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Abstract: Among ornamental plants, the colour of the petals is an important feature. However, the
reason for the colour differences of Rhododendron liliiflorum remains unclear. To reveal the differences
in the colour of R. liliiflorum, high-efficiency liquid chromatographic collar (UPLC–MS/MS) tech-
nology was used to study the yellow and white parts of R. liliiflorum. A total of 1187 metabolites
were identified in R. liliiflorum petals, including 339 flavonoid metabolites. Seventy-eight types of
flavonoids in these metabolites were found in the yellow and white parts of R. liliiflorum petals,
along with 11 other significantly enriched substances. Combining gene expression-related data with
differential metabolite data demonstrated effects of enrichment in the flavanonols (fustin), flavonols
(epiafzelechin and afzelechin), and flavanones (pinocembrin) of flavonoid biosynthesis; glyccitin,
6′′-O-malonylgenistin, and 6-hydroxydaidzein of isoflavonoid biosynthesis; and anthocyanin biosyn-
thesis of malvidin-3-O-galactoside (primulin), delphinidin-3-O-rutinoside, cyanidin-3-O-glucoside
(kuromanin), and cyanidin-3-O-rutinoside (keracyanin), which are potentially the contributing factors
responsible for the differences in petal colour in R. liliiflorum. This study establishes a connection
between the differential metabolites underlying the color differences in the petals of R. liliiflorum
and the gene expression in R. liliiflorum. This will provide a foundation for subsequent research
on the regulation of flower color in R. liliiflorum and have profound implications for horticultural
applications of R. liliiflorum.

Keywords: colouration; petal; metabolites; flavonoids

1. Introduction

Rhododendron is the largest genus of the Rhododendron family, with wild rhododendrons
found all over the world [1]. There are traces of azalea discovered in low latitudes from
tropical areas to high latitudes. Wild Rhododendron genus communities have contributed to
the economic development of local communities, such as the Baili Rhododendron Nature
Reserve in northwestern Guizhou Province, China [2]. Rhododendron flower colour is highly
diverse, from purple to red, pink, and even white [3]; thus, its extensive usage in research on
plant flower colours [4–6]. Rhododendron Liliiflorum belongs to the Rhododendron family and
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exists in southeast China (southeast of Yunnan to Hunan). The base of the petals in the late
flowering period is yellow and the upper part is white (Figure 1a,b).
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Figure 1. R. liliiflorum phenotype and overall characteristics. (a). Wild R. liliiflorum. (b). The mor-
phology of R. liliiflorum, R. liliiflorum petals overall diagram, R. liliiflorum petal inner diagram. The
part marked by the white square border is the white part of the R. liliiflorum (W). The yellow elliptical
border bezel. The marked part is the yellow part (Y) of R. liliiflorum. (c). MWs vs. MYs overall
clustering heatmap; horizontal is sample name, longitudinal information is metabolites, groups are
packets, and class classification is material. (d). MW vs. MY correlation analysis diagram.



Horticulturae 2023, 9, 1351 3 of 16

Among ornamental plants, the colour of the petals is an important feature. Studies
have shown that colour characteristics are an important factor in the interaction between
plants and their powder [7,8]. The potential factors affecting the colour of plants include
hydrogen, metal ions, pigment ingredients, and petal structure [9]. The most critical factor
is pigment composition. The pigment ingredients that affect the formation of colours in-
clude flavonoids, carotene, betaine, etc. Each of these combinations adds to the diversity of
colour [10]. Flavonoids are a class of polyphenol secondary metabolites, which are natural
pigments widely present in plants. Based on the phenolic molecular structure with the het-
erocyclic ring and conformation, these metabolites can be divided into flavones, flavonols,
isoflavonoids, flavanones, flavanols, anthocyanidins, and so on [11–13]. Flavonoids are
widely present in plants, and their contents in flowers [14], leaves [15], fruits [16], and
other parts of plants are high. The colour changes of petals may be caused by different
flavonoids, while the proportional changes of various types of flavonoids may be a perti-
nent factor in the change in colour. This includes anthocyanidins, flavanones, chalcones,
flavonols, isoflavonoids, and flavanones [17,18]. In a study of lotus petals, it was found
that the content of anthocyanins was positively correlated with red petals, and flavonols
contributed to the yellow part of the auxiliary pigment [19]. After comparing seven types
of plants with red flowers and white flowers, it was found that the content of anthocyanins
in safflower was significantly higher than that in white flowers. In white flowers, flavonol
is the main pigment type [20].

As discovered through many studies, anthocyanins, a downstream material for
flavonoid biosynthesis, is considered to be the main factor stimulating colour changes
in plant flowers [21]. For example, a study by Mizuta et al. [22] on the pattern of flower
colour and the anthocyanin composition of evergreen rhododendrons found that purple
rhododendrons had more anthocyanins in the red, purple, and white groups of samples,
while no anthocyanin content was detected in white rhododendrons [22]. Sun et al. [23]
used ‘Yanzhi Mi’ (pink azalea) and the wild-type (WT) cultivar ‘Dayuanyangjin’ (white
azalea with pink stripes) as their study subjects and found that pink-petalled azalea showed
higher anthocyanin contents, while white-petalled azalea contained mainly flavonoids and
a small amount of anthocyanin, which may be attributable to the presence of stripes on
white-petalled azalea [24]. In a study of the wild type of primrose (yellow petals) and its
variants (yellow transformed to red), it was found that the orange and red primrose types
contain anthocyanins such as cyanidin-3-O-glucoside [23]. Most of the current research
on rhododendrons focuses on white rhododendrons and red rhododendrons, and many
studies on white rhododendrons have shown that white rhododendrons have lower antho-
cyanin contents [22,24,25]. Additionally, the enzyme genes CHS, F3′5′H, FLS, I2′H, HID,
DFR, and LAR may have a role in the alteration of petal colour in R. liliiflorum [21,26–28].
However, few studies have revealed colour differences within the same petal colour.

Metabolomics is widely used in research on plant colour formation [25,29,30]. Metabolic
group studies have studied four noncolours of wheat, explaining that the reason for the
colour difference of wheat is potentially the accumulation of flavonoid compounds [31].
Guan et al. [30] investigated the differentiation mechanism of the colouration of sophora
flowers and identified the key metabolite responsible for the red colour as anthocyanins
of the delphinidin type using metabolomics approaches. Combining the related genes of
plant traits can reflect the reasons for changes in the organism. At present, related research
on the colour metabolic pathway has been combined with metabolic gene research. For
example, Wang et al. [31] combined metabolic group and gene expression analyses and
explored phenylpropanoid biosynthesis and flavonoid biosynthesis in wheat of different
colours. Jiang [32] comprehensively analysed anthocyanins in salvin.

Previously, we used the transcriptome to study R. liliiflorum, and the differentially
expressed genes of the two parts of R. liliiflorum petals were selected. The expression of
related enzymes may affect the difference in the colour of R. liliiflorum [21]. This study
used high-efficiency liquid chromatography–coupled mass spectrometry (UPLC–MS/MS)
to study the two parts of R. liliiflorum, yellow and white, and screened differentiated
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metabolites during biological synthesis, such as phenylpropanoids, flavonoids, and an-
thocyanins. Gene expression was verified to better explain the formation mechanism of
R. liliiflorum colour.

2. Materials and Methods
2.1. Plant Materials

Wild R. liliiflorum (Figure 1a) was picked in the Baili Rhododendron Nature Reserve
(above sea level: 1060~2200 m; precipitation: 1.6 ◦C; mean temperature of air: 1180.8 mm;
N 27◦12′54′′, E 105◦55′5′′) in northwestern Guizhou Province and was subsequently planted
in the nursery of Guizhou Normal University (above sea level: 1100 m; precipitation: 24 ◦C;
mean temperature of air: 1129.5 mm; N 26◦35′18′′, E 106◦43′18′′). In April 2021, fresh R.
liliiflorum was collected from the nursery of Guizhou Normal University. After collection,
each R. liliiflorum petal was divided into two parts: yellow (Y) and white (W). Subsequently,
the samples were quickly placed in liquid nitrogen and frozen at −80 ◦C to provide
experimental materials for subsequent experiments.

2.2. Experimental Method
2.2.1. Sample Preparation and Extraction

This experiment divided R. liliiflorum into white (W) and yellow (Y) parts, divided
into two groups (MW, MY), and every group of samples had 3 biological repeats. Biological
samples were freeze-dried with a vacuum freeze-dryer (Scientz-100F). Freeze-dried samples
were crushed using a mixer mill (MM 400, Retsch, Shanghai, China) with a zirconia bead
for 1.5 min at 30 Hz. Then, 100 mg of lyophilized powder was dissolved in 1.2 mL of
a 70% methanol solution, vortexed for 30 s every 30 min 6 times in total, and placed in
a refrigerator at 4 ◦C overnight. Following centrifugation at 12,000× g rpm for 10 min,
the extracts were filtered (SCAA-104, 0.22 µm pore size; ANPEL, Shanghai, China) before
UPLC–MS/MS analysis.

2.2.2. UPLC Conditions

The sample extracts were analysed using a UPLC–ESI–MS/MS system (UPLC, SHI-
MADZU Nexera X2; MS, Applied Biosystems 4500 Q TRAP). The analytical conditions
were as follows: UPLC—Agilent SB-C18 column (1.8 µm, 2.1 mm × 100 mm). The mobile
phase consisted of solvent A, pure water with 0.1% formic acid, and solvent B, acetonitrile
with 0.1% formic acid. Sample measurements were performed with a gradient programme
that employed the starting conditions of 95% A, 5% B. Within 9 min, a linear gradient to
5% A, 95% B was programmed, and a composition of 5% A, 95% B was kept for 1 min.
Subsequently, a composition of 95% A and 5.0% B was adjusted within 1.1 min and kept
for 2.9 min. The flow velocity was set as 0.35 mL per minute, the column oven was set to
40 ◦C, and the injection volume was 4 µL.

2.2.3. ESI-Q TRAP-MS/MS

LIT and triple quadrupole (QQQ) scans were acquired on a triple quadrupole-linear
ion trap mass spectrometer (Q TRAP) of the AB4500 Q TRAP UPLC/MS/MS system,
equipped with an ESI turbo ion spray interface operating in positive and negative ion
mode, and controlled by Analyst 1.6.3 software (AB Sciex). The ESI source operation
parameters were as follows: ion source, turbo spray; source temperature, 550 ◦C; ion spray
voltage (IS), 5500 V (positive ion mode)/−4500 V (negative ion mode); ion source gas I
(GSI), gas II (GSII), and curtain gas (CUR) set at 50, 60, and 25.0 psi, respectively; and
collision-activated dissociation (CAD), high. Instrument tuning and mass calibration were
performed with 10 and 100 µmol/L polypropylene glycol solutions in QQQ and LIT modes,
respectively. QQQ scans were acquired as MRM experiments with collision gas (nitrogen)
set to medium. DP and CE for individual MRM transitions were performed with further
DP and CE optimization. A specific set of MRM transitions was monitored for each period
according to the metabolites eluted within this period.
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2.2.4. Data Quality Control and Statistics Analysis

To test the reproducibility of the samples during the extraction and detection process,
we performed and obtained quality control (QC) on the samples; we then analysed the
occurrence frequency of the CV (coefficient of variation) for substances smaller than the
reference value using the empirical cumulative distribution function (ECDF). After showing
the stability of the experimental data, we first used R software’s (www.r-project.org/;
accessed on 15 July 2021) built-in statistics for the two sets of samples to perform the main
component analysis method (PCA). The structure compared the differences between the
yellow and white parts of the R. liliiflorum petal and the three parallel experimental groups.
Using the software R Metaboanalystr (V1.0.1) to perform orthogonal signal correction and
partial two-multiplication analysis, the OPLS-DA model was established by the R. liliiflorum
yellow and white parts (orthogonal bias minimum multiplication judgement analysis).
The metabolic content data used normalized processing (UV Scaling), and the clustering
heatmaps were drawn using R software’s Complexheatmap (V 2.8.0).

To further find the cause of the colour differences between the white part (W) and
the yellow (Y) section of R. liliiflorum, taking |log2fold change| ≥ 1 and VIP ≥ 1 as the
screening conditions, the different metabolites were screened using the KEGG Compound
database (http://www.kegg.jp/kegg/compound/; accessed on 17 July 2021) and then
the annotated metabolites were mapped to the KEGG Pathway database (http://www.
kegg.jp/kegg/pathway.html; accessed on 19 July 2021). Whereafter, using a Pearson’s
correlation coefficient (|r|) greater than 0.8 and p < 0.05 as the screening conditions, the
difference between the yellow and white parts of the R. lili-iflorum showed the correlation
between the screened material. Correlation analysis can help determine the metabolic
closeness between metabolic proximities, which is conducive to further understanding
the mutually regulating relationship between metabolites. Common analysis of genes
and metabolic groups represents the correlation between metabolites and genes through
network diagrams. Regarding Pearson’s correlation coefficient (|r|), the closer it was to
1, the stronger the correlation. We used |r| > 0.8. Unigene and different metabolites to
draw in the flavonoid, anthocyanin, and isoflavonoid biosyn-thesis. Finally, the pathway of
flavonoid biosynthesis of differential metabolites was obtained. According to the front and
back relationships of flavonoids, we used enzymes that are closely related to flavonoids as
intermediaries and used in plants to synthesize the path diagram.

3. Results
3.1. Morphological Characteristics and Overall Characteristics of Metabolites

The wild R. liliiflorum is shown in Figure 1a. The upper base part of the R. liliiflorum
petals was yellow and white. This experiment divided R. liliiflorum into the white part (MW)
and yellow part (MY) (Figure 1b). Using principal component analysis (PCA), the sample
was divided into three parts: R. liliiflorum petals, yellow and white parts, and quality control
samples. The quality control samples were prepared by mixing them with sample extracts.
PCA scoring graphs are shown in Figure S1A. PC1 and PC2 explained 42.00% and 21.00%
of the variance in the total samples, which effectively separated the yellow and white parts.
The cover inspection of the quality control (QC) samples had a good overlap, which proved
that the experimental conditions were stable. In this study, we built an OPLS-DA model
for the white part (MW) and yellow part (MY) of R. liliiflorum (Figure S1B). OPLS-DA is a
diverse statistical analysis method with supervision mode recognition. It can effectively
eliminate the impact, which is irrelevant to research screening the differences in differential
metabolites. In this model, R2X and R2Y represented the interpretation rate of the X and Y
matrix of the models built and Q2 represented the predictive ability of the model. The closer
the matrixes to the indicators of R2X and R2Y, the more reliable the model, and Q2 was
greater than 0.9, so the model was very good. From the verification diagram (Figure S1B),
it is demonstrated that Q2 = 0.966, R2X = 0.668, and R2Y = 1 for the yellow part (MY), and
the white part (MW) indicated that the OPLS-DA model established by the R. liliiflorum
was good. The prediction ability was reliable. After performing the overall process of the

www.r-project.org/
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metabolite data analysis, the difference in the accumulation of metabolites in the yellow
and white parts of R. liliiflorum petals was displayed through heatmaps. The results showed
(Figure 1c) that the material classification of the two parts of R. liliiflorum, yellow and white,
was concentrated in more flavonoids, followed by phenolic acids, lipids, others, amino
acids, and derivatives. Figure 1d shows that the three groups of samples of the white and
yellow parts of the R. liliiflorum petals and the yellow parts |r| were greater than 0.9.

3.2. Identification and Comparison of Metabolites and Differentiated Metabolites

To better understand the changes in metabolites in the two parts of R. liliiflorum
petals, we identified the primary metabolites and secondary metabolites in the sample
through the database established by the UPLC–MS/MS. After identification, a total of
1187 types of metabolites were detected, including 339 kinds of flavonoids, 177 kinds of
phenolic acids, 124 varieties of lipids, 100 amino acids and derivatives, 75 organic acids,
67 terpenoids, 58 nucleotides and derivatives, 57 kinds of alkaloids, 38 kinds of lignans
and coumarins, 26 tannins, 7 kinds of quinones, and 119 types of other types (Table 1).
We found that the detected flavonoid metabolites were the most abundant. Among the
flavonoid metabolites were chalcone, flavanones, flavanonols, flavones, flavonols, flavonoid
carbonoside, flavanols, anthocyanidins, isoflavones, and dihydroisoflavones. There were
20, 44, 13, 54, 122, 16, 23, 27, 18, and 2 species, respectively.

Table 1. Flavonoid metabolite secondary classification.

Secondary Classification of Flavonoids Quantity Percentage (%)

Chalcone 20 5.8%
Flavanones 44 12.9%
Flavanonols 13 3.8%

Flavones 54 15.9%
Flavonols 122 35.9%

Flavonoid carbonoside 16 4.7%
Flavanols 23 6.7%

Anthocyanidins 27 7.9%
Isoflavones 18 5.3%

Dihydroisoflavones 2 0.5%
Note: A total of 339 flavonoid metabolites were screened.

3.3. Flavonoid Differential Metabolites

With |Log2Fold Change| ≥ 1, VIP ≥ 1 was used as a condition to screen the differ-
ential metabolites (Figure 2a). The results demonstrated that the comparison of the white
part (MW) and yellow part (My) consisted of a total of 197 different metabolites, 78 types
of flavonoids, and metabolites (Table S1). Of these, 82 differential metabolites were upreg-
ulated and 31 flavonoid-differentiated metabolite expressions were upregulated. There
were 115 differential metabolites that were downregulated and 31 flavonoid-differentiated
metabolite expressions were downregulated.

The 78 metabolites were flavanones, chalcones, flavanonols, anthocyanidins, flavones,
isoflavones, flavonols, flavanols, and flavonoid carbonoside, of which there were 5, 4, 1, 12,
9, 7, 26, 8, and 6 of each type. Among the substances that were screened, some of the differ-
ences were detected in the yellow flower part of R. liliiflorum (Figure 2b), such as chalcone
isosalipurposide-6′′-O-p-coumaric acid, anthocyanidin delphinidin-3-O-rutinoside, flavone
baicalein and chrysoeriol-7-O-(6′′-malonyl)glucoside, isoflavone calycosin-7-O-glucoside,
6′′-O-malonylgenistin, and 6-hydroxydaidzein. Flavonoid carbonoside chrysoeriol-6-C-
glucoside-4′-O-glucoside, flavonol 6-C-methylquercetin-3-O-rutinoside, isorhamnetin-3-O-
neohesperidoside, isorhamnetin-3-O-galactoide-7-O-rhamnoside, and isorhamnetin-3-O-
glucoside-7-O-rhamnoside were also detected.
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3.4. KEGG Enrichment Analysis of Metabolites

First, we used |Log2Fold Change| ≥ 1 and VIP ≥ 1 to screen metabolites and match
the selected differential metabolites with the KEGG database to obtain the annotation path
of the differential metabolites. Subsequently, we chose the top 20 prominent pathways and
then made bubble drawings (Figure 3). We found that the differences between the yellow
parts of R. liliiflorum and the white part were mainly enriched in isoflavonoid biosynthesis,
flavonoid biosynthesis, and anthocyanin biosynthesis (Table 2). Here, we found that six
different metabolites were enriched in flavonoid biosynthesis, namely, with pinocembrin
(dihydrochrysin) in flavanones, epiafzelechin and afzelechin (3,5,7,4′-tetrahydroxyflavan)
in flavanols, fustin in flavanonols, and 5-o-caffeoyl shikimic acid and chlorogenic acid
(3-O-caffeoylquinic acid) in phenolic acids. Four different metabolites were enriched in
anthocyanin biosynthesis, namely, cyanidin-3-O-glucoside (kuromanin), malvidin-3-O-
glucoside (oenin), cyanidin-3-O-rutinoside (keracyanin), and delphinidin-3-O-rutinoside.
6′-O-malonylgenistin, glycitin (glycitein 7-O-glucoside), and 6-hydroxydaidzein were
enriched in isoflavonoid biosynthesis.
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Figure 3. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of
differentially expressed metabolites. The horizontal coordinate indicates the rich factor corresponding
to each path. The vertical coordinate is the KEGG name. The greater the rich factor is, the greater the
degree of enrichment. The larger the point, the greater the number of metabolites that are enriched in
this way. The redder the colour of the dot, the more obvious the degree of enrichment. The yellow
box represents the significantly enriched metabolic pathway that we are particularly interested in.
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Table 2. The metabolites that are enriched in the KEGG pathway.

Formula Compounds Class II Type CAS

C15H12O4 Pinocembrin (Dihydrochrysin) Flavanones down 480-39-7
C15H10O5 6-Hydroxydaidzein Isoflavones up 17817-31-1
C15H14O5 Epiafzelechin Flavanols up 24808-04-6
C15H14O5 Afzelechin (3,5,7,4′-Tetrahydroxyflavan) Flavanols up 2545-00-8
C15H12O6 Fustin Flavanonols up 20725-03-5
C22H22O10 Glycitin (Glycitein 7-O-Glucoside) Isoflavones down 40246-10-4

C21H21O11+ Cyanidin-3-O-glucoside (Kuromanin) Anthocyanidins down 47705-70-4
C23H25O12+ Malvidin-3-O-glucoside (Oenin) Anthocyanidins down 18470-06-9
C24H22O13 6′′-O-Malonylgenistin Isoflavones up 51011-05-3

C27H31O15+ Cyanidin-3-O-rutinoside (Keracyanin) Anthocyanidins up 28338-59-2
C27H31O16+ Delphinidin-3-O-rutinoside Anthocyanidins up 15674-58-5
C16H16O8 5-O-Caffeoylshikimic acid Phenolic acids down 180981-12-8
C16H18O9 Chlorogenic acid (3-O-Caffeoylquinic acid) Phenolic acids down 327-97-9

Note: + represents the substance as a positive optical substance. Down represents the content of the substance in
the white part (W) of R. liliiflorum compared to the yellow part (Y). UP indicates that the content of the species in
the white part of R. liliiflorum (W) was lower than that in the yellow part (Y).

3.5. Flavonoid, Isoflavone, Anthocyanin Biosynthesis-Related, and Metabolite-Related Networks
and Metabolite and Gene Correlation Networks

Eleven types of metabolites were filtered out, including alkaloids, amino acids and
derivatives, flavonoids, lignans and coumarins, lipids, nucleotides and derivatives, organic
acids, phenolic acids, quinones, tannins, and terpenoids (Figure 4). These 11 types of
substances included 196 different metabolites, of which 78 types of flavonoids had different
metabolites. The 78 types of flavonoids had a strong correlation. Four different metabo-
lites were rich in flavonoid biosynthesis. Pinocembrin (dihydrochrysin) and epiafzelechin,
afzelechin (3,5,7,4′-testrahydrovone), and fustin were negatively related. Pinocembrin
(dihydrochrysin) decreased in the yellow part of the R. liliiflorum petals and epiafzelechin,
afzelechin (3,5,7,4′-testrahydrovan), and fustin increased in the yellow part. The changes
in correlations and contents were consistent. In anthocyanin biosynthesis, malvidin-3-
O-glucoside (oenin), cyanidin-3-O-glucoside (kuromanin), delphinidin-3-O-rutinoside,
and cyanidin-3-O-rutinoside (keracyanin) presented negative correlations, malvidin-3-O-
glucoside (oenin) and cyanidin-3-O-glucoside (kuromanin) decreased in the yellow part
of R. liliiflorum petals, and delphinidin-3-O-rutinoside and cyanidin-3-O-rutinoside (kera-
cyanin) increased in the yellow part. The changes in correlations and contents were consis-
tent. In the isoflavone synthesis pathway, the 6′-o-malonyl genistin and 6-hydroxydaidzein
contents in the yellow part of R. liliiflorum were higher than those in the white part, and the
Glycitin (glycitein 7-O-glucoside) content in the yellow part was lower than that in the white
part. 6′′-O-Malonylgenistin, 6-hydroxydaidzein, and glycitin (glycitein 7-O-glucoside) were
negatively correlated. The changes in correlations and contents were consistent.

The correlation between metabolites and unigene is represented as a network diagram
(Figure 5). The above figure shows the correlation between metabolites and genes in
flavonoid biosynthesis, anthocyanin biosynthesis, and isoflavonoid biosynthesis. The
metabolites pinocembrin (dihydrochrysin), chlorogenic acid (3-O-caffeoylquinic acid),
epiafzelechin, and afzelechin (3,5,7,4′-tetrahydroxyflavan), as well as the genes associated
with them, played a significant role in flavonoid biosynthesis. The production of differential
metabolites is likely related to these genes.
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In the synthetic pathway of flavonoids (Figure 6), we found that pinocembrin (dihy-
drochrysin) in the flavanones, epiafzelechin and afzelechin (3,5,7,4′-tetrahydroxyflavan)
in the flavanols, fustin in the flavanonols, malvidin-3-O-glucoside (Oenin), cyanidin-3-
O-rutinoside (keracyanin) and delphinidin-3-O-rutinoside, 6′′-O-malonylgenistin, and
6-hydroxydaidzein in MY content were higher than in MW content. Glycitin (GlyCitein
7-O-glucoside) and cyanidin-3-O-glucoside (kuromanin) had lower MWs than MYs.
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and expression patterns of enzymes are displayed next to each metabolic step and the synthetic
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generate the gene heat maps are reported by [21].

In Figure 6, we found that CHS, FLS, DFR, LAR, BZ1, GT1, 4CL, HID, I2′H, VR, etc.,
played a role in connection. The correspondence between unigene and enzymes can be seen
in Table S2. In the correlation between genes and metabolites (Figure 6), we found that the
expression of these enzymes and pinocembrin (dihydrochrysin), epiafzelechin, afzelechin
(3,5,7,4′-tetrahydroxyflavan), fustin, malvidin-3-O-glucoside (oenin), cyanidin-3-O-rutinoside
(keracyanin), delphinidin-3-O-rutinoside, 6′′-O-malonylgenistin, 6-hydroxydaidzein, cyanidin-
3-O-glucoside (kuromanin), and glycitin (glycitein 7-O-glucoside) showed different positive
and negative correlations. The different positive correlations presented by the enzyme uni-
gene further verified that more than 10 metabolites were accumulated in MW and MY. The
difference between the colour of the R. liliiflorum petal may be caused by the cumulative
accumulation of more than 10 metabolites in MW and MY.

4. Discussion

Most rhododendrons are bright red, purple, etc. In the late stage of R. liliiflorum, the
petals are composed of yellow and upper white colours at the base and contain ornamental
value. By analysing the data of the metabolic group, we obtained the metabolites of R.
liliiflorum petals and used the Kyoto genes and the genome of the encyclopedia (KEGG)
database to comment on the two parts of R. liliiflorum yellow and white petals. Some
of the differences in metabolites were significantly enriched in flavonoid biosynthesis
(KO00941), anthocyanin biosynthesis (KO00942), and isoflavone biosynthesis (KO00943).
In the above three biological biosynthesis pathways, only 11 different metabolites were
enriched. The pinocembrin (dihydrochrysin) in flavanones, epiafzelechin and afzelechin
(3,5,7,4′-tetrahydroxyflavan) in flavanols, fustin in flavanonols, cyanidin-3-O-glucoside
(kuromanin), malvidin-3-O-glucoside (oenin), cyanidin-3-O-rutinoside (keracyanin) and
delphinidin-3-O-rutinoside in anthocyanin biosynthesis, 6′-O-malonylgenistin, glycitein 7-
O-glucoside, and 6-hydroxydaidzein were enriched in isoflavonoid biosynthesis. The above
11 substances are conditionally attributable to the colour differences caused in R. liliiflorum.
In the previous transcription group article, we found that the genes related to CHS, F3′5′h,
FLS, I2′H, HID, DFR, and LAR were key to the colour differences in R. liliiflorum petals [19].
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In this article, we used widely targeted metabolomics to further reveal the reasons for the
colour differences in R. liliiflorum petals.

4.1. Analysis of Metabolites and Related Enzymes Enriched in Flavonoid Biosynthesis

In synthetic biosynthesis, flavanones are very important intermediate substrates [33].
Flavanones can participate in the biosynthesis of chalcones, flavonoids, and isoflavones
under the action of various enzymes [34]. Substances such as chalcones, isoflavones, and
flavonoids have been reported in related documents to play a key role in the formation of
yellow flowers [19,35]. Pinocembrin was detected in the skin of red and orange species in
related studies of Sorghum bicolor. It was conditionally found that pinocembrin is the rea-
son for the colour differences affecting sweet sorghum seeds [36]. Common forefronts of a
flavanone compound are also a flavonol compound, anthocyanin, and procyanidins [37,38].
In this process, pinocembrin (dihydrochrysin), an important metabolite in dihydrogen
flavonoids, will also convert to other metabolites [39]. The genes that show a correlation
with pinocembrin are CHS, FLS, DFR, and LAR. CHS is the first rate-limiting enzyme
in flavonoid biosynthesis, and FLS is a bridge between the synthesis path of flavonoids
and the synthesis of catechins. The expression of its related genes will affect the biolog-
ical synthesis of flavanones [40–44]. In this study, we found that CHS- and FLS-related
genes were downregulated in the yellow part of R. liliiflorum (Figure 6). The pinocem-
brin (dihydrochrysin) content in the yellow petal part of R. liliiflorum also decreased. The
most important thing was that the synthesis of the expression of CHS and FLS related to
pinocembrin (dihydrochrysin) showed a positive relationship (Figure 5a).

Flavanonols are an important intermediate metabolic product and a key branch point
in flavonoid biosynthesis [45]. The cumulative accumulation of flavanol compounds
in different parts of the petals also causes colour differences [46]. Epiafzelechin and
afzelechin (3,5,7,4′-Tetrahydroxyflavan) are flavanol compounds, and fustin is a flavananol.
In Figure 6, we noticed that by participating in epiafzelechin, afzelechin mainly influenced
the biological synthesis of flavonoids through CHS-, LAR-, and CHS-related enzymes and
then regulated the synthesis of flavanonols and catechin synthesis downstream [40–42].
LAR-related genes form a flavanol compound by regulating leucocyanidin [47]. As the
enzyme downstream of fustin, LAR participates in the regulation of fustin. The expression
of LAR-related genes did not cause a decline in the content of fustin in the upstream
flavanonols. This may have been due to competition between DFR and FLS for the common
substrate flavanonols, as DFR and FLS suppress each other’s transcription [48]. If LAR
wants to convert flavanonols into a flavanol compound, first, under the action of DFR,
the flavanonols are converted into leucocyanidin, and then flavanols are generated under
the action of LAR [43,44]. The regulation of epiafzelechin, afzelechin, and fustin showed
a positive relationship (Figure 4). This is consistent with the increase in the contents of
epiafzelechin and afzelechin (3,5,7,4′-tetrahydroxyflavan) in flavanols in the yellow portion
of the petals of R. liliiflorum.

4.2. Analysis of Metabolites and Related Enzymes Enriched in Isoflavonoid Biosynthesis

In isoflavonoid biosynthesis, the expression levels of isoflavones in yellow flowers
were higher than those in white flowers [21,49]. In this study, the two isoflavone metabolites,
6′′-O-malonylgenistin and 6-hydroxydaidzein, were higher in the yellow part than in the
white part of R. liliiflorum, and only the yellow part was detected. GlyCitin (glyCitein
7-O-glucoside) in the yellow part of R. liliiflorum was lower than that in the white part
(Figure 6). Relevant studies have shown that glyCitin (glyCitein 7-O-glucoside) will form
isoflavonoid compounds such as malonylglycitin [50]. This shows that in the process of
regulating glycitin (glycitein 7-O-glucoside) synthesis, I2′H and VR may transform glycitin
into other isoflavones, which may cause the glycitin (glycitein 7-O-glucoside) content of
the yellow part of R. liliiflorum to be lower than that of the white part.
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4.3. Analysis of Metabolites and Related Enzymes Enriched in Anthocyanin Biosynthesis

We believe that malvidin-3-O-glucoside (oenin), delphinidin-3-O-rutinoside, cyanidin-
3-O-glucoside (kuromanin), and cyanidin-3-O-rutinoside (keracyanin) accumulation in
different parts of R. liliiflorum may be a factor that leads to its colour differences. In related
studies, anthocyanins have been found to be the most important types of colourful agents in
flavonoid biosynthesis [51]. Their accumulation in different parts of the petals differentiate
the colour of the petals [21,24]. Cyanidin-3-O-rutinoside (keracyanin) is found in yellow
cherry and apricot. A higher accumulation of related anthocyanins increases the chances
that the colour will change from yellow to red [52,53]. Figure 6 shows that GT1 and BZ1
are enzymes that regulate anthocyanins, and the expression of related genes may affect the
accumulation of anthocyanin compounds [54,55].

5. Conclusions

This article used widely targeted metabolomics to study the differences in unigene ex-
pression between the yellow part of R. liliiflorum and the white part of the R. liliiflorum flower
cuckoo. We compared the different metabolites in the KEGG database and found numerous
differences in anthocyanin biosynthesis, flavonoid biosynthesis, and isoflavone biosynthesis.
Different metabolites in the enrichment of flavonoid synthesis and isoflavone synthesis path-
ways are flavanonols (fustin), flavanols (epiafzelechin, afzelechin), flavanones (pinocembrin),
and isoflavones (6′′-O-malonylgenistin, glycitin, 6-hydroxydaidzein). The differences between
each part of these seven substances in the yellow part of the R. liliiflorum petal and the white
part may be a factor that causes the colour differences between the colours of R. liliiflorum
petals. Additionally, we also found that malvidin-3-O-galactoside (primulin), delphinidin-
3-O-rutinoside, cyanidin-3-O-glucoside (kuromanin), and cyanidin-3-O-rutinoside (kera-
cyanin) may cause colour differences between the colours of R. liliiflorum petals. We also
found that CHS, FLS, LAR, DFR, HID, and I2′H play a key role in R. Liliiflorum colour
formation while using differential metabolite and unigene coanalysis. This study reveals
the differential metabolites and genes involved in the biosynthesis pathways of flavonoids
that contribute to the colour differences between the yellow and white parts of R. liliiflorum.
These findings provide fundamental data for subsequent research on the regulation of
flower colour in R. liliiflorum and have implications for the horticultural applications of
R. liliiflorum.
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