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Abstract: As a predominant phenolic compound in apple fruits, chlorogenic acid (CGA) benefits
human health due to its various antioxidant properties. However, little has been known regarding
the molecular mechanism underlying the CGA accumulation in apple fruits. In this study, we
measured the CGA content and relative enzymes’ activities during fruit development in two different
flesh-colored cultivars ‘Huashuo’ and ‘Red Love’. The CGA content in both cultivars decreased
sharply from 30 days after full bloom (DAFB) to 60 DAFB. Notably, the CGA content in fruit flesh was
relatively higher than that in the peel. Further, the activities of C3H and HCT enzymes downstream of
the CGA biosynthesis showed the similar changing trend as CGA content. Based on the transcriptome
data of ‘Huashuo’ fruit at 30 DAFB and 60 DAFB, 23 differentially expressed CGA synthesis-related
genes were screened. Gene expression analyses further showed that MdHCT1/2/4/5/6 and MdC3H1/2/3
were positively correlated to the variation of CGA content in two cultivars. These findings establish a
theoretical foundation for further mechanism study on CGA biosynthesis and provide guidance for
nutrient improvement in apple breeding programs.
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1. Introduction

An apple is an economically important fruit with high nutrition that is widely cul-
tivated around the world. In addition to a good taste, apple fruit is rich in phenolic
compounds beneficial to human health [1]. Chlorogenic acid (CGA) is a predominant
phenolic compound in apple fruits of most cultivars [2,3], and also the main phenolic
compound in many other fruits, such as pears, peaches, strawberries, and blueberries [4–6].
In recent years, CGA has been shown to exhibit various antioxidant properties, including
anti-diabetic, anti-microbial, anti-inflammatory, anti-hypertension, anti-obesity, cardiopro-
tective properties, and neuroprotective effects [1,7–9]. Therefore, CGA is regarded as a
health-promoting compound and has been widely used in different fields of food, medicine,
and cosmetics.

The biosynthesis of CGA follows the phenylpropane metabolic pathway [10]. Pheny-
lalanine is firstly dehydrogenated to form cinnamic acid under the action of phenylalanine
ammonia-lyase (PAL) [11], and accordingly, there may be three following synthetic path-
ways. As shown, pathway 1 is based on the condensation reaction of quinic acid and
caffeoyl-CoA, which is catalyzed by hydroxycinnamoyl-CoA shikimate/quinate hydrox-
ycinnamoyl transferase (HCT/HQT). In pathway 2, the quinic acid and coumaroyl-CoA are
catalyzed by Hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase
(HCT/HQT) to generate the p-coumaroyl-quinic acid, which then becomes CGA by hydrox-
ylation under the presence of p-coumaroyl ester 3′-hydroxylase (C3′H). In pathway 3, CGA
is produced from caffeoyl D-glucose and quinic acid, as catalyzed by the hydroxycinnamoyl
D-glucose: quinate hydroxycinnamoyl transferase (HCGQT) [6,12]. The other key enzymes
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that have been involved in the CGA biosynthesis include 4-coumarate-CoA ligase (4CL)
and cinnamic acid 4-hydroxylase (C4H). Relative studies indicated that CGA is synthesized
mainly through pathway 1 and pathway 2 [6], and HCT/HQT have been found to be
rate-limiting enzymes [13]. Pathway 3 is only found in a few plant species such as sweet
potatoes and tomato leaves [10,14].

The roles of critical genes involved in CGA accumulation have been widely studied
in various plant species. For instance, the overexpression of IbPAL1 in sweet potatoes
increased the CGA levels in leaves [15]. In mulberries, the expression level of MaHCT4 was
positively correlated with the CGA abundance in leaves [16]. In pears, when PbHCT4 was
overexpressed in tobacco, the CGA content in transgenic plants was significantly higher
than that in control plants [17]. In tomatoes, the overexpression or suppression of the HQT
gene resulted in the up- or down-regulation of CGA levels accordingly [18]. However,
limited studies on the molecular mechanism associated with CGA biosynthesis in apple
fruits have been reported [1].

In this study, we measured the CGA contents and the enzyme activities related to
CGA biosynthesis during growth of apple fruits in two different cultivars, i.e., a white-flesh
cultivar ‘Huashuo’ and a red flesh cultivar ‘Red Love’. Furthermore, the transcriptome
sequencing and quantitative real-time PCR (qRT-PCR) were used to screen the differentially
expressed CGA biosynthesis-related genes. This study is intended to reveal the molecular
mechanism of CGA accumulation in apple fruits, which will be useful in future apple
breeding programs that select cultivars with high CGA values.

2. Materials and Methods
2.1. Plant Materials

The apple fruits (Malus domestica) of two cultivars grown in the Science and Education
Park of Henan Agricultural University were selected, including a white-flesh cultivar
‘Huashuo’ and a red-flesh cultivar ‘Red Love’. ‘Huashuo’ fruits were collected at 30, 60, 90,
105, and 120 days after full bloom (DAFB), and ‘Red Love’ fruits were collected at 30, 60, 90,
105, 120, 135, and 150DAFB, respectively. At least 15 fruits were collected at each sampling
time-point, and all samples were collected at a height of 1.7–1.9 m from the periphery of the
canopy. The harvested fruits were brought back to the laboratory immediately. Then, the
peels and fleshes were, separately, cut into small pieces, quickly frozen in liquid nitrogen,
and then stored at –80 ◦C for further use. Each sample had three biological replicates.

2.2. Measurement of Chlorogenic Acid Content

The content of chlorogenic acid (CGA) was measured with a high-performance liquid
chromatograph (HPLC) following the previously described method [19]. An amount of
0.25 g of frozen apple fruit tissues was crushed and the ground powder was homogenized
with 5 mL methanol (containing 1% formic acid) through a 30 min ultrasonic treatment
(60 kHz, 30 W). The homogenate was centrifuged at 6000 rpm for 5 min, and the super-
natants were mixed again with methanol. This extraction process was repeated two times
and the supernatants were combined. Subsequently, 1.5 mL of supernatant from the peel
extract or 2.25 mL of supernatant from the flesh were evaporated on a rotary evaporator
until there was no methanol phase, followed by dissolving in 150 µL methanol (containing
1% formic acid) and being filtered through a membrane. The resulting filtrate was subjected
to HPLC analysis.

The CGA content was determined using a Waters 2695 HPLC System (Waters, America),
equipped with a 2996 DAD detector, an ODS-C18 column (SunFire 5 µm, 250 mm × 4.6 mm).
The HPLC analysis was performed in a mobile phase of 0.1% formic acid (solvent A) and 0.1%
formic acid: acetonitrile (50:50, v/v, solvent B) using the following gradient system: 0–45 min,
23–50% B; 45–65 min, 50–80% B; 65–68 min, 80–100% B; 68–73 min, 100% B; 73–76 min,
100–23% B; 76–80 min, 23% B. The flow rate was 1 mL/min at 25 ◦C, and a volume of 10 µL
samples was injected for HPLC analysis.
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2.3. Determination of HCT and C3H Enzymatic Activities

HCT and C3H enzymes were assayed according to the previous methods [20]. An
amount of 0.2 g of frozen apple peel or flesh tissues was crushed and homogenized with phos-
phate buffer saline (containing 0.05 mol/L Tris-HCl, pH 7.4; weight (g): volume (mL) = 1:4) in
a 2 mL centrifuge tube. The homogenate was fully vortexed for 1 min, centrifuged at 4000 rpm
for 10 min at 4 ◦C. The supernatant was used for the measurement of enzyme activities, using
an HCT Elisa detection system kit and a C3H Elisa detection system kit of Kejing Biological
Technology Co., Ltd. (Yancheng, China).

2.4. Transcriptome Sequencing

Transcriptomic sequencing was used to screen the differentially expressed genes
related to CGA biosynthesis. Based on the changes of CGA content in the different stages
of the two apple cultivars, the fruit flesh of ‘Huashuo’ apples at 30 and 60 DAFB with
three biological replicates were used for transcriptome sequencing. Total RNA extraction,
library construction, as well as RNA-seq were completed by Biomarker (Beijing, China).
The libraries were sequenced on the Illumina NovaSeq 6000 platform.

2.5. RNA Extraction and cDNA Synthesis

Total RNA extraction from frozen fruit peel and flesh was performed according to
the method described earlier [21]. The extracted total RNA was treated with HiScript®

III 1st Strand cDNA Synthesis Kit (+gDNA wiper) (Vazyme) to remove contaminating
gDNA. Subsequently, 1.0 µg RNA was used as template for cDNA synthesis with a Reverse
Transcription System (Vazyme). At each sampling time-point, three biological replicates
were used for RNA extraction.

2.6. Oligonucleotide Primers and Quantitative Real-Time PCR Analysis

Oligonucleotide primers were designed using Primer3 (version 0.4.0, https://bioinfo.
ut.ee/primer3-0.4.0/ (accessed on 20 March 2021)). The gene specificity of primers was
checked by a melting curve and the resequencing of the PCR product. The primer sequences
are listed in Supplementary Table S1. To monitor mRNA abundance, we have chosen the
apple Actin gene as a housekeeping gene [22]. Real-time PCR analysis was performed on
the C1000 Touch Thermal Cycler instrument (Bio-Rad). The PCR reaction mixtures and the
following program were based on our previous reports, with SYBRTM Select PCR Master
Mix (Applied Biosystems) [23].

2.7. Statistical Analysis

Statistical significance of differences was analyzed using Microsoft Office Excel 2019.
Figures were drawn with GraphPad Prism 8. The heatmap was constructed with TBtools. [24].

3. Results
3.1. Changes of Chlorogenic Acid Content during Fruit Development

The CGA content in apple fruits of the two cultivars, ‘Huashuo’ and ‘Red Love’,
showed a similar decreasing trend during fruit development stages (Figure 1). Notably, the
CGA content in the flesh at 30 DAFB was significantly higher than that of the peel for both
cultivars. The content of CGA in the peel and flesh of ‘Huashuo’ apples reached the peak
at 30 DAFB with a value of 16.66 µg/g and 271.93 µg/g, respectively. Similarly, the CGA
contents in the peel and flesh of ‘Red Love’ apples also reached the peak at 30 DAFB with a
value of 34.80 µg/g and 237.34 µg/g, respectively. Subsequently, the CGA content of the
two cultivars showed a cliff-like decline at 30–60 DAFB, and then kept at basal levels until
the fruits’ mature stage. The appearance of the apple fruits of the two cultivars differs: the
color of ‘Huashuo’ fruit peel is yellow and the color of ‘Red Love’ fruit peel is red.

https://bioinfo.ut.ee/primer3-0.4.0/
https://bioinfo.ut.ee/primer3-0.4.0/
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Figure 1. Changes of the CGA content during apple fruit development in the cultivars ‘Huashuo’
(a) and ‘Red Love’ (b). Apple fruit appearance for the cultivars ‘Huashuo’ and ‘Red Love’ at different
stages are shown at the top of the figure (Scale bars = 4 cm). Error bars represent standard errors from
three biological replicates. (* p < 0.05, *** p < 0.001).

3.2. Changes of HCT and C3H Enzymatic Activities during Apple Fruit Development

HCT activity in fruit flesh of ‘Huashuo’ cultivar decreased sharply from 30 DAFB to
60 DAFB, and then remained almost unchanged until the fruit became mature (Figure 2a).
The levels of HCT activity in fruit flesh at 30 DAFB were significantly higher than those in
the fruit peel. Furthermore, the changes in HCT activity during fruit development in ‘Red
Love’ cultivar was similar to that in ‘Huashuo’, whereas the levels of HCT enzyme activity
in ‘Red Love’ fruit were relatively lower than those in ‘Huashuo’ (Figure 2a).
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Figure 2. Changes in HCT (a) and C3H (b) enzyme activities during apple fruit development in
cultivars ‘Huashuo’ and ‘Red Love’. The black and gray circles represent the enzyme activity in
the apple flesh and peel, respectively. Error bars represent standard errors from three replicates.
(* p < 0.05, ** p < 0.01, *** p < 0.001).

The C3H activity, another chlorogenic acid biosynthetic pathway-related enzyme,
exhibited similar patterns in both cultivars. However, the difference of C3H enzyme
activity at DAFB 30 between the fruit flesh and peel was narrowed (Figure 2b).
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3.3. Transcriptomic Analysis of Differentially Expressed Genes

To obtain the key genes contributing to chlorogenic acid metabolism, six samples of
fruit flesh from the ‘Huashuo’ cultivar at 30 and 60 DAFB were sent for RNA sequencing
with three biological replicates, designated as HS-30d-A–C and HS-60d-A–C, respectively.
The correlation analysis showed that three independent biological replicates were highly
correlated (Figure 3a, r > 0.89). The differentially expressed genes (DEGs) were screened
based on standard thresholds of the fold change ≥ 2.0 and false discovery rate (FDR) < 0.01.
In total, 8589 DEGs were detected between HS-30d and HS-60d with 3250 up-regulated and
5339 down-regulated (Figure 3b,c). Based on the COG database, the DEGs were divided
into 25 orthologous groups (Figure 3d), among which “general function prediction only”
accounted for the largest (418; 11.33%), followed by “signal transduction mechanism”
(403; 10.92%) and “transcription” (370; 10.02%). KEGG enrichment analysis showed that
the DEGs between HS-30d and HS-60d were mainly enriched in ‘plant hormone signal
transduction’, ‘plant-pathogen interaction’, and ‘glycolysis/Gluconeogenesis’ (Figure 3e).
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Figure 3. Transcriptome analysis of the DEGs in ‘Huashuo’ fruit flesh. (a) Correlation analysis be-
tween the six samples (HS-30d, HS-60d, with three replicates). HS-30d: Huashuo fruit at 30DAFB; HS-
60d: Huashuo fruit at 60DAFB. (b) Volcano plot analysis of DEGs in HS-30d vs. HS-60d. (c) Heatmap
of the expression profiles of the DEGs identified in HS-30d vs. HS-60d. (d) COG annotation classifica-
tion of DEGs. (e) KEGG enrichment analysis of DEGs.

3.4. Analysis of Differentially Expressed Genes Associated with CGA Biosynthesis during Apple
Fruit Development

Based on the obtained DEGs from RNA-seq, 23 differentially expressed CGA biosynthesis-
associated genes were screened, including four PAL genes, four C4H genes, six 4CL genes,
six HCT genes, and three C3H genes (Figure 4). The transcript abundances of these CGA
biosynthesis-associated genes were estimated by FPKM (fragments per kilobase of transcript
per million fragments mapped) from RNA-seq data. Heatmaps were constructed using FPKM
values to estimate the expression levels of these selected genes (Figure 4). Among the 23 dif-
ferentially expressed CGA biosynthesis-associated genes, three PAL genes (MD01G1106900,
MD04G1096200, MD12G1116700), three C4H genes (MD00G1221400, MD03G1050900, MD03G
1051000), four 4CL genes (MD00G1033000, MD00G1033100, MD01G1236300, MD17G1229400),
five HCT genes (MD09G1226600, MD16G1110600, MD16G1110700, MD17G1224900, MD17G12
25100), and three C3H genes (MD08G1242900, MD08G1243000, MD15G1436600) were highly
expressed in fruits at 30 DAFB (with high CGA contents), which showed a significant posi-
tive correlation with CGA biosynthesis. Conversely, the other six genes, including one PAL
gene (MD07G1172700), one C4H gene (MD11G1052900), two 4CL genes (MD07G1309000,
MD11G1145900), and one HCT gene (MD14G1155800), showed a significant negative correla-
tion with CGA biosynthesis.

3.5. Validation of the Differentially Expressed CGA Biosynthesis-Associated Genes by
qRT-PCR Analysis

In order to validate the accuracy of RNA-seq data, nine DEGs encoding the key en-
zymes associated with CGA biosynthesis were selected and analyzed by qRT-PCR in these
two apple cultivars. In ‘Huashuo’ fruits, with the exception of MdHCT3, the expression
levels of five other HCT genes (MdHCT1/2/4/5/6) and three C3H genes (MdC3H1/2/3) in
both peel and flesh decreased during the fruit development, which showed a positive
correlation with the CGA accumulation (Figure 5). Furthermore, the mRNA abundance of
these genes in fruit flesh was significantly higher than that in the peel, which was consistent
with the higher CGA content in the flesh than in the peel (Figures 1 and 5). Conversely,
the expression level of MdHCT3 increased gradually during fruit development, which
was negatively correlated with the CGA accumulation. Generally, the expression patterns
of these selected DEGs were similar to the RNA-seq data. Moreover, similar expression
patterns of these selected nine DEGs were also verified during the fruit development of
‘Red Love’ apples (Figure 6), which further indicated that these genes may be key candidate
genes involved in CGA biosynthesis.
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Figure 4. Schematic diagram of the CGA biosynthetic pathway and heatmaps of the expression patterns
of DEGs associated with chlorogenic acid biosynthesis in ‘Huashuo’ fruits based on RNA-seq. PAL:
phenylalanine ammonia-lyase; 4CL: 4-coumarate-CoA ligase; C4H: cinnamate 4-hydroxylase; C3H:
p-coumarate 3-hydroxylase; HCT/HQT: hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl
transferase; HCGQT: hydroxycinnamoyl D-glucose: quinate hydroxycinnamoyl transferase.
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standard errors from three biological replicates. (* p < 0.05, ** p < 0.01, *** p < 0.001).
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Figure 6. The relative expression levels of genes related to chlorogenic acid biosynthesis during fruit
development in ‘Red Love’ apples. Dark orange columns and light orange columns represent the
expression levels of the genes in the flesh and the peel of the fruit, respectively. Error bars represent
standard errors from three biological replicates. (* p < 0.05, ** p < 0.01, *** p < 0.001).
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4. Discussion

As one of the main phenolic compounds, CGA is abundant in various fruits, including
apples, pears, peaches, and strawberries [1,4,6,25]. In this study, we found that the CGA
content in both apple cultivars decreased gradually during the development, which was
consistent with the previous report on apple fruits [1]. The decrease of CGA content during
fruit development is probably caused by the enlargement of fruit volume, the hydrolysis of
polyphenolic compound, or the decrease in the synthesis ability [26,27]. In addition, the
CGA content in fruit flesh at the early stage of ‘Huashuo’ and ‘Red Love’ cultivars, and at
the mature stage of the ‘Red Love’ cultivar, was significantly higher than that in the peel
(Figure 1). Overall, our results were consistent with the previous studies (Hagen et al.,
2007), and confirmed that the accumulation of CGAs was tissue-specific. Correspondingly,
the activities of HCT and C3H enzymes downstream of the CGA biosynthesis in fruit flesh
were also significantly higher than those in the peel (Figure 2), which indicated that HCT
and C3H enzymes are closely associated with CGA biosynthesis.

Few studies on the molecular mechanism of CGA biosynthesis have been reported
in apple fruits. Using RNA-seq, we identified 23 DEGs encoding five kinds of enzymes
involved in the first and second pathways of CGA biosynthesis, including four PAL genes,
four C4H genes, six 4CL genes, six HCT genes, and three C3H genes. Similar to the case in
many other plant species [28], no UGCT or HCGQT homolog was identified, indicating
that the third pathway for CGA biosynthesis may not exist in apple fruit. PAL, C4H,
and 4CL are key enzymes upstream of the phenylpropane metabolic pathway. They not
only participate in the CGA biosynthesis, but also get involved in the synthesis of other
secondary metabolites [29,30]. In sweet potato, overexpression of IbPAL1 promoted CGA
accumulation in leaves [15]. LmMYB15 can bind and activate the 4CL promoter to promote
CGA biosynthesis in Lonicera macranthoides [31]. In this study, the expression levels of
three PAL DEGs (MD01G1106900, MD04G1096200, MD12G1116700), three C4H DEGs
(MD03G1051000, MD03G1050900, MD00G1221400), and four 4CL DEGs (MD00G1033000,
MD00G1033100, MD17G1229400, MD01G1236300) positively corresponded with the CGA
content (Figure 4), suggesting that these genes may play essential roles in CGA biosynthesis
in apple fruit.

In addition, HCT/HQT and C3H are key enzymes downstream of the CGA biosyn-
thesis pathway, with the C3H belonging to CYP98A subfamily and HCT belonging to the
BAHD acyltransferase family [32,33]. Relative studies have shown that HCT or C3H genes
are key genes in CGA biosynthesis in fruits. For instance, two PpCYP45098A genes and
four PpHCT genes showed the same expression patterns as the CGA accumulation in peach
fruit [25]. In strawberries, the blue light was able to co-upregulate CGA biosynthesis and
FvHCT gene expression [4]. In pear fruit, the expression levels of PpC3H and PpHCT1/3
were consistent with the variation in CGA content [34]. In our study, five HCT genes (Md-
HCT1/2/4/5/6) and three C3H genes (MdC3H1/2/3) showed relative higher expression levels
at the early development stage, and in the fruit flesh than in the peel for both ‘Huashuo’
and ‘Red Love’ cultivars (Figures 5 and 6), which showed a positive correlation with the
CGA accumulation in apple fruits. Among these genes, except for MdHCT1 (previously des-
ignated as MdHCT) and MdC3H1/2 [1], the other genes are new candidate genes associated
with CGA biosynthesis in apple fruits.

5. Conclusions

In this study, we systematically evaluated the CGA content and relative enzyme
activities during the development of ‘Huashuo’ and ‘Red Love’ apple fruits. The CGA
content in both cultivars decreased sharply from 30 DAFB to 60 DAFB, and the CGA content
in fruit flesh was relatively higher than that in peel. Correspondingly, the activities of C3H
and HCT enzyme showed the similar changing trend as CGA content. By comparing the
transcriptome data of DAFB 30 and DAFB 60 in ‘Huashuo’ apple, 23 DEGs associated with
CGA biosynthesis were identified. The results of qRT-PCR showed that the expression
patterns of MdHCT1/2/4/5/6 and MdC3H1/2/3 were positively correlated with the CGA
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content during the development of apple fruits in both cultivars, indicating that these
genes may play important roles in the CGA biosynthesis. These findings provide new data
for the molecular mechanisms of CGA biosynthesis and guidance for future breeding of
apple fruits.
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