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Abstract: The objective of this work was to analyze the effect of Thidiazuron (TDZ) treatment on
floral initiation, flowering time, ornamental characteristics and physiological metabolism of potted
Dendrobium nobile. Three TDZ concentrations (200, 500 and 1000 mg L−1) were applied as solution
to water the root zone of the plants. Control plants (plants watered with water) showed a good
vegetative development but no floral branches. TDZ greatly influenced the flowering process.
For all the tested TDZ concentrations, the first flower bud occurred at 55–60 days after the last
irrigation (DAI), the highest TDZ concentration showing the major delay in its occurrence. The initial
flowering (30% of flowered plants) began 47 days after the first flower bud initiation with no statistical
differences among the treatments. Plants treated with TDZ 500–1000 mg L−1 showed the longest
period of flowering (about 32 days) and the single flowers delayed the withering of about 2–3 days
compared to the lowest TDZ treatment (200 mg L−1). The number of flowers, floral branches and
flowering percentage were distinctly influenced by the TDZ concentration. The highest percentage of
flowering (40%) was scored when plants were watered with a TDZ solution at 500 mg L−1 and this
was a performant treatment providing the best morphological flower features for the ornamental
value of this plant. Among the physiological factors affecting the flowering, this study showed that
TDZ increased the relative membrane permeability which facilitated the transport of macromolecular
flower-forming substances into and out of the membrane. Therefore, the membrane permeability
change could be an indicator of shifts in physiologically active substances during the flowering
transition process in Dendrobium nobile plants.

Keywords: Dendrobium nobile; TDZ; flower bud formation; early flowering; physiological metabolism

1. Introduction

The regulation of flowering time is an important issue to guarantee the year-round
production of ornamental crops and to enable the flower synchronization of cross-parents
for successful fertilization in a crossbreeding protocol. In addition, flower initiation is
one of the critical life-history phases for ornamental plants. Generally, the environmental
response and endogenous pathways stimulate flower bud formation to ensure successful
reproduction [1,2].

Endogenous pathways, including the genes of flowering initiation, hormones, carbo-
hydrate levels, miRNA and floral competence, form an integrated network to regulate the
flowering time [3–7]. Plant growth regulators (PGR) have been proven to act as exogenous
hormones and therefore they are widely used to interfere with floral initiation in ornamen-
tal crops [8]. Thidiazuron (TDZ), which is one of the phenylurea derivatives considered as
the most active cytokinin-like substance, acts as a multifunctional PGR in regulating floral
induction, explant regeneration and dormancy breaking, as well as the leaf postharvest
senescence process [9–11].
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TDZ successfully induced the in vitro florigens of soybean, Pennisetum glaucum, and
contributed to early flowering by shortening the required time at the vegetative growth
stage [10,12]. Normally, TDZ addition to Murashige and Skoog Medium (MS media) can
stimulate explant in vitro regeneration, resulting in adventitious shoots, callus production
and protocorm-like body (PLB) proliferation [9,13–15].

As a preservative ingredient, 100 µM TDZ applied as a foliar spray at the preharvest
stage or added in post-harvest solution significantly prolonged the vase life of Dianthus
caryophyllus [16], Gladiolus grandiflora [11] and Calendula officinalis [17] by enhancing solu-
tion uptake, superoxide dismutase (SOD) activity and membrane stability index (MSI).
Additionally, TDZ could inhibit carotenoid degradation, flower abscission and leaf senes-
cence [18,19].

Genus Dendrobium, consisting of approximately 1000 species around the world, is
mainly distributed in tropical and subtropical areas. China has more than 100 wild species
of Dendrobium, with the southwest region being particularly rich; many species have high
ornamental value [20]. D. nobile is one of the appreciated Chinese medicinal plants but it is
used in breeding programs to obtain hybrids of D. nobile ‘Spring Dream’.

Previous studies indicated that Dendrobium flowering could be influenced by TDZ
directly through in vivo application or indirectly by influencing the flowering of the ex vitro
plantlets when applied during the in vitro culture. Wen et al. (2013) proved that TDZ could
promote the flowering of D. nobile by affecting the transcriptions of some transcription
factors and signal genes [21]. Supplementing TDZ to the MS medium successfully induced
the early flowering in ex vitro plantlets of D. capra and D. nobile [22,23]. The tissue-cultured
plantlets of D. officinale produced a high percentage of inflorescences (83.2%) and normal
flowers (73.6%) provided that the in vitro culture was carried out for 9 weeks on MS
medium supplemented with TDZ 0.1 mg L−1 [24]. Some studies indicated that TDZ can
further increase the frequency of floral bud formation when used in combination with
other PGRs [10,23]. It was reported that TDZ combined with auxins such as 1-naphthlcetic
acid (NAA) and Paclobutrazol (PP333) efficiently improved floral buds compared to its
single application [22]. An optimal in vitro protocol to induce a high rate of flower buds
and blossomed flowers in tissue-cultured plants of D. officinale indicated the use of a
combination of TDZ with other PGRs (0.3 mg L−1 PP333 + 0.5 mg L−1 6-Benzylaminopurine
(6-BA) + 0.5 mg L−1 NAA + 0.06 mg L−1 TDZ) [25]. Foliar spraying and localized irrigation
at root level are appropriate methods for the in vivo application. TDZ (30 mg L−1) when
applied as foliar spray and through root zone watering was beneficial in inducing floral bud
formation but decreased the flower size and shortened the flowering duration in potted
plants of Dendrobium ‘Sunya Sunshine’ [26]. Generally, the beneficial effect of TDZ on
Dendrobium flowering is related to several factors such as the species, application method,
the concentration of this growth regulator and if it is used alone or in combination with
other PGRs.

The flowering switch in higher plants is profoundly affected by various pathways.
Usually, the plant hormone status is a traditional way to check the effects of the growth
regulator. Additionally, endogenous carbohydrate levels and some autonomous pathways
can modulate the process of floral initiation. There is little information available for TDZ
effects on floral induction and the physiological metabolism. Current evidence suggests that
carbohydrate and chlorophyll metabolisms involve the molecular regulatory mechanism
of floral initiation [24,27,28]. Generally, the transport of macromolecular flower-forming
substances in and out of the membrane could lead to the membrane permeability change.

The objective of this research was to analyze the effect of three concentrations of TDZ
applied via root irrigation on the floral morphogenesis and flowering time of D. nobile. In
particular, the flowering features and the physiological metabolism in response to TDZ
rates were studied.



Horticulturae 2023, 9, 129 3 of 12

2. Materials and Methods
2.1. Plant Material and Experimental Conditions

The work was carried out in the greenhouses of the Southwest Forestry University
Department of Horticulture and Landscape Architecture, Kunming, Yunnan, China.

The experimental plant material was set with 2–3-year-old seedlings of D. nobile
obtained through in vivo division. Attention was paid to select homogeneous seedlings
(3–4 branches, 22–25 cm height) which were transplanted into pots (diameter: 18 cm)
filled with a commercial potting mix, composed of 50% coconut fiber and 50% tree bark
(NATURAL COCONUT FIBER, China). From May to September 2020, seedlings were
cultivated in the greenhouse according to standard cultivation practices (T/HCHMA 0002-
2021 Technical regulation of Dendrobium nobile) and maintained under a 65% polywoven
shading net. Then, the plants were moved to the incubator at 25 ◦C/12 ◦C (day/night)
temperature with a daily light intensity of 90 µ mol m−2 s−1, and 80% relative air humidity
(HR). After three months under these conditions, the experiment started.

The plant growth regulator TDZ (Shanghai EKEAR Biotechnology Limited, Shanghai,
China) was applied at concentrations of 200, 500 and 1000 mg L−1; plants were watered
with 220 mL solution, volume which was considered to saturate the water content of the
culture substrate. Plants watered with 220 mL water were used as the control. All samples
were subjected to initial watering on 27 December 2020 when the soil water potential
dropped at a threshold value equal to 40–50% of saturated water content. Plants were
watered every 15 days and were completely irrigated three times during the whole process.

The experimental unit consisted of 8 uniform plants and each treatment had three replicates.

2.2. Flowering and Morphological Characterization of Flowers

Plants were monitored from December 2020 to April 2021 and the morphological
observations on floral differentiation and formation were carried out after the last wa-
tering. The number of branches and the flowering characteristics were observed in each
experimental unit and recorded as number of flower spikes, number of inflorescences per
branch, number of flowers per inflorescence and total number of flowers. Early flower bud
initiation was recorded and the flowering process was followed from the first flowering
opening to the fading flowering.

When plants reached the full bloom, the flower morphology was assessed through the
length of flower inflorescence, the length and width of the petal, middle sepal and lateral
sepal and the lip height.

2.3. Physiological Characteristics Measurements

Three physiological parameters were examined at 13, 23, 33 and 102 days after the last
irrigation (DAI), corresponding to the different stages of transition from vegetative growth
to reproductive growth. More precisely, 13, 23, 33 and 102 DAI represented the time related
to vegetative bud stage (stage I), transitional stage (stage II), inflorescence development
stage (stage III) and bloom stage (stage IV), respectively.

The relative membrane permeability was assessed indirectly by detecting electrolyte
leakage or conductivity of the leaf tissues according to the method described by Sairam,
1994 [27]. The leaf tissue (500 mg) was picked and placed in 20 mL double-distilled
water (DDW) in two separate tubes. The first was incubated at 25 ◦C for 30 min and its
conductivity was recorded as C1. The second tube was incubated at 100 ◦C for 20 min
and its conductivity was designated as C2. The conductivity value was measured using
an Elico DDS-307 Conductivity meter (INESA Scientific instrument Co., Ltd., Shanghai,
China). Membrane stability index (MSI) was determined by a ratio of C1 to C2, expressed
in percent.

The relative chlorophyll content (%) was determined using a chlorophyll meter (SPAD-
502, Konica Minolta, Japan) by detecting the optical concentration difference at two wave-
lengths between 650 nm and 940 nm. SPAD value is widely used to stand for the relative
amount of chlorophyll in vivo. The fully expanded leaf from the upper one-third of the
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canopy was considered for the measurement. Three samples were randomly chosen for
measurements and 10 leaves were tested for each treatment. The chlorophyll relative
content was measured with SPAD (SPAD-502, Konica Minolta, Japan) meter from 11.00 a.m.
to 13.00 p.m. at the three above said times (13, 23, 33 DAI) and the additional time (102 DAI)
corresponding to the reproductive bloom stage. The measurement of each clean leaf was
repeated three times.

The soluble sugars were estimated by the anthrone method with glucose as the stan-
dard [28]. The leaf was sampled from the upper branch. Approximately, 10 g of tested
and fresh leaves was milled to a fine powder and dried. Each sample was obtained in
three portions, and put into graduated Pyrex tubes (150 mm × 25 mm); 5 mL distilled
water was added and sealed with sealing film. Then, it was extracted in boiling water for
30 min (twice); the extract was filtered into a 25 mL flask and the tubes and residue were
rinsed repeatedly to fix the volume on the scale. The anthrone reagent (5 mL) was pipetted
into Pyrex tubes and frozen in ice water. A 1 mL solution was layered on the acid, cooled
for 5 min and then thoroughly mixed. Afterwards, it was incubated in boiling water and
then cooled in water for 5 min. Absorbance was measured at 620 nm with a UD751GD
spectrophotometer (INESA Scientific instrument Co., Ltd., Shanghai, China) using blank as
a reference, and the standard curve was plotted with standard solution.

2.4. Data Collection and Statistical Analysis

The data collection started after the last irrigation. An axillary bud was considered
to be present when the bud reached 0.20 cm diameter. The time to reach initial flowering
and full bloom was assumed to occur when the percentage of blooming plants reached 30%
and 60%, respectively. Fading flowering was considered when 80% of the flowers withered.
The bloom duration referred to the days from the initial flowering to the fading stage. The
duration of a single flower was assessed by the average flowering period of 10 flowers
from each treatment.

The influence of TDZ was assessed by evaluating 24 plants used as the population for
the observation on the number of flowers/plant, number of flowers/inflorescence, number
of inflorescences/branch, number of floral branches/plant and number of branches/plant.
Flowering percentage for each treatment was calculated according to the formula: (Total
number of floral branches/Total number of branches) × 100. A floral bud of D. nobile usually
produces an inflorescence. The number of flowers per inflorescence was determined by the
number of flowers emerging from each flower bud.

Measurements on flower morphological characteristics were performed on 10 flowers
randomly selected from each treatment. The length of flower inflorescence, the length and
width of the petal, middle sepal and lateral sepal and the height of the lip were examined
with a vernier caliper.

The leaves for the physiological test were obtained from the upper branch [29]. Three
representative plants were randomly chosen for measurements in each treatment and
measurements for each plant were repeated three times repetitively from December 2020 to
April 2021.

The significance of TDZ rates on each growth index and physiological parameter was
assessed by one-way analysis of variance (ANOVA) using EXCEL (Microsoft Company,
Albuquerque, NM, USA). In the case of significance tests of differences, data were analyzed
using an ANOVA and Fisher’s LSD test at a significance level of 5% (p = 0.05).

3. Results
3.1. The Influence of TDZ on Flowering

Plants treated with TDZ showed a consistent flowering increase (Table 1). When
plants were watered only with water (control), no flowering was observed although plants
showed a vigorous vegetative growth. TDZ increased the number of stems bearing flowers,
the lower TDZ concentrations (200 and 500 mg L−1) being more effective.
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Table 1. Influence of TDZ treatments on vegetative growth and flowering of Dendrobium nobile plants
watered at root level with TDZ solution. The percentage of flowering was calculated according to
the formula: (Floral branches per plant/Branches per plant) × 100. Data were collected after the last
irrigation. For each variable, values followed by the same small letter are not significantly different at
p = 0.05.

TDZ Level
(mg L−1)

Number
Percentage of
Flowering (%)Flowers/Plant Flowers/

Inflorescence
Inflorescences/

Branch
Floral

Branches/Plant Branches/Plant

0 - - - - 92 ± 0.81 a 0.00 d
200 68 ± 0.77 b 2.60 ± 0.44 a 1.60 ± 0.38 a 24 ± 0.52 b 90 ± 0.81 a 26.84 ± 6.21 b
500 97 ± 1.01 a 1.50 ± 0.33 a 2.70 ± 0.48 a 38 ± 0.62 a 95 ± 1.05 a 40.38 ± 7.41 a

1000 52 ± 0.74 c 1.60 ± 0.34 a 1.70 ± 0.37 a 17 ± 0.40 c 87 ± 0.87 a 19.66 ± 4.89 c
LSD0.05 6.58 * 1.34 1.60 2.60 * 7.45 3.78 *

LSD0.05 means the least squared difference at the p ≤ 0.05. * means within the same column followed by different
lowercase letters are significantly different at 0.05 level of single-factor ANOVA.

Nevertheless, the number of flowers per inflorescence and the number of inflorescences
per branch showed no statistical significance for all the tested TDZ concentrations (Table 1).

Generally speaking, 55–60 days were necessary from the last irrigation with TDZ
(DAI = days after the last irrigation) to notice the first appearance of the flower buds with
significant differences among the TDZ treatments (Table 2). The time span from flower bud
appearance to the onset of flowering was the same for all TDZ concentrations tested (47 d)
as well as the time required to reach the full bloom was similar for all the TDZ treatments
(52–54 d). The highest TDZ concentrations (500 mg L−1 and 1000 mg L−1) significantly
retarded the flower withering and prolonged the flowering period, compared to the low
TDZ concentration (200 mg L−1) (Table 2). ANOVA showed that TDZ treatment had a
significantly positive impact on blooming period of single flowers too.

Table 2. Influence on flowering of Dendrobium nobile plants watered at root zone with TZD solutions.
Initial flowering and full bloom were considered when 30% and 60% of flowered plants were observed,
respectively. Fading flowering was when 80% of the flowers withered.

TDZ Level
(mg L−1)

Days after the Last Irrigation (DAI) Flowering
Period

(No. Days)

Blooming
Period of

Single Flower
(No. Days)

First Flower
Bud Initiation

Initial
Flowering Full Bloom Fading

Flowering

0 - - - - - -
200 55 ± 0.32 c 102 ± 0.58 a 109 ± 0.60 a 128 ± 0.66 b 27 ± 0.32 b 20.30 ± 0.40 c
500 58 ± 0.39 b 105 ± 0.75 a 112 ± 0.66 a 136 ± 0.78 a 32 ± 0.40 a 21.70 ± 0.31 b
1000 60 ± 0.45 a 107 ± 0.79 a 112 ± 0.63 a 138 ± 0.82 a 32 ± 0.38 a 23.20 ± 0.34 a

LSD0.05 1.46 * 4.77 3.64 5.29 * 1.27 * 1.15 *

LSD0.05 means the least squared difference at the p ≤ 0.05. * means within the same column followed by different
lowercase letters are significantly different at 0.05 level of single-factor ANOVA.

3.2. The Influence of TDZ on Flower Morphology

Flower morphology of D. nobile was greatly influenced by TDZ treatments. Further-
more, the ANOVA analyses revealed that there were significant differences among the three
TDZ tested concentrations. Treatment with 500 mg L−1 TDZ had a good inductive effect
on the largest size of floral organs, including the length and height of the petal, sepal and
lip. Specifically, petal length, middle sepal length and lateral sepal length reached 5.16 cm,
5.12 cm and 4.87 cm, respectively (Figure 1). This TDZ treatment was proven to be the best
in enhancing the flower characteristics compared to the other TDZ concentrations (200 and
1000 mg L−1).
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3.3. Effect of TDZ on Soluble Sugar Content during the Flowering Development

According to Zhang et al. (2019), Dendrobium nobile plants sprayed with TDZ (30 mg L−1)
were able to switch to the flowering phase after one month of the treatment [26]. In our
experiment, compared to the control (plants watered only with water), TDZ significantly
affects the soluble sugar content of Dendrobium at all four developmental stages (Figure 2A).
Generally, when TDZ was applied, the soluble sugar content was significantly raised from
the vegetative bud stage to the inflorescence development stage. Plants treated with TDZ
200 mg L−1 showed an increase in sugar content over the three developmental stages
according to a linear correlation (y= 1.093x − 6.5557 R2 = 1); the highest sugar content value
(56.18 ± 0.48 mg g−1) was reached at the inflorescence development stage, and afterwards,
a significant decrease was observed (25.11 ± 0.31 mg g−1). When 500 mg L−1 TDZ was
used, a slight increase in sugar content was scored between the inflorescence development
stage (25.10 ± 0.52 mg g−1) and the bloom stage (29.09 ± 0.97 mg g−1). Plants treated with
1000 mg L−1 TDZ showed a significant decrease in sugar content from the inflorescence
development stage (40.58 ± 0.67 mg g−1) to the bloom stage (25.33 ± 0.58 mg g−1).

At bloom stage, the sugar content was almost similar in the control plants and in
plants treated with the three TDZ concentrations (Figure 2A).

These results suggest that the TZD treatment on D. nobile affected the soluble sugar
content already at the lowest TDZ concentration tested (200 mg L−1). A moderate rate
(500 mg L−1 TDZ) did not significantly upgrade the soluble sugar at the transitional stage.
Taking into consideration the floral characteristics scored when plants were treated with
500 mg L−1 TDZ, it could be argued that at this concentration, no important fluctuation of
the soluble sugar content was observed in the critical period from vegetative bud until the
inflorescence development stage.
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Figure 2. The effect of different concentrations of TDZ on the soluble sugar content (A), chlorophyll
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relative air humidity (HR): 80%). For each stage, different lowercase letters indicated significantly
different means (one-way ANOVA, p ≤ 0.05). For each TDZ concentration, different capital letters
indicated significantly different means (one-way ANOVA, p ≤ 0.05).
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3.4. Effect of TDZ on Chlorophyll Content during the Flower Development

The chlorophyll relative content (SPAD value) in the control plants showed a signifi-
cant decrease until the inflorescence development stage; at the bloom stage, a significant
increase was observed in both the control and TDZ treatments (Figure 2B). Generally
speaking, and also in the TDZ-treated plants, a decrease in the SPAD values was scored
during the three developmental stages followed by a significant increase at the bloom
stage (Figure 2B). However, in the control plants, a more pronounced decrease could be
observed until the inflorescence developmental stage (17.63% decrease in SPAD value in the
control compared to 2.62%, 11.13% and 11.96% decrease in SPAD value when 200, 500 and
1000 mg L−1 TDZ was applied). At blooming stage, the leaf chlorophyll relative content in
the control and the treated plants was not significantly different (Figure 2B).

3.5. The Change in Relative Membrane Permeability

Relative membrane permeability increased significantly under the three TDZ concen-
trations and it was significantly higher than the control at all the developmental stages
(Figure 2C). Generally, the MSI% slightly decreased over the three stages until the bloom
stage; at the bloom stage, a significant increase in MSI% was scored both for the control and
the three TDZ applications; in the case of TDZ 200 mg L−1, the MSI% was stable between
the inflorescence development stage and the bloom stage. Looking at the bloom stage, it
is interesting to highlight that the MSI% significantly increased from the control until the
500 mg L−1 TDZ treatment. At this TDZ concentration, the highest values were scored and
a consequent significant decrease was then observed at 1000 mg L−1 TDZ.

4. Discussion

Flowering is a critical event which implies the transition from the vegetative to the
reproductive phase. This process is influenced by several environmental and endoge-
nous signals [30]. Among them, the effects of phytohormones on orchid flowering have
been studied [31]. TDZ applied as the only growth regulator during the in vitro propa-
gation of D. capra and D. nobile caused a low rate of flower bud formation in the ex vitro
plantlets [10,22]. Some researchers considered that a combination of various hormones was
more effective to induce the flower transition in Dendrobium. An inflorescence induction of
100% was observed when microshoots of D. wangliangii were cultured on 1/2 MS medium
with 2 mg L−1 TDZ and 0.5 mg L−1 NAA [32]. Besides NAA, paclobutrazol (PP333) was
found to be beneficial for a high frequency of floral induction. Wang et al. (2014) proved
that a combination of 0.05–0.1 mg L−1 TDZ and 1.0 mg L−1 NAA could produce more than
50% floral bud induction and 84% normal flowers in D. officinale [23]. Similarly, they could
successfully induce the early flowering if the plantlets of D. capra were in vitro cultured in
MS medium containing TDZ and NAA over an 11-month period [22]. High TDZ rates with
a warm temperature (exceeding 25 ◦C) usually led to flower deformation.

When the in vivo irrigation technique was applied, the TDZ effect could be influenced
mostly by the watering method and cultivation environment, such as substrates, air temper-
ature and humidity. Sphagna moss and coconut shell could achieve a relatively better water
holding capacity than pine bark. D. ‘Sunya Sunshine’ treated with 30–120 mg L−1 TDZ in a
combination of foliar spaying and root irrigation exhibited no significant difference in floral
induction rate, which was more than 80% in all treatments. Compared with the control
group, the flower number per inflorescence and flower size decreased and the flowering
duration was shortened [26]. Nevertheless, the floral bud formation percentage in nodes
of D. wardianum was 84.3% after in vivo spraying twice with 200 mg L−1 Paclobutrazol
(PP333) and 200 mg L−1 TDZ mixed solution in vivo [33]. It was presumed that the species
greatly determined the TDZ concentration response. Undoubtably, an appropriate rate of
TDZ would enhance the Dendrobium flower traits and the early flowering. Our research
found that a moderate rate of TDZ (500 mg L−1) could induce a high percentage of flower
formation, retard the flower withering and prolong the flowering period. Moreover, TDZ
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significantly improved the number of flowers, number of floral branches and the size of
floral organs.

Our study showed that TDZ greatly improve the blooming rate of D. nobile but, com-
pared to previous results (Zhang et al., 2019), the percentage of flowering (about 20–40% de-
pending on TDZ concentration) was poor [26]. Several reasons could account for that.
Firstly, the substrate greatly affected the TDZ effect because the pine bark reduced TDZ
adsorption. Secondly, foliar spraying combined with root irrigation, as used in the previous
studies, could better enhance the TDZ uptake and utilization with an effect on flowering
percentage. The results suggested that an integrated network constructed by different
ways of application and the use of several growth regulators could effectively regulate the
flowering transition of Dendrobium.

However, some studies revealed the adverse effect of TDZ application on abnormal
bud appearance [34,35]. No abnormal flowers of D. nobile were observed under our ex-
perimental conditions. Endogenous regulation involves many crucial chemical signals to
modulate the repression and activation of florigen gene expression, such as FLC (FLOWER-
ING LOCUS C), FLD (FLOWERING LOCUS D) and FT (FLOWERING LOCUS T) [36–38].
The previous studies revealed that TDZ upregulated flowering genes’ expression [39,40].
In orchids, a low temperature (10 ◦C) was beneficial for the vernalization of D. nobile by
upregulating the expression of DnFT and, DnVRN1 expression but decreasing DnMFT
(Dendrobium nobile FLOWERING LOCUS T) and DnVRN1 (Dendrobium nobile VERNAL-
IZATION 1) expression [40,41].

Zheng et al. 2017 reported that D. spring could not finish the floral differentiation at
26/21 ◦C (day/night). A relative low night temperature (≤17 ◦C) was conductive to its
floral initiation [42]. Tian et al. 2007 found that its floral differentiation rate could reach
64.74% at 10 ◦C for 30 d [43]. A continuous temperature of 12 ◦C at night could enhance
the flowering induction and early flowering of D. nobile in our experiment, although it
produced a relatively low flower formation rate. Further research should be carried out
to discuss whether a lower temperature could improve a high rate of floral differentiation
in Dendrobium.

Carbohydrates are believed to play a crucial role in the regulation of flowering. TPS1
(TREHALOSE-6-PHOSPHATE SYNTHASE 1) could inhibit its floral initiation regardless
of favorably inductive environmental conditions [31]. Seo et al. (2011) proved that the IN-
DETERMINATE DOMAIN transcription factor AtIDD8 regulated photoperiodic flowering
by modulating the sugar transport and metabolism of Arabidopsis thaliana [44].

In our experiment, the soluble sugar content (SSC) was correlated with the occurrence
of flower buds, whereas there was no distinct fluctuation at the transition stage. The
500 mg L−1 TDZ treatment sustained a stable level of soluble sugar content. We could
speculate that during the reproductive development, a sugar signal regulation occurred
mainly at the inflorescence differentiation and blooming phase under this average TDZ
concentration. An intensive study should be performed to obtain a sequential and dynamic
examination of its content based on the precise scheduling of the whole transition phase.

A previous study indicated that chloroplasts worked as essential sensors to cause
nuclear transcriptional changes at the developmental transition stage. In Arabidopsis, PTM,
a PHD transcription factor modulating chloroplast retrograde signaling, could mediate
the transcriptional repression of FLC through the recruitment of FVE (a component of
the histone deacetylase complex) [45]. In our research, TDZ irrigation decreased in the
chlorophyll content in D. nobile from the vegetative phase to the inflorescence development
stage (13 DAI, 23 DAI and 33 DAI). However, a more pronounced decrease was shown
in the control plants. These results seemed to be irrelevant to the flower transition. We
speculated that the chloroplast regulatory network might be involved in multiple responses
including carbohydrate synthesis and flowering gene expression. Further research is re-
quired regarding the chloroplast signaling regulatory mechanism to determine the tradeoff
between vegetative growth and reproductive growth.
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TDZ used as a preservative solution could improve the membrane integrity of cut
flowers [11,17]. In contrast to the control group, TDZ increased the cell membrane per-
meability and had a positive rate effect. TDZ facilitated the transport of macromolecular
flower-forming substances into and out of the membrane. Therefore, the membrane perme-
ability change could be an indicator of shifts in physiologically active substances during
the flowering transition process.

5. Conclusions

Investigations addressed to promote flowering in Dendrobium are well appreciated
due to the long vegetative period scored in these plants. In our experiments, we found that
the TDZ applied to water the root zone of D. nobile plants was beneficial in affecting the
flowering. In fact, the untreated plants were able to show a good vegetative growth but
no flowering. The TDZ-treated plants flowered and the highest percentage of flowering
(40%) was recorded when this growth regulator was applied at 500 mg L−1. No significant
differences were scored in the time frame necessary to reach the initial and full bloom
stage when different TDZ concentrations were tested. On the contrary, when 500 mg L−1

TDZ was applied, the important flower features able to enhance the ornamental value,
flower number and flowering period were improved. Among the different physiologi-
cal parameters studied to elucidate the positive effect of TDZ on D. nobile flowering, the
relative membrane permeability seems to account for a more efficient transport of nutri-
ents and macromolecules during the flowering process and this could explain the best
performing flowering.
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