl—D.Za.F.I (4.29), 50 mM NaCl—Zi.S (4.48), and 100 mM NaCl—Zi.S (4.46)
combinations. The N content in the D.Za.F.I increased with increasing salinity. However, it
dramatically decreased to 150 mM (1.87) and 200 mM NaCl (0.30) in the Zi.S.

Table 5. Effects of salinity and cultivar interaction on plant nutrient elements in aerial parts of D.Za.F.I
and Zi.S.

Plant NaCl
(mM) N P K Ca Mg Fe Cu Mn Zn

D.Za.F.I.

0 2.68 ± 0.37 bc 0.77 ± 0.03 5.30 ± 0.9 0.57 ± 0.03 1.54 ± 0.03 203.9 ± 31 46.1 ± 5 204.3 ± 15 174.2 ± 15
50 2.88 ± 0.60 bc 0.79 ± 0.01 6.19 ± 0.4 1.03 ± 0.30 1.82 ± 0.11 188.1 ± 27 43.1 ± 1 206.1 ± 41 180.9 ± 18
100 3.33 ± 0.78 ab 0.73 ± 0.05 6.12 ± 0.1 0.86 ± 0.13 1.74 ± 0.15 162.9 ± 14 42.6 ± 6 226.9 ± 17 168.2 ± 27
150 3.94 ± 0.24 ab 0.76 ± 0.03 5.84 ± 0.8 1.05 ± 0.11 1.87 ± 0.15 149.9 ± 11 39.9 ± 2 239.2 ± 11 179.6 ± 27
200 4.29 ± 0.64 a 0.71 ± 0.03 5.84 ± 0.7 1.11 ± 0.20 1.91 ± 0.36 232.6 ± 10 42.4 ± 2 273.8 ± 10 157.1 ± 23

Zi.S.

0 3.84 ± 0.36 ab 1.01 ± 0.07 4.10 ± 1.4 0.46 ± 0.07 1.91 ± 0.17 144.0 ± 19 38.7 ± 3 223.3 ± 36 200.4 ± 65
50 4.48 ± 0.79 a 1.14 ± 0.09 4.96 ± 0.6 0.55 ± 0.12 1.91 ± 0.39 143.3 ± 6 38.7 ± 4 209.7 ± 49 142.6 ± 60
100 4.46 ± 0.07 a 1.21 ± 0.11 4.43 ± 0.6 0.67 ± 0.06 1.99 ± 0.20 151.1 ± 18 44.2 ± 5 298.4 ± 50 165.4 ± 69
150 1.87 ± 1.99 c 1.05 ± 0.16 4.58 ± 0.5 0.79 ± 0.08 1.94 ± 0.10 144.3 ± 6 38.9 ± 3 272.5 ± 18 225.1 ± 12
200 0.30 ± 0.29 d 1.09 ± 0.17 4.97 ± 1.9 0.95 ± 0.19 1.87 ± 0.37 138.9 ± 8 38.7 ± 2 241.6 ± 23 201.8 ± 54

LSD 1.361 *** —NS —NS —NS —NS —NS —NS —NS —NS

*** p < 0.001, —NS: non-significant. The differences between the averages were indicated by separate letters.

The effects of root and aerial part Na, Cl content, Na/K, and Na/Ca ratio under
salinity are shown in Figure 8. The root Na content of both cultivars increased as salinity
increased, but the interaction was non-significant (Figure 8A). While the content of Na
in the aerial parts of D.Za.F.I. increased at 100 mM NaCl, Na in the aerial parts of Zi.S.
increased to 50 mM NaCl and increased dramatically at 100 mM (Figure 8B). The Na and Cl
content in the aerial parts of the sensitive Zi.S cultivar was higher than that in the tolerant
D.Za.F.I cultivar. Increased Na ions were found in both cultivars under salinity conditions,
with a higher increase percentage observed in the sensitive cultivar Zi.S. Compared to
the control (0 mM NaCl) treatment, the Na+ aerial content (0.23%) in D.Za.F.I increased
by 78% at 50 mM NaCl, 171% at 100 mM, 892% at 150 mM, and 1135% at 200 mM NaCl.
In Zi.S, the Na+ content was increased by 263% at 50 mM, 880% at 100 mM, 1238% at
150 mM, and 1355% at 200 mM NaCl compared to the control (0.25%). Although the effects
of interaction salinity and cultivar on the ratio of Na/K (Figure 8C) and Na/Ca (Figure 3E)
in the root were non-significant, ratios increased with salinity. The change in the Na/K and
Na/Ca ratios was significant in aerial parts (Figure 8D,F). Both ratios increased with salinity,
but the increases in Zi.S were higher than in D.Za.F.I. The content of Cl in the root and
shoot increased with salinity in both cultivars, but interaction effects were non-significant
(Figure 8G,H). The Cl accumulation in the root and aerial parts increased in both D.Za.F.I
and Zi.S cultivars with increasing NaCl concentrations. In D.Za.F.I, the increase was 136%
at 50 mM, 200% at 100 mM, 209% at 150 mM, and 264% at 200 mM NaCl compared to the
control (1.1%). In Zi.S, the increase was 120% at 50 mM, 160% at 100 mM, 280% at 150 mM,
and 300% at 200 mM NaCl, compared to the control (1.0%).
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4. Discussion

Salt (NaCl) taken up by plants does not directly affect plant growth; it first affects
the turgor state, photosynthesis, and some enzyme activities [41]. In addition, Munns [41]
reported that growth retardation begins with a decrease in soil water potential and then
continues with specific effects such as salt damage which primarily affects old leaves due to
the excessive accumulation of salt ions in the cell wall or cytoplasm. Salt ions accumulating
in old leaves accelerate cell death and prevent the transport of carbohydrates and growth
hormones to growth tissues. This excessive accumulation of salt ions slows plant growth as
a result of the decrease in the rate of photosynthesis and the formation of growth-inhibiting
metabolites. In this study, shoot length, branch number, branch length, stem diameter,
root collar diameter, leaf width, leaf length, root fresh weight, and root dry weight values
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decreased in general as the salt stress level increased. Many previous studies on ornamental
plants show that plant growth parameters decreased with salt stress [21,22,42–48].

In relatively sensitive Zi.S leaf thickness, the length of palisade parenchyma cells,
and the width of sponge parenchyma cells decreased as salt stress increased. The length
of lower and upper epidermis cells increased up to 100 mM NaCl and then decreased
as salt stress increased. The leaf thickness of the D.Za.F.I cultivar, which is relatively
tolerant to salt stress, reached a peak value at 100 mM and decreased as NaCl concentra-
tions increased. The length of the palisade parenchyma cells and the width of the sponge
parenchyma cells decreased as salt concentrations increased. The lengths of the lower
and upper epidermis cells increased with the increasing salt stress. Navarro et al. [49]
reported that in Arbutus unedo, no change was observed in the palisade parenchyma of
the first layer in the leaves exposed to salt stress compared to the control group, while
the size of the palisade parenchyma cells in the second layer increased significantly in
parallel with the increase in stress. They also found a significant decrease in the intercellular
spaces of the sponge parenchyma. Fernandez-Garcia et al. [50] reported that increased
leaf thickness could be observed in Lawsonia inermis L. plants under highly saline con-
ditions. Acosta-Motos et al. [51,52] investigated leaf anatomy in Myrtus communis and
Eugenia myrtifolia plants under salt-stress conditions. While they observed no anatomical
changes in the palisade parenchyma in the Myrtus communis plant, they found a decrease in
the cells of the sponge parenchyma and an increase in the intercellular spaces. However, the
size of palisade parenchyma cells increased significantly. Likewise, Gomez-Bellot et al. [53]
reported an increase in leaf thickness along with an increase in the palisade parenchyma
cells in Vibirnum tinus plants. Hameed et al. [54] revealed that 200 mM NaCl increased
succulence in Imperata cylindrica (L.) Raeuschel plants. It is known that the increase in leaf
thickness and in the palisade parenchyma as salt stress increases helps to facilitate the
diffusion of carbon dioxide (CO2) and its progress through the layer, helping the chloro-
plasts to reach higher rates of CO2 in the palisade parenchyma. Such anatomical changes
are particularly important for the maintenance and advancement of the photosynthetic
performance of plants under stress situations, which tend to reduce the stomatal opening
but also help the plants cope with salt stress [51,52]. The study by Li et al. [55] empha-
sizes the crucial role of leaf anatomy in regulating the balance between water and CO2
diffusion during drought conditions. The research suggests that by understanding the
relationship between leaf anatomy and drought stress, it may be possible to develop more
drought-tolerant crops in the future. Plants have the ability to alleviate the negative effects
of salt stress by adjusting the density and size of their stomata. This is thought to be an
adaptive mechanism that allows plants to respond to changes in environmental factors
such as temperature and water availability [12,55,56]. Waqas et al. [12] suggested that the
increase in stomatal density in quinoa plants under salinity stress may be a result of the
shrinkage of pavement cells, which provides more surface area for CO2 assimilation. This
allows the plant to maximize its CO2 uptake, continue its photosynthesis process, and
improve its water usage efficiency in response to salinity. Stomatal density is a trait that is
dependent on the species, the duration, and the intensity of salinity. An increase in stomatal
density leads to an increase in the ion requirements of charge balancing and maintaining
osmotic potential at the plasma membrane of guard cells. This is thought to contribute to
salinity tolerance. We found that salinity had a negative impact on stomatal density in this
study. The stomatal aperture was observed to decrease more rapidly in the cultivar and
was relatively tolerant to salinity (D.Za.F.I) compared to the cultivar that was relatively
sensitive to salinity (Zi.S).

Leaf water potential and changes in osmotic potential depend on the osmotic potential
of the root environment and the amount of stress the plant is experiencing [57]. The plant’s
stress level can thus be measured by using some parameters that reveal the plant’s water
content under salt stress conditions. The results of the present study indicate that turgor
loss in the leaves of the two Zinnia cultivars was low when irrigated with 100 mM NaCl. As
salinity increased to 150 and 200 mM, the loss of turgidity increased. Salt stress did not affect
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the relative water content of Pelargonium [58] and calla lily [59]. In rose, Carvalho et al. [44]
reported that the relative water content decreased as salt stress increased. The maintenance
of relative water content and turgidity under salt stress conditions is associated with
an increase in Ca and Mg accumulation in leaf tissues as well as Na accumulation in
plants [58]. Salt stress in plants leads to damage to the cellular membrane. In the present
study, increased an ion leakage was observed as salt stress levels increased in both salt-
sensitive and salt-tolerant Zinnia cultivars. Cell damage rates were found to be higher in
the relatively sensitive Zi.S than the relatively tolerant D.Za.F.I. Trivellini et al. [60] reported
that ion leakage increased under 200 mM salt stress conditions in H. rosa-chinensis.

Salt stress can negatively impact the process of photosynthesis in plants. In the
short-term, high salt concentrations can cause the plant’s stomata to close, reducing
the rate of photosynthesis. This can lead to a halt in plant growth within a few hours
of exposure [61]. In the long term, salt accumulation in young leaves can lead to a
decrease in chlorophyll and carotenoid levels, which are essential for the process of
photosynthesis [22,62–67]. Many studies have shown that photosynthesis, specifically
the PSII (Photosystem—II) process, is negatively impacted by salt stress [50,68–70]. The
present study revealed that the minimum fluorescence (FO

′) decreased in the relatively
sensitive Zi.S as salt stress increased while it was preserved in relatively tolerant D.Za.F.I
under the same conditions. The chlorophyll-a and total chlorophyll content of cv. D.Za.F.I,
which is relatively tolerant to salt stress, did not change as the salt stress increased; a
slight decrease in chlorophyll-b content was observed. In contrast, the sensitive cv. Zi.S
showed a significant decrease in chlorophyll-a, chlorophyll-b, and total chlorophyll con-
tents under salt stress. Chlorophyll content decreased in salt-sensitive plants [65,71].
Mukarram et al. [72] reported that chlorophyll fluorescence, chlorophyll content, and
plant growth were minimized under high salt concentrations (240 mM) in lemongrass
(Cymbopogon flexuosus). Several reports show that the total chlorophyll content decreases
with salt stress: Vernieri et al. [73] in Acacia cultriformis, Callistemon citrinus, Carissa edulis
microphylla, Gaura lindheimeri, Jasminum sambac, Westringia fruticosa; Eom et al. [74] in
Alchemilla mollis, Nepeta faassenii, Phlox subulata, Solidago cutleri, Thymus praecox; Lee and van
Iersel [75] in Chrysanthemum morifolium; Bahadoran and Salehi [76] in Polyanthes tuberosa;
and Cantabella et al. [77] in Stevia rebaudiana. We further found that the total carotenoid
content of the plants of both cultivars decreased as salt stress increased. When the total
carotenoid content of the plant leaves in the highest salt stress condition (200 mM NaCl)
was compared with the content of the control group, and the decrease percentage (9%) in
the D.Za.F.I was quite low; it was found to be quite high in the Zi.S (48%). Carotenoids are
a crucial class of biochemicals, such as antioxidants, which protect membrane lipids against
oxidative stress induced by environmental stressors such as salt stress, thus promoting
plant health and survival [78,79]. Furthermore, carotenoids can interconvert and thus
contribute to increasing tolerance under stress conditions. [80,81].

Another common plant response to salt stress is an increase in intracellular osmotic
regulators. Among organic osmolytes, proline is one of the most important and effective
substances. In addition to its role as an osmoprotectant, proline helps plants cope with a
variety of environmental stresses, as it has antioxidant properties and acts as a molecular
chaperone to protect the structure of biological macromolecules during water loss from
the cell [82,83]. In general, proline accumulation in salt-tolerant plants increases after
exposure to salt stress. In this study, we found that the amount of proline increased in
two Zinnia cultivars that were relatively sensitive and tolerant, respectively. However,
in the salt-tolerant D.Za.F.I cultivar, proline content increased as soon as the plant was
exposed to salt (50 mM NaCl). Similarly, a 20% increase in the leaf proline content was
determined in Eugenia myrtifolia L., which was tolerant to 8 dS m−1 NaCl. [51]. In addition,
Bizhani et al. [19] in Zinnia elegans ‘Magellan’ cultivar, Bres et al. [58] in Pelargonium, and
Li et al. [84] in Crysahthemum reported a large increase in proline content. Kumar et al. [45]
reported a low level of increase in the proline content during stress in oleander (Nerium
oleander). Garcia-Capparos et al. [85] observed a peak in proline content at the 60 mM
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NaCl level in the root tissues and in the control treatments in the leaves of the Lavandula
multifida L. plant after the irrigation at different salt concentrations (0, 10, 30, 60, 100, and
200 mM NaCl). Mukarram et al. [72] revealed an upward trend in the proline concentration
with increasing salt levels. They found that the concentration of proline increased about
2.2 times at a salt level of 240 mM NaCl compared to the control group.

Salt stress can affect the nutritional balance of a plant through a complex network of
interactions, including restriction during the uptake and/or transport of nutrients from
root to shoot [3]. In general, in ornamental plants grown under saline conditions, a decrease
in the concentration of N, P, K, and Ca in leaf tissues was observed, while the Na and
Cl concentration increased due to the antagonistic interactions associated with Na and
Cl. Plant behavior regarding nitrogen uptake can differ widely under conditions of salt
stress. While nitrogen uptake under salt stress may decrease, usually due to antagonism
between NH4 and Na or [86] Cl and NO3 [87,88], the N content may also increase as
N-containing amino acids such as proline increase in response to salt stress [66]. Different
trends have also been observed in the P uptake of plants under salt stress conditions. Salt
stress can reduce P availability due to the antagonism between Cl and H2PO4 [57]. While
some researchers have detected a decrease in phosphorus content due to the competition
between the mentioned Cl and H2PO4 [89], others have reported an increase in P due to the
energy (ATP) required to transport the ions, which is more than necessary [90]. In our study,
the nitrogen content of the salt-sensitive Zi.S increased up to 100 mM NaCl, while a sharp
decrease was observed at higher concentrations. In the tolerant cultivar D.Za.F.I, N uptake
increased as salt stress increased. Salt stress treatments did not affect the phosphorus
content in both cultivars. Simon et al. [91] reported that salt stress led to decreased N and
P content in Chamaerops humilis and Washingtonia robusta plants, and Navarro et al. [92]
observed similar changes in Dianthus caryophyllus. Garcia Capparos et al. [93] stated that
there was no consistent change in N and P concentrations in the root and leaf tissues of
some ornamental plant species (Aloe vera L. Burm, Kalanchoe blossfeldiana Poelln and Gazania
splendens Lem sp.) under salt stress. Jampeetong and Brix [94] determined that the N
content of S. natans increased in leaf tissues but decreased in root tissues at 50, 100, and
150 mmol L−1 NaCl concentrations.

The increase in toxic elements such as Na and Cl in the leaves of plants exposed to salt
stress conditions caused visual damage such as tip and marginal blights, which negatively
affected the decorative value of the ornamental plant [95]. The typical symptom of sodium
(Na) accumulation was leaf blight, which occurred first on the oldest leaves and along the
leaf margins. As the stress level increased, the leaf dried further towards the leaf center
until all the tissue died. However, symptoms due to Cl toxicity typically begin at the leaf
tip of older leaves and progress toward the stem as the stress level increases [96]. Although
sodium (Na) is the main ion that causes toxicity related to high salinity, some plants are
particularly sensitive to Cl. In our study, the Na and Cl content of the aerial parts of the
sensitive Zi.S cultivar were found to be higher than the tolerant D.Za.F.I cultivar. Although
increased sodium (Na) ions were detected in both cultivars as the salt stress increased,
the percentage of the Na-increase was found to be higher in the sensitive cultivar Zi.S.
The study found that the root Na content of D.Za.F.I was 1.5 times higher than its aerial
part Na content, while the root and aerial part Na content of Zi.S was almost equal. The
root Na content of both cultivars was found to be similar, but the aerial part Na content
of Zi.S was 1.6 times higher than D.Za.F.I, indicating that the relatively sensitive cultivar
transferred Na+ to the shoots at a higher rate compared to the relatively tolerant cultivar,
which retained more Na+ in the root zone. As the salinity level increased, the concentration
of Cl in both cultivars also increased. According to Cassaniti et al. [95], an increase in the
Cl concentration in mature plants of Leptospermum scoparium led to a decrease in growth.
Picchioni and Graham [97] also found that the increasing Cl concentration in seedlings of
Crataegus opaca caused a decrease in growth. Controlling the salt concentration in the
upper part of the plant by limiting the entry of salt ions from the roots and preventing their
transport to the shoots is an important mechanism that ensures the survival and growth
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of plants growing in salty conditions [3,98]. The retention of Na and/or Cl ions in root or
leaf tissues is also important for salt stress tolerance [99,100]. In our study, in the relatively
tolerant cultivar D.Za.F.I, this feature was manifested in the presence of higher Na ions in
the roots than in the leaves. Similar results were expressed by Cassaniti et al. [95], with a
higher ion concentration in the roots than in the leaves of Viburnum lucidum.

The physical and chemical similarities between K and Na allow Na to compete with K
for binding sites on plasma membranes of root cells, leading to a reduced K uptake and
decreased K availability for the plant [101,102]. The decrease in calcium intake is due to the
replacement of Ca with Na in the cell membrane and the antagonistic interaction between
Ca and Na ions, which impairs membrane integrity and selectivity and affects membrane
properties [103]. In the present study, the aerial part K and Ca content of the tolerant D.Za.F.I
was found to be higher than in the Zi.S, and the Ca content increased in both cultivars
with salt stress. However, the Na/K and Na/Ca ratios in the aerial part were higher
in the Zi.S than the D.Za.F.I. The concentration of K+ decreased in Celosia argentea [104],
Limonium sinuatum and L. perezii [105] under saline conditions. In addition, Carter and
Grieve [106] in Antirrhinum majus, Navarro et al. [107] in Arbutus unedo, Simon et al. [91]
in Washingtonia robusta, Navarro et al. [85] in Dianthus caryophyllus, Grieve et al. [108] in
Matthiola incana, and Niu et al. [109] in Rosa hybrida found that the content of K and Ca
decreased, while the content of Na and Cl increased. The ability of plant genotypes to
maintain high levels of the K/Na ratio in their tissues is a key mechanism contributing
to the expression of salt stress tolerance [110–113]. The conservation of Ca and K content
in the plant under saline conditions helps maintain turgor status and cell membrane
integrity [114]. Acosta-Motos et al. [51] reported an increase in Ca in different parts of
Eugenia plants under salt stress. An increase in Ca concentrations in response to salt stress
conditions has also been reported in other plant species such as Vicia faba L. and Myrtus
communis L. [115,116]. Koksal et al. [117] emphasized that with the increase in the salt
stress level in the Hyacinthus orientalis L. plant, Na intake increased significantly, the K
content decreased, and the NaCl of 75 mM and above caused a sharp decrease in K/Na
and Ca/Na ratios. In addition, Koksal et al. [118] stated that depending on the increase in
salt stress, Ca, Mg, and Na concentrations increased while K decreased in both the roots
and shoots of Tagetes erecta. In addition, in the same study, the roots and shoots of K/Na
and Ca/Na ratios were found to be lower than the control at all salt levels. The researchers
emphasized that the determination of these rates is important in terms of revealing the
plant’s tolerance level.

Excessive salinity also reduced the Mg absorption of plants [119]. In our study, the
Mg content in the root and aerial part of D.Za.F.I cultivar did not change under salt stress
conditions the root-Mg content in Zi.S cultivar decreased, while the Mg content in the aerial
parts did not change. An increase in manganese content was found in the shoot tissues of
the D.Za.F.I cultivar under stress conditions. At increasing salt concentrations, Rout and
Shaw [120], who studied Hydrilla erticillate Esteves and Suzuki [119], who studied Typha
domingensis and Jampeetong and Brix [94], who studied S. natans, all reported decreases
in Mg content. Niu et al. [22] showed that the change in Mg content in Zinnia marylandica
cultivars (Zahara Coral Rose, Zahara Fire, Zahara Rose Starlight, Zahara Scarlet, Zahara
Yellow, and Zahara White) was minimal when compared to the changes in the amount
of Na and Cl ions. Manganese is a very important trace element for plants and acts as
an activator for different enzymes, which are involved in many biological events, such as
oxidation, reduction, decarboxylation, and hydrolytic reactions in plant systems [121]. In
our study, the effect of salt stress on the intake of microelements, the interaction effects of
salt, and the cultivar were not important in roots and aerial parts tissues.

5. Conclusions

The study investigated the differences in salt tolerance between two Zinnia cultivars,
Zinnita Scarlet (relatively sensitive) and Double Zahara Fire Improved (relatively tolerant).
The results showed that the sensitive cultivar had high Na content, high ion leakage,
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slow stomatal closure, reduced photosynthetic pigments, and decreased stomatal number
under salt stress, while the tolerant cultivar showed quicker stomatal closure, early proline
synthesis, maintained photosynthetic pigments, and low ion leakage (in 50 and 100 mM
NaCl). Further studies can focus on understanding the differences from a molecular
perspective and enhancing salt tolerance in Zinnia.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/horticulturae9020247/s1, Tables S1–S10: Cultivar and salinity
effects, separately, on all plant parameters; Video S1: Zinnia marylandica D.Za.F.I opening stomata.
Video S2: Zinnia marylandica ABA perfusion Video S3: Zinnia elegans Zi.S. ABA perfusion.
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