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Abstract: Nutrient monitoring in Micro Indoor Smart Hydroponics (MISH) relies on measuring
electrical conductivity or total dissolved solids to determine the amount of nutrients in a hydroponic
solution. Neither method can distinguish concentrations of individual nutrients. This study presents
the development and testing of a novel spectroscopic sensor system to monitor nitrogen changes
in nutrient solutions for MISH systems. The design phase determined that using an inexpensive
AS7265x Internet of Thing (IoT) sensor in a transflective spectroscopic application could effectively
detect small fluctuations in nitrogen concentraation. Next, a novel transflective sensor apparatus was
designed and constructed for use in a MISH system experiment, growing lettuce over 30 days. Two
solution tanks of different sizes, 80 L and 40 L, were used in the deployment of the system. Samples
from each tank were analyzed for nitrogen concentration in a laboratory, and multilinear regression
was used to predict the nitrogen concentrations using the AS7265x 18 spectral channels recorded in
the sensor system. Significant results were found for both tanks with an R2 of 0.904 and 0.911 for
the 80 and 40 L tanks, respectively. However, while the use of all wavelengths produced an accurate
model, none of the individual wavelengths were indicative on their own. These findings indicate that
the novel system presented in this study successfully and accurately monitors changes in nitrogen
concentrations for MISH systems, using low cost IoT sensors.

Keywords: IoT; smart hydroponics; spectrophtometry; smart farming; nitrogen; nutrient management

1. Introduction

The adoption of hydroponics in urban applications has been proposed to assist in
alleviating pressure on global food security, enabling urban residents to grow food at
home [1–4]. The COVID-19 pandemic and extreme weather caused by climate change have
exposed the vulnerability of the global food supply chain, emphasizing the need for alterna-
tive solutions, such as hydroponics [5–10]. The system complexity and expertise required
for the adoption of hydroponics are a barrier to its wider adoption and use in an appliance-
like manner [1–4]. To simplify the management of the system complexities, micro indoor
smart hydroponics (MISH) systems use Internet of Things (IoT) technologies [4,11,12]. IoT
technologies enable sensors and actuators to connect to a networked computing system,
allowing software systems to monitor and assist with hydroponic management.

One of the most complex aspects of hydroponics is managing the nutrient content in
the hydroponic solution. Thirteen common elements are needed in hydroponic solutions;
the macronutrients nitrogen, potassium, phosphate, calcium, magnesium, and sulfur are
added in larger amounts than the other elements, with nitrogen being applied in the
greatest quantity. Balancing and managing the quantity of the nutrients in the solution is a
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difficult task requiring expertise. The complexity and need for expertise have slowed the
adoption of hydroponics [13].

In addition to the difficulty of managing the nutrients, there is also the wastewater
that hydroponics generate [14]. Because there is no simple inexpensive method for home
gardeners to determine the individual nutrients in the solution, after or during the growing
process, the water is often discarded and a new solution is mixed. This has the potential
to negatively impact the environment, wasting resources and causing problems for water
treatment [15] and possibly creating a major hurdle for the wider adoption of MISH
systems, especially in urban settings where disposal options are limited [16]. Accurate
nutrient solution management is important for resource conservation and efficient use [14].
Currently MISH systems are managed using electrical conductivity (EC) meters [17,18]. EC
meters use the potentiometric effect of an electrical current between electrical probes to
measure the amount of mineral salt in the water. These meters are inexpensive and a have
been shown to be useful for monitoring the overall amount of fertilizer in the water [19,20].
However, EC meters cannot determine the amount of individual minerals, only the total
combined amount.

Ion-selective electrodes (ISEs) have emerged recently as a solution preferred to the
opaque EC meter [14,15,17,20–23]. ISEs work like EC meters but use an ion-selective
membrane to only measure individual nutrients. Although ISEs are accurate, they are
not feasible for use in MISH systems. Each nutrient needs a separate ISE probe [13,23,24],
making the approach cost-prohibitive in the context of home hydroponics. Additionally, at
the time of writing, consumer-grade ISE probes or commodity-grade IoT ISE sensors are
not widely available. ISE sensors have durability issues, the probes are delicate, and the
membrane has a limited lifespan while submerged in water [13,23]. They are also prone to
electrical, chemical, and biological interference in water, causing issues with accuracy and
calibration; this limits their application in certain environments [25].

Spectroscopy techniques, a form of optical sensors, are currently the most promising
alternative to ISEs in MISH systems for several reasons. Firstly, optical sensors are less
prone to chemical, electrical, and biofouling interference [26–29]. Secondly, only one sensor
is needed to measure multiple nutrients [27,30]. Thirdly, ISE sensors are more delicate
and have a limited lifespan compared to optical sensors [31]. Finally, the developments in
commodity IoT optical sensors are advancing the application of optical sensor systems for
simple, practical, and easy-to-deploy spectroscopy [27].

The purpose of this study was to demonstrate a proof of concept of an inline optical
nutrient monitoring system that can be applied in a MISH system for home use. The
proposed system, hereby referred to as NutriSpec, was built with a commodity IoT spec-
troscopic sensor and hardware. The NutriSpec system uses IoT hardware and software
architectures that are well-established for MISH systems [4,12,32,33]. The system was
demonstrated in a real-world setting via a 28-day lettuce-growing experiment. The lettuce
acted as a nutrient sink, creating dynamics in the nutrient solution that were monitored by
the NutriSpec system.

This paper first presents the literature that was used to identify the gap in the research
and served as the basis for the system design. Next, in the Materials and Methods section,
the system design, materials selection, and experimental methodology are presented.
Finally, the results of the experiment, the system performance, and a discussion of their
implications are presented.

2. Literature Review

Hydroponics has a well-established history of using spectroscopic techniques to
quantify the individual nutrients of a solution [28,34,35]. This is traditionally conducted
offline in a laboratory using lab-grade equipment. Samples are individually prepared and
processed, with considerable delay between the sampling and the result. While the results
are accurate and useful, the lab approach makes it difficult to monitor the solution in real
time. Four survey papers that covered 544 studies on automated aquaponics [17], smart
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hydroponics [36], smart farming with IoT [18], and IoT smart irrigation systems [37] found
no inline spectroscopic application of nutrient monitoring for hydroponics. The studies
shown in Table 1 and discussed below cover the body of literature on the applied spectral
measurement of hydroponic nutrient solutions.

D. Jung et al. [25] combined the use of an array of cobalt ion sensors and penetrative
spectroscopy equipment to estimate phosphate quantities in hydroponic solutions. By
adding spectroscopy to their model, they were able to achieve a 20% improvement in
accuracy. However, the spectroscopy was not applied inline [25]. Critical work for the
advancement of spectroscopy in hydroponics by Bamsey et al. [38,39] presented two
transflectance spectroscopy optodes for measuring calcium and potassium. Optodes use
a transflective spectroscopic technique, a form of reflective spectroscopy that relies on a
mirror to reflect light; this was combined with an ion-filtering membrane on the mirror, to
measure specific nutrients in a solution. The probe design allowed them to be submerged
in a solution and take readings. Like ISEs, the mirror was coated with an ion-selective
membrane and also suffered from a short lifespan [38,39]. Additionally, Bamsey et al. [38,39]
only tested the optode sensors in a lab setting.

Recent studies in spectrophotometry have demonstrated the progress toward develop-
ing a simple homemade spectrophotometer [40–44]. These sensor systems use a 3D printed
or cardboard housing with a place to put a sample and pass light through a cuvette to mea-
sure the spectral readings. Han et al. [44] provided an example of the application of these
sensor systems in hydroponics. Their study developed a homemade spectrophotometer to
measure phosphorus in a hydroponic solution. While Han et al.’s [44] approach produced
accurate phosphorous concentration predictions, the application technique made it difficult
to translate to inline nutrient monitoring.

Table 1. Literature on applied spectroscopy for monitoring hydroponic nutrient solutions.

Study Optical Sensor

M. Bamsey et al., 2012 [38] Ocean Optics USB4000-FL Spectrometer

M. T. Bamsey et al., 2014 [39] Ocean Optics USB4000-FL Spectrometer

D. Jung et al., 2019 [25] Control Development NIR128L

Monteiro-Silva et al., 2019 [31] Ocean Optics HR4000 Spectrometer

A. F. Silva et al., 2021 [30] Ocean Insight STS-UV-L-50-400

Han et al., 2020 [44] Public Lab Store JDEPC-OV04 USB Camera

Monteiro-Silva, Jorge, and Martins [31] presented an inline spectroscopic system sensor
design for measuring nitrogen, phosphorus, and potassium (NPK) in nutrient solutions.
A rectangular flow chamber was placed between a lab-grade deuterium light source and
an ultraviolet–visible (UV–Vis) wavelength spectrometer; hydroponic solution circulated
through the chamber, and spectral transmission readings were taken [31]. Their sensor
system was able to accurately predict NPK concentrations in a lab setting with samples
taken from local commercial hydroponic farms, with an error rate of <3%. A. F. Silva
et al. [31] extended this work by testing the same sensor application using a different
spectrometer and light source and were able to obtain accurate predictions of nitrogen
content with an error rate of <6% and potassium content with an error rate of <3%. These
results show the real potential of measuring nutrient solutions using optical approaches in
place of EC for MISH systems.

MISH systems aim to increase the of spread urban agriculture [4]. This area of research
can be accelerated with citizen science contributions to the advancement of MISH. Low-
cost technology and robust practical design are crucial for facilitating citizen science [45].
Five of the proposed systems in Table 1 utilize expensive spectrometers, costing hundreds
or thousands of USD [25,30,31,39,40]. The only system with inexpensive commodity
electronics uses a fragile paper housing in a plywood box and requires impractical sample
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preparation for analysis [38]. Additionally, all the studies in Table 1 examine the sensor
systems in a lab setting. None of the systems examined were built with low-cost IoT sensors
and applied in situ for inline monitoring in a real-world setting. There is a clear need for
a sensor system that uses inexpensive commodity IoT optical sensors in a housing that
can be applied inline and tested in a real-world application. This study presents a proof of
concept and feasibility study of a low-cost, novel submergible spectroscopic sensor system
for monitoring hydroponic nutrients in a real-world application for MISH systems.

3. Materials and Methods

Three subsections are presented below: first, the NutriSpec sensor housing design and
the spectrophotometry technique determination; next, the NutriSpec system hardware and
software architecture configurations; and finally, the experimental methodology used to
test the NutriSpec system.

3.1. NutriSpec Sensor System Design

The sensor selected was the SparkFun Triad Spectroscopy Sensor-AS7265x costing
USD 70. The sensor uses three AMS pre-calibrated photodiodes that cover 18 spectral
channels, 30 nm wide, ranging from 410 nm to 940 nm. The sensor has three onboard
LED lights next to the photodiodes, an ultraviolet light (UV), a 3300 k white LED for
the visible spectrum (VIS), and an infrared (IR) light. These lights are used in reflective
spectrophotometry applications. The light photons reflect off the test material upon flashing,
and the photodiode measures their intensity. The suitability of the sensor for the NutriSpec
system was determined based on similar applications. A smart buoy prototype successfully
used a submerged AS7265x to measure the quality of seawater [46]. Another study used
the AS7265x in a 3D printed spectrophotometer with accurate results for measuring soft
drink concentrations [47]. Finally, two studies used the AS7265x to measure the quantity
of photosynthetic active radiation (PAR) [4,48]. Both studies demonstrated the sensor’s
high accuracy, surpassing that of a lab-grade Li-Cor 190R quantum sensor [48] and thus
supporting the selection of the sensor for accuracy and applicability.

Prior to the sensor housing design, the sensor was evaluated for consistency. Con-
sistency rather than accuracy was used to evaluate the quality of the sensor to align with
the citizen science approach. A typical home user would generally need access to a lab or
commercial-grade equipment to calibrate for accuracy. The sensor’s ability to produce con-
sistent results enables the establishment of a baseline from which changes can be observed.
To test for consistency, the sensor was placed in a dark chamber face up with an empty
glass beaker placed atop. The onboard LED lights flashed every 10 s for five minutes. Next,
a glass beaker filled with 500 mL tap water was placed atop the sensor, and the process was
repeated. Finally, a glass beaker filled with 500 mL distilled water was set atop the sensor,
repeating the same process. The results are shown for stable consistent readings.

Table 2 presents the data from the consistency tests. The spectral channels are la-
beled by color: blue, which includes the UV channels; green; red; and IR. The results
demonstrated the sensor’s ability to produce consistent readings across all channels and all
treatments. The standard deviation (SD) for all treatments was less than 1.5 raw spectral
intensity units. Additionally, the largest difference in the max and min was just under five
units. These results demonstrated the AS7265x’s consistent stability and strongly supported
the choice of the sensor for the NutriSpec system. After sensor selection the waterproof
housing was designed.
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Table 2. Comparison of descriptive statistics of the raw spectral intensity readings grouped by
color. Three conditions were examined: an empty beaker, 500 mL of drinking water, and 500 mL of
distilled water.

Mean Std Dev Min Max

Empty

Blue 410 nm to 510 nm 78.70 0.61 77.6 79.82

Green 535 nm to 585 nm 51.08 0.40 50.16 51.7

Red 610 nm to 730 nm 49.85 0.78 48.51 50.81

IR 760 nm to 940 nm 34.42 0.09 34.40 34.84

Drinking

Blue 410 nm to 510 nm 98.28 0.50 95.38 97.40

Green 535 nm to 585 nm 47.17 0.34 46.40 48.03

Red 610 nm to 730 nm 40.07 1.22 38.10 43.15

IR 760 nm to 940 nm 24.40 0.18 23.95 24.63

Distilled

Blue 410 nm to 510 nm 90.14 0.73 88.64 91.68

Green 535 nm to 585 nm 48.14 0.52 47.53 49.26

Red 610 nm to 730 nm 40.05 1.14 38.78 43.65

IR 760 nm to 940 nm 24.22 0.11 24.20 24.63

First, the AS7265x with no box was connected to an Arduino Uno and placed facing
up at the bottom of a black lightproof chamber. The onboard LED lights flashed every 10 s,
and readings were taken. The sensor readings were collected for six minutes. Next, the
AS7265x was placed in each of the boxes, and the process was repeated. The results were
analyzed using MANOVA (Pillai’s trace = 2.402, F (12, 714) = 238.979, p = 0.000), showing
that there was a difference between no box and all thicknesses of boxes for all spectral
channels. The thickness was chosen based on the mean closest to the sensor reading with
no box. As shown in Table 3 and Figure 1, the 2 mm acrylic was the closest to the sensor
with no box. Based on this analysis, the 2 mm acrylic was used to waterproof the AS7265x
for the experiment.

Table 3. Comparison of the means of raw spectral intensity for each color group of the AS7265x. The
18 spectral channels were grouped by five colors, and the average is shown below. The 2 mm box
was the closest to the raw sensor readings.

No Box 2 mm 2.5 mm 3 mm

Blue 410 nm to 510 nm 2.33 60.02 77.32 88.65

Green 535 nm to 585 nm 4.27 31.14 38.76 56.30

Red 610 nm to 730 nm 5.23 29.23 35.44 55.48

IR 760 nm to 940 nm 4.66 21 22.89 30.45

Next, the sensor was sealed in the 2 mm acrylic box and waterproofed with epoxy
resin, as shown in Figure 2. A series of tests were conducted to determine if the sensor
could detect any changes in the water contents using reflective spectrophotometry, as per
Bruzzese et al. [46]. The sensor was fixed to the bottom of a 1200 mL beaker facing up
in a lightproof chamber, as shown in Figure 3. One liter of distilled water was added to
the beaker, and readings were taken every 10 s for six minutes. Next, 1 mL of a locally
produced consumer-grade hydroponic nutrient A solution was added every six minutes,
up to 3 ml, and EC readings were taken. An analysis was performed on the four series
of readings using MANOVA (Pillai’s trace = 2.823, F(13, 132) = 32.82, p < 0.001), showing
that there were significant differences in the concentration changes. However, 5 of the 18
spectral variables (940 nm, 860 nm, 810 nm, 705 nm, and 760 nm) showed no significant
changes between the concentrations.
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A multiple linear regression (MLR) model was used to examine the sensor’s ability to
predict the concentration of nutrients based on the EC. A significant model was created
(F(13, 134) = 521.92), p < 0.001) with an R2 of 0.981. While this model was promising,
five channels in the red and IR range were not responsive; thus, transflection was also
examined. Transflection can be considered when low concentrations cause only slight light
attenuation [47,48].
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A mirror was placed 5 mm [47] opposite the sensor, as shown in Figure 3. A low-cost
aluminum-backed mirror was used, as it performed sufficiently across all the wavelengths
being examined (410 nm to 940 nm) [49]. The light was reflected off the mirror into the
photodiode. This method has been proven to work well for agricultural applications,
specifically for measuring fertilizer content in water [47,48]. The same methods and data
collection techniques were used, and the same tests were performed for the reflective
application. MANOVA (Pillai’s trace = 2.827, F(54, 396) = 119.85, p < 0.001) found that all
18 spectral channels had an observable significant difference in the concentrations of the
solutions, producing a significant MLR model (F(18, 1009) = 858.807, p < 0.001) with an R2

of 0.992.
Based on this analysis of spectrophotometry using the AS7265x, it was clear that

transflection produced a better model than reflection to measure nutrient concentrations in
hydroponic solutions. The next step was to apply these findings by deploying the sensor in
an IoT sensor system using the submerged AS7265x for inline nutrient monitoring in an
MISH system.

The housing was designed and 3D printed for the transflective application of the
waterproofed AS7265x. It was printed with an Ender 2 fused deposition modeling (FDM)
printer, using eSUN polylactic acid (PLA) filament. This printer and filament type are
commonly used in hydroponics and spectroscopy prototyping. For example, Takeuchi [50]
created an innovative hydroponic NFT system using a 3D FDM printer with PLA filament.
Cecil, Guijt, Henderson, Macka, and Breadmore [51] created a flow chamber for liquid spec-
troscopy using the same. The housing shown in Figure 4 was 73 mm × 40 mm × 71 mm.
It was designed to minimize interference from outside light while still allowing space for
circulation through the sensing zone. The front and back walls featured 1 mm × 8 mm slots,
2 mm apart. A solid lid fit over the top of the housing, as seen in Figure 4. A 12 mm base
was created with a slot for the mirror and sensor. The mirror was 5 mm from the sensor;
while Feng et al. [48] showed that 1 mm was the optimal distance, they found that 5 mm
was also effective. Based on the constraints of the acrylic box being 2 mm thick, 5 mm was
used. Perforations of 1 mm, 2 mm apart, ran through the entire base section of the housing.
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3.2. MISH IoT System Design and Architecture for Field Testing

A full MISH system was constructed to test the capability of the NutriSpec sensor.
The IoT system used common commodity hardware components, arranged in a simple
architecture, as shown in Figure 5. The AS7265x was connected to the inter-integrated
circuit (I2C) bus of the Arduino Uno, then by USB to the Raspberry Pi 4 B (RPi 4B). The RPi
4B acted as a gateway for the sensors and was connected via general-purpose input–output
(GPIO) pins to solid-state relays to actuate the grow lights and water pump. A DFRobot
analog EC sensor DFR0300, DFRobot pH analog sensor V2 SEN0161-V2, analog water-level
sensor, and DS1820 digital temperature sensor were added for additional water monitoring.
All of these were connected to an Arduino Uno and to the RPi 4B, as shown in Figure 5.
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The RPi 4B, running Raspbian 10 Buster, in addition to acting as a gateway for the IoT
sensors, provided the processing, storage, and user interface services for the system. As
shown in Figure 5, all the sensor data were received and processed by Node-RED 1.3.4. The
data from the sensors were combined in Node-RED to form a single JavaScript objection
notation (JSON) string and stored in Influx DB 1.8.5, a time-series database. Grafana 8.1.5,
a user interface dashboard, was connected to Influx DB to visualize the data for easy
monitoring. In addition, Node-RED was also used to schedule the timing for the lights and
the water pumps.

3.3. Experiemental Materials and Methods

This section presents the experiment used to determine if the NutriSpec system could
measure changes in hydroponic nutrients in a real-world application. The experiment
focused on observing changes in nitrogen concentrations during a standard 28-day growing
period of lettuce in a MISH system. Nitrogen was selected because it is the most important
mineral for plant growth and is easily measured in the lab using spectrophotometry. How-
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ever, a smaller-scale analysis was conducted to explore whether potassium and phosphorus
were also impacted. As the focus of this study was nitrogen, potassium and phosphorus
were not analyzed in depth. Lettuce was selected for the experiment to act as a nutrient sink
for the hydroponic solution. Lettuce is a well-established tool for research in hydroponic
systems, due to its ability to produce a large mass in a short amount of time; other green
crops would also work, but lettuce was optimal for this study [4,12,52–55]. The changes in
the solution were monitored, as well as the weight of the plants. Two sets of plants were
grown simultaneously using different volume sizes of nutrient tanks. An 80 L tank and a
40 L tank were used, as shown in Figure 6, to observe and verify changes at different scales
and protect internal validity.
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The sensor housing design, construction, and data collection were carried out in a
real-world setting for microscale home hydroponics. The experiment was carried out in
a residential apartment in Dubai, UAE, during the month of May 2022. The hydroponic
system used a flood and drain design [4]. Two flood trays containing two 70 cm × 19 cm
grow beds Figure 6 were filled with perlite and a thin top layer of coco coir. The media
were sterilized with boiling distilled water. Ten-day-old lettuce seedlings (Lollo bionda)
and hydroponic nutrient solutions A and B were sourced from Greenoponics Agricultural
Services, Dubai UAE. Two 300 mm × 240 mm full-spectrum LED grow lights were hung
over each tray and adjusted to average 330 µmol/s/m2 and operated for 12 h a day to
provide a total of 14 DLI [56,57]. At day 14, beds A and B were swapped in both flood trays.

Two nutrient tanks were used for the experiment, an 80 L tank and a 40 L tank. To
block ambient light, black-colored tanks were used with tight-fitting lids. Each tank used a
25 watt Dynamax water pump that flooded the trays every 12 h for 20 min. The AS7265x
sensor housing was mounted to the bottom of each tank in the front left corner, 20 cm from
the front and left wall, as shown in Figure 6. A temperature sensor, pH sensor, EC meter,
and water-level sensor were deployed in each tank and connected to the NutriSpec sensor
system. The tanks, pumps, pipes, and fittings were rinsed with distilled water prior to
commencing the experiment. After setting up, the tanks were filled with distilled water,
and the system ran for 24 h prior to adding the nutrients. The nutrient solutions were
locally produced, with a breakdown of their contents shown in Table 4.
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Table 4. Nutrient break down for Greenoponics Growth XL hydroponic nutrient solutions.

Nutrient A Nutrient B

Total Nitrogen 3.78% Phosphorus (P2O5) 3.5%

Nitrate 3.5% Potassium (K2O) 5%

Ammoniacal 0.27% Magnesium (MgO) 2%

Calcium (CaO) 6% Copper (Cu) 100 ppm

Iron (Fe) 1100 ppm Manganese (Mn) 230 ppm

Zinc (Zn) 130 ppm

Solutions A and B were added to each of the tanks according to the prescribed propor-
tion on the bottles (125 to 100 mL). To keep the solution in the optimum nitrogen absorption
band without effecting the other nutrient absorption rates, the pH was adjusted and main-
tained throughout the experiment between pH 5.5 and pH 6.4. After the initial adjustment
of the pH, the EC of Tank S was 1322, and that of Tank L was 1366. The water level was
monitored daily, and when the level reached 5 L below the desired level, distilled water was
added. This process was performed for both tanks to maintain the level at 40 L and 80 L,
respectively. The system was then allowed to run for another 24 h prior to transplanting
the seedlings. The seedlings were transplanted then given 12 h rest from the light before
commencing the lighting cycle.

Sensor readings were recorded every 10 s and averaged hourly, excluding the two
hours when the trays were flooded daily. We took 50 mL samples from each tank after the
completion of both flooding cycles at the end of the day for nitrogen analysis. Additionally,
six 50 mL samples were taken from each tank at the beginning and end of each week and
at the end of the experiment to conduct an analysis of potassium and phosphorus. The EC
and pH of these samples were also recorded. Samples were analyzed at the Middle East
Testing Services, Ajman, UAE, using a UV–Vis spectrophotometer. At the end of day 28,
the lettuce was harvested, weighed, and then dried in an oven at 80 ◦C for 72 h.

4. Results

This section presents the results of the field experiment designed to determine if
the NutriSpec sensor system could detect changes in the nitrogen levels in hydroponic
nutrient solutions in a real-life MISH system application. Nitrogen was selected because
it is the most important mineral for plant growth and is easily measured in a lab using
spectrophotometry. The nutrient solution, shown in Table 4, contained calcium nitrate
Ca(NO3)2; therefore, the nitrate nitrogen changes were monitored as the primary nitrogen
changes for the experiment. This section first covers the analysis of the nutrient solution
tanks and plant growth to demonstrate the validity of the context for testing the NutriSpec
sensor system. Next, an analysis was performed of the NutriSpec sensor system’s ability to
detect the changes demonstrated by the nitrogen and plant analysis.

Two NutriSpec sensor systems were constructed and deployed, one in each tank, as
shown in Table 5. Once the tanks were set up and the nutrients added, issues emerged
regarding the EC and pH sensor readings. The pH readings showed a negative number,
and the EC readings were lower than expected. Upon investigation, the sensors were
suffering interference from the analogue water-level meter. The water-level meter was a
potentiometer, which conducted a small charge of electricity through the water and then
estimated the water levels based on the resistance readings. This caused interference with
the EC and pH sensors. Even after removing the water-level sensor, the EC and pH sensors
no longer held a calibration. For the duration of the experiment, EC and pH readings were
taken by hand at the end of the pump cycle. In addition, water-level marks were used
to manually identify when five liters of water should be added. The water temperatures
(t(58) = 0.347, p = 0.558) and pH levels (t(58) = 2.45, p = 0.123) in both tanks were stable and
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showed no significant difference, as demonstrated in Table 5. The thermostat of the room
in the flat was set to 25 ◦C for the duration of the experiment.

Table 5. Means of the temperature and pH for Tank L and Tank S during the 28-day experiment.

Mean Std. Dev Min Max

Tank L
pH 6.01 0.23 5.61 7

Temp 25.06 0.57 24.43 27.5

Tank S
pH 6.00 0.29 5.60 7

Temp 25.56 0.50 24.66 27.6

The collected samples were analyzed in the lab with a spectrophotometer for nitrate ni-
trogen levels. Figure 7 shows the daily levels recorded in mg/L over 28 days. A two-sample
t-test was used to compare the mean nitrogen levels between the tanks. Tank L (M = 91.5,
SD = 14.15) and Tank S (M = 92.72, SD = 16.25) showed no significant difference in mg/L
(t(53) = 2.00, p = 0.85). Additionally, a Pearson’s correlation was used to assess the nitrogen
depletion rates between Tank S and Tank L (r(53) = 0.82, p < 0.0001). Strong similarities were
established between the tanks regarding nitrogen levels over time, showing that a stable,
consistent, and measurable dynamic was created in the nutrient solution, with which to
compare the AS7265x spectral readings.
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To further demonstrate the integrity of the test environment, the weight of the plant
growth, shown in Figure 8, was analyzed. Table 6 shows the total fresh and dry weight of
the plant growth for both tanks over the four weeks. The total harvested fresh mass from
Tank S was 383.1 g, and that from Tank L was 683.5 g. The mean fresh weight of Tank S
(M = 29.46, SD = 9.27) and Tank L (M = 52.57. SD = 9.22) showed a significant difference
(t(24) = −6.36, p < 0.001). After the plants were dried for 72 h in an oven, they were weighed
again. The total dry weight of Tank L (29.8 g) was almost double that of Tank S (15.2 g).
The disparity remained, with Tank S (M = 1.17, SD = 0.00) and Tank L (M = 2.30, SD = 0.00)
showing a significant difference in dry weight (t(24) = 1.27 × 1018, p < 0.001). Both the fresh
weight and dry weight differences were in line with the expectations for stable growth
and proportionate results. Tank L, which contained twice the amount of freely available
nitrogen for the plants, was close to double the size of Tank S. After establishing that the
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environment performed as expected, the spectral results for both tanks were analyzed to
evaluate the sensor system.
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Table 6. Total fresh and dry weight from the 28-day experiment.

Tray Bed Fresh Weight Dry Weight

Tray S

A 204.7 7.01

B 178.4 8.19

Total Weight 383.1 15.2

Tray L

A 333.3 13.75

B 350.2 16.05

Total Weight 683.5 29.8

To assess the sensor’s ability to detect the established nitrogen depletion, the means
of each day, for 28 days, were calculated for all 18 wavelength channels, excluding the
two hours when the beds were being flooded. These raw spectral readings were analyzed
using MLR to assess their ability to predict the nitrogen levels. The analysis was carried
out on each tank separately; then, the datasets were combined and analyzed. Additionally,
absorption rates were calculated for each channel; this was carried out by applying the
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Beer–Lambert law, i.e., log10(I0/I). The blank reading in distilled water was used as I0, and
the mean intensity was used as I [48].

Tank L absorbance rates were plotted for each wavelength over 30 days, as shown
in Figure 9. Tank L produced a significant model (F(15, 14) = 8.76, p < 0.001) with an R2

of 0.904. Figure 10 shows the model’s predicted nitrogen levels plotted against the actual
nitrogen levels. A linear regression model using the daily EC readings to predict nitrogen
was also created. The model was significant (F(1, 28) = 60.64, p < 0.001), but the fit had an
R2 of 0.673, much lower than that of the NutriSpec sensor system.
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While the model was significant and clearly able to predict nitrogen with a high
accuracy, none of the individual coefficients, shown in Table 7, were significant. The
Tank L absorbance rates, presented in Figure 10, showed variation and inconsistencies,
contributing to a lack of significance. The highest standardized coefficients were 410 nm,
460 nm, 760 nm, and 585 nm, while the coefficients with the greatest influence were 435 nm,
460 nm, 705 nm, and 730 nm. For both coefficient rankings, 410 nm and 460 nm were the
least significant but still had a p value greater than 0.05.

Table 7. Tank L MLR coefficients. Three wavelengths (560 nm, 645 nm, and 810 nm) were excluded
from the model due to high collinearity.

80 L Coefficient Std Error Standardized
Coefficients t Sig

Intercept −66.186 115.005 −0.576 0.574

410 nm −0.044 0.026 −3.635 −1.673 0.116

435 nm 0.296 0.541 2.283 0.547 0.593

460 nm 0.361 0.225 5.265 1.605 0.131

485 nm −0.059 0.036 −2.06 −1.626 0.126

510 nm −0.001 0.026 −0.036 −0.029 0.977

535 nm −0.056 0.06 −1.554 −0.935 0.366

585 nm −0.075 0.075 −5.115 −0.99 0.339

610 nm 0.054 0.339 0.866 0.158 0.877

680 nm 0.025 0.072 1.909 0.341 0.738

705 nm 0.247 0.321 1.641 0.77 0.454

730 nm −0.409 0.91 −2.202 −0.449 0.66

760 nm −0.073 0.1 −3.647 −0.728 0.479

860 nm 0.222 0.278 2.142 0.8 0.437

900 nm −0.093 0.373 −0.963 −0.249 0.807

940 nm 0.191 0.212 1.558 0.901 0.383

The Tank S absorbance rates were plotted for each wavelength over 30 days, as shown
in Figure 11. Tank S also produced a significant model (F(18, 11) = 62.51, p = 0.002) with
an R2 of 0.911. Figure 11 shows the model’s predicted nitrogen plotted against the actual
levels. This model was also able to predict the nitrogen levels with a high degree of
accuracy, much better than that of the EC for Tank S. The EC produced a significant model
(F(1, 28) = 68.407 p < 0.001) with an R2 of 0.710.

Like Tank L, Tank S was clearly able to predict the nitrogen levels, producing a
significant model (F(18, 11) = 6.251, p =0.002) with an R2 of 0.911. All wavelengths were
included in the model; however, none of the coefficients shown in Table 8 are significant.
The Tank S absorbance rates, presented in Figure 11, showed wide variation, with 435 nm
having no movement and wide movement observed in the 600 nm range. The highest
standardized coefficients were 460 nm, 410 nm, 510 nm, and 680 nm. The coefficients with
the greatest effect were 610 nm, 680 nm, and 730 nm. The only coefficient close to being
significant from both models was 510 nm from Tank S, with a p value of 0.08.
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Finally, the two datasets were combined, again producing a significant model (F(18,
41) = 6.76 p < 0.001) with an R2 of 0.748. This also outperformed the significant EC model
(F(1, 58) = 87, p < 0.001) created from the same data, with an R2 of 0.6. Tables A1 and A2
show the correlation of potassium and phosphorus levels with the corresponding average
raw spectral intensity readings for each day. Due to the limited data collected, there were
no statistically significant results. However, an analysis with the limited data showed that
there were potential correlations for both phosphorus and potassium, with implications for
future research.

5. Discussion

The goal of this study was to demonstrate the feasibility of using an inline nutrient
monitoring system with an optical sensor to measure individual nutrient changes, instead
of relying on traditional EC measurements. The purpose of this proof-of-concept design
was to show that it is possible to use this type of system to accurately monitor nutrient
levels in real time. The results indicated that the NutriSpec sensor system was able to
accurately detect changes in nitrogen levels for a hydroponic solution in a real-world MISH
system setting. Figures 10 and 12 demonstrate the strong prediction power of the MLR
models produced from the systems. When comparing these models to those produced
using EC, the spectroscopic sensors performed much better. This shows the potential of
future applications of simple submerged optical sensors to replace EC in MISH systems.
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Figure 12. Tank S actual nitrogen plotted against the predicted nitrogen using the MLR model.

The conditions of the MISH system used to test the NutriSpec sensor system were
rigorously monitored and analyzed to ensure the internal validity of the experiment. The
validity was well demonstrated through several findings. Firstly, the temperature and
pH of both tanks, presented in Table 5, showed no significance difference throughout the
experiment. Secondly, there was an observable decrease in nitrogen, as shown in Figure 7.
Even though there are noticeable differences and fluctuations depicted in Figure 7, with
pronounced dips in the nitrogen concentration on days 5, 10, 15, 20, and 25, there were
strong significant correlations in nitrogen depletion between the tanks and no significant
difference in mean nitrogen m/g per liter. Finally, the plant mass results, shown in Table 6,
were proportionally consistent. Tank L, an 80 L tank, had both dry and fresh weights
around double those of Tank S, a 40 L tank. Considering that Tank L had double the
available nitrogen of Tank S, this growth was as expected. Taking all of this into account,
the real-world setting of the apartment presented no confounding factors and provided a
valid consistent environment to interpret the results of the experiment.
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Despite the tanks exhibiting highly similar characteristics, the models produced for
each tank were different. Both models had an R2 of more than 90%. Although both models
had a goodness-of-fit higher than 90%, the difference between the models appeared very
distinct. However, on closer examination, there were unmistakable similarities that have
implications for the future development of simple submerged transflective spectroscopy
for MISH.

Tank L, the larger tank, produced a more accurate model than Tank S, with all coeffi-
cients having a standard error of less than one. Additionally, the range of absorbance, at
different wavelengths, differed greatly from that of Tank S. The absorbance range for Tank
L, Figure 9, showed an over-absorbance error, spanning from −4 to 2.5. Tank S had the
highest standard error rates, despite having the better goodness-of-fit and absorbance rates
in the acceptable range [57]. Only six coefficients for Tank S had a standard error of less
than one. The cause of these vast differences was unknown; there may have been issues
related to a difference in sensitivity between the sensors depending on the manufacturer,
or they could have resulted from the tank size or material anomalies. Differences in sub-
merged applications can be addressed in future studies through local calibration prior to
application, as demonstrated in Brito et al. [58] and Maribas et al. [59].

Despite these apparent differences, important similarities emerged when comparing
the six most accurate wavelengths for each tank, presented in Table 9. The most accurate
spectrum for both models, as shown in Table 9, was in the UV–Vis range. For both tanks,
the wavelength with the lowest standard error was 410 nm. This finding was as expected
and in-line with previous work using UV–Vis to detect nitrogen in hydroponic solutions
via spectrophotometry [30].

Table 9. Comparison of the most accurate wavelengths for Tank S and Tank L.

Tank S Tank L

λ Influence SE λ Influence SE

560 nm −0.05 0.10 410 nm −0.04 0.02

410 nm 0.18 0.13 510 nm 0.00 0.02

485 nm 0.14 0.18 485 nm −0.06 0.03

535 nm −0.14 0.53 535 nm −0.05 0.06

645 nm −0.28 0.61 585 nm −0.07 0.07

510 nm 1.39 0.74 680 nm 0.02 0.07

Considering the extensive work carried out to measure nitrogen with the IR and near-
infrared (NIR) spectrum [58–61], we expected to see the IR range among the most accurate
wavelengths. Surprisingly, for both models, the IR wavelengths were not present. The IR
wavelengths presented some of the highest standard error rates, as shown in Tables 7 and 8.
Additionally, the lab that tested the samples for the study used 500 nm to determine the
quantity of calcium nitrate, consistent with the findings shown in Table 9. Based on these
similarities, it could be concluded that the sensors performed similarly. This suggested
that the technique of simple submerged transflective spectroscopy for MISH systems is
effective, particularly in the UV–Vis range. It is possible that other sensors even cheaper
than the AS7265x could also be used in this application.

This study faced several limitations. Firstly, as the water in the tanks was depleted by
plant consumption and evaporation, distilled water had to be added. However, rather than
adding large quantities at intervals, adding smaller quantities every day at the end of the
readings would have provided a more stable environment. Additionally, taking readings
of the nitrogen before and after adding the distilled water would have allowed a useful
analysis for tracking the impact. Secondly, the EC system and pH were incompatible with
the water-level sensor. While the voltage of the water-level sensor was small, it was enough
to foul both meters. This exacerbated the issues noted earlier with ISEs. The sensors were
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so sensitive that future designs must take this sensitivity into consideration. Thirdly, the
sensors should have been examined to note any differences before application. It is normal
for small differences to exist in commodity sensors; however, these need to be documented
to establish comparable outputs. Lastly, the acrylic boxed leaked, as shown in Figure 13,
just two days after the completion of the experiment, suggesting that an alternative means
of waterproofing are required.
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Two notable areas for future studies are finding a common calibration and determining
optimal pathlengths. Maribas et al. [58] and Brito et al. [59] established successful calibra-
tion models for target solutions, which may solve issues of irregular readings in future
research. Next, future studies attempting to determine the optimal mirror distance for this
application may eliminate the differences identified between the sensors and provide more
accurate readings [47,48,62].

6. Conclusions

This paper presented NutriSpec, an inexpensive spectroscopic IoT sensor system de-
signed to monitor changes in nitrogen in hydroponic solutions for real-world application.
The system was designed, built, and successfully demonstrated in a residential apartment in
Dubai, UAE. This study established a novel spectroscopic sensor system for MISH that has
the potential to advance the field and open new avenues for citizen science contributions to
research in this field, pushing forward the potential for cheap, simple, and accurate nutrient
monitoring techniques that improve upon the opaque estimations of traditional EC.

This study showed that an AS7265x in a simple submerged transflective spectroscopic
application could be used to accurately measure the changes in nitrogen in hydroponic
solutions. The experimental results showed the clear superiority of the NutriSpec sensor
system’s ability to predict the nitrogen concentration compared to EC. While there were
clear inconsistencies between the models produced for the different tank volumes, the
results demonstrated the system’s potential for future applications.

Future research is needed to establish a calibration methodology for the NutriSpec
system. In addition, there is wide scope for analyzing other commonly used sources of
nitrogen for hydroponics, as well as phosphate, potassium, and magnesium. With the use of
artificial intelligence and machine learning, there is potential to develop spectral signatures
for different elements that would allow for a single sensor to monitor different nutrients.
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Appendix A

Table A1. The average spectral intensity for each channel per day according to the combined data of
Tank L and Tank S and their correlation with the phosphorus concentrations.

Spectral Channel Correlation Count Lower C.I. Upper C.I.

410 nm −0.151 12 −0.667 0.463

435 nm 0.263 12 −0.366 0.727

460 nm −0.364 12 −0.776 0.266

485 nm −0.321 12 −0.756 0.31

510 nm 0.008 12 −0.569 0.579

535 nm −0.814 12 −0.946 −0.45

560 nm −0.438 12 −0.809 0.181

585 nm 0.125 12 −0.484 0.652

610 nm −0.307 12 −0.749 0.324

645 nm −0.182 12 −0.684 0.438

680 nm 0.189 12 −0.431 0.688

705 nm −0.401 12 −0.793 0.224

730 nm 0.069 12 −0.526 0.618

760 nm 0.159 12 −0.456 0.672

810 nm −0.424 12 −0.803 0.198

860 nm 0.615 12 0.063 0.879

900 nm 0.123 12 −0.486 0.651

940 nm 0.379 12 −0.249 0.783

Table A2. The average spectral intensity for each channel per day according to the combined data of
Tank L and Tank S and their correlation with the potassium concentrations.

Spectral Channel Correlation Count Lower C.I. Upper C.I.

410 nm −0.152 12 −0.667 0.463

435 nm 0.172 12 −0.446 0.679

460 nm −0.4 12 −0.792 0.226

485 nm −0.307 12 −0.749 0.324

510 nm −0.082 12 −0.626 0.516

535 nm −0.803 12 −0.943 −0.425

560 nm −0.425 12 −0.803 0.197

585 nm 0.021 12 −0.56 0.588

610 nm −0.405 12 −0.794 0.221

645 nm −0.174 12 −0.68 0.444

680 nm 0.085 12 −0.514 0.628

705 nm −0.381 12 −0.784 0.247

730 nm −0.021 12 −0.588 0.56

760 nm 0.058 12 −0.534 0.611

810 nm −0.414 12 −0.798 0.209
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Table A2. Cont.

Spectral Channel Correlation Count Lower C.I. Upper C.I.

860 nm 0.621 12 0.073 0.881

900 nm 0.2 12 −0.422 0.694

940 nm 0.439 12 −0.18 0.809
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