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Abstract: Leaf Soil-Plant Analysis Development (SPAD) prediction is a crucial measure of plant health
and is essential for optimizing indoor plant management. The deep learning methods offer advanced
tools for precise evaluations but their adaptation to the heterogeneous indoor plant ecosystem
presents distinct challenges. This study assesses how accurately deep neural network (DNN) predicts
SPAD values in leaves on indoor plants when compared to well-established machine learning
techniques, including Random Forest (RF) and Extreme Gradient Boosting (XGB). The covariates for
prediction were based on low-cost multispectral and soil electro-conductivity (EC) sensors, enabling
a non-destructive sensing approach. The study also strongly emphasized multicollinearity analysis
quantified by the Variance Inflation Factor (VIF) and two independent indices, as well as its effect on
prediction accuracy using deep and machine learning methods. DNN resulted in higher accuracy to
RF and XGB, also performing better using filtered data after multicollinearity analysis based on the
coefficient of determination (R2), root mean square error (RMSE) and mean absolute error (MAE)
(R2 = 0.589, RMSE = 11.68, MAE = 9.52) in comparison to using all input covariates (R2 = 0.476,
RMSE = 12.90, MAE = 10.94). Overall, DNN was proven as a more accurate prediction method than
the conventional machine learning approach for the prediction of leaf SPAD values in indoor plants,
despite using heterogenous plant types and input covariates.

Keywords: deep neural networks; regression; chlorophyll concentration; Plant-O-Meter;
multicollinearity analysis

1. Introduction

In an increasingly fast-paced and technologically driven world, where the majority of
working hours are spent indoors, the importance of creating a work environment that is
both conducive and sustainable cannot be overstated [1]. The modern workplace is more
than just a physical place to perform tasks; it is now a dynamic ecosystem with the ability to
dramatically affect the physical and psychological well-being of its occupants [2]. The intro-
duction of greenery into interior spaces is not only motivated by aesthetic preferences but
is also recognized as a strategic requirement in the quest to create workplaces that promote
employee health and productivity [3]. More than just decorative elements, indoor plants
have been shown to improve air quality, reduce stress, increase productivity, and contribute
to a more desirable and productive workplace [4]. This increased awareness of the many
benefits of indoor plants has created new opportunities for research and innovation in the
fields of agriculture and horticulture. Precise assessment and prediction of plant health
and vitality have emerged as critical variables in ensuring optimal crop development and
effective resource management in the context of modern horticulture [5,6]. Measurement
of chlorophyll concentration is a key indicator used to assess overall plant health due
to its direct relationship with photosynthetic activity [7]. In addition, phytoremediation,
the use of plants to remove toxins from indoor environments, is becoming increasingly
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important [8]. In such cases, accurate prediction of chlorophyll concentration helps select
indoor plant species with the greatest potential to effectively clean indoor air [9]. The ability
to differentiate between plants based on chlorophyll concentration can greatly improve
the efficiency of phytoremediation efforts, making indoor environments healthier and
more sustainable.

Chlorophyll content measurements are frequently represented by Soil-Plant Analy-
sis Development (SPAD) values, which have become essential tools for assessing plant
health [10]. Variables that affect SPAD meters include the surrounding environment, leaf
age, species-specific characteristics, and nutrient availability [11]. Standardized techniques
to improve reliability have been proposed through calibration and validation studies that
have examined species-specific calibration curves and the effect of changing conditions on
SPAD meter performance. However, many of these studies proposed calibration equations
that are empirical and based on a single crop type, meaning that these are not viable for
often highly heterogeneous indoor plant types [12–14]. Studies contrasting SPAD values
with conventional techniques highlight the relationship between these values and indices
of plant health and a very high correlation with leaf chlorophyll content [15]. A thorough
understanding of SPAD estimation is becoming increasingly important as indoor plant
management requires optimizing development and maintaining plants efficiently. As
research into the process of predicting SPAD values has progressed, new advances in deep
learning approaches are providing tools for ever more accurate assessments [16,17]. How-
ever, previous research has mostly focused on outdoor plants, so applying these methods
to indoor plants presents a unique set of obstacles. A wide variety of plant species and
variable abiotic factors characterize the indoor environment, resulting in increased biodi-
versity [18]. As a result, using deep learning techniques to reliably predict SPAD values in
indoor plants requires novel approaches and specialized models adapted to this distinct
and dynamic environment. Previous studies have highlighted the critical importance of
integrating complementary and independent sensors in the context of automated plant
health monitoring via the Internet of Things (IoT) [19]. The integration of such sensor
technology offers a novel paradigm for accurate and real-time plant health monitoring in
the era of smart and sustainable indoor environments [20]. Multispectral sensors collect
spectral data at multiple wavelengths, enabling non-destructive inspection of plant leaves
and, as a result, more accurate estimates of SPAD values [21]. Soil electroconductivity (EC)
measurements, on the other hand, provide an indirect but important indication of soil
nutrient levels and general environmental conditions [22]. These sensor modalities, when
combined, provide an in-depth view of the plant-soil system, providing information on the
health and development potential of indoor plants. Several authors used soil EC directly
as an important physico-chemical-biological component of plant health [23], as well as an
indirect representation of soil moisture availability for plant development in a broad scope
of studies [24]. In the context of the IoT, these sensors enable automated and continuous
monitoring, providing real-time input that can be used for timely intervention and efficient
resource management [25]. Deep and machine learning approaches use sensor data to
improve prediction accuracy, fostering the development of intelligent systems capable of
maintaining thriving indoor plant ecosystems, with broader implications for occupant
well-being and indoor sustainability [26].

The advanced search of studies indexed in the Web of Science Core Collection with
the broad topics of “SPAD” and “deep learning”, as well as “SPAD” and “indoor plants”
returned 27 and 10 studies, respectively. While present research which used deep learning
exclusively used hyperspectral and multispectral images for outdoor arable crops [27–30],
those focusing on indoor plants used SPAD values as auxiliary indicators of the effectiveness
of LED light in an indoor environment [31,32]. Therefore, there is currently no research that
provides indoor plant health monitoring quantified by SPAD values which is suitable for
the implementation in the IoT. To address this research gap in predicting leaf SPAD values
of indoor plants based on state-of-the-art deep learning, the main objective of this study was
to evaluate its efficiency compared to well-known machine learning methods. Furthermore,
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the data collection for covariates was based on non-destructive multispectral and soil EC
sensors, allowing the proposed procedure to be implemented as part of automated plant
monitoring in the IoT.

2. Materials and Methods

The data collection in this study comprised two primary components: (1) leaf SPAD
measurement of indoor plants as training and test data for prediction; and (2) leaf multi-
spectral and soil EC sensing for modeling covariates for the prediction. The deep neural
network (DNN) was proposed for leaf SPAD prediction and was evaluated alongside two
well-known machine learning methods.

2.1. Indoor Plants Analyzed in the Study

A total of 52 individual indoor plants of ten species were analyzed in the study, as
shown in Figure 1. Data collection was performed on 13 October 2023 in the building of the
Faculty of Agrobiotechnical Sciences Osijek, which covers an area of 18,600 m2. The studied
indoor plants were located on the first three floors of the building, which were distributed
on the four main sides of the building, as well as in two central corridors connecting the
north and south sides of the building. All indoor plants were maintained in standardized
containers as shown in Figure 1, and were also watered, fertilized, and managed in a
standardized manner throughout the building.
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Figure 1. The display of ten indoor plant species analyzed in the study, maintained in standardized
containers at the Faculty of Agrobiotechnical Sciences Osijek.

2.2. Sensors and Sensing Approach Used for Plant and Soil Measurement

Three non-destructive sensing approaches were used to model leaf SPAD values,
as well as plant and soil covariates for deep and machine learning prediction of leaf
SPAD (Figure 2). Furthermore, all sensors used are low-cost solutions, which allows their
widespread implementation, both as standalone systems [33] or as part of the IoT [34,35].
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The SPAD meter of indoor plant leaves was measured using the Konica Minolta SPAD-502
Plus handheld chlorophyll sensor (Tokyo, Japan). SPAD values were used to represent
relative leaf chlorophyll content based on absorbance measurement, achieving a very high
correlation with leaf nitrogen concentration [15]. SPAD measurements per plant were taken
as an average of six measurements at evenly spaced points, taking into account present
variations in leaf color and condition in proportion to overall plant condition.
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Figure 2. Low-cost handheld sensors used in the study: (a) Konica Minolta SPAD-502 Plus chlorophyll
sensor, (b) multispectral Plant-O-Meter sensor (Novi Sad, Serbia), (c) Hanna instruments HI 98331
soil EC sensor.

The covariates for predicting SPAD values for indoor plants were collected using two
different approaches based on plant and soil sensing: (1) multispectral sensing of plant
leaves and (2) soil EC measurement (Figure 3). Multispectral sensing of the indoor plant
canopy was performed using the Plant-O-Meter, a handheld device that operates in five
wavelengths (blue, green, red, red-edge, and near-infrared bands) [36]. All measurements
were collected and exported using the Plant-O-Meter Android application connected to
the handheld device via Bluetooth. Because Plant-O-Meter operates as an active sensor,
accurate canopy sensing was maintained regardless of lighting conditions. A total of
21 vegetation indices were calculated based on the Plant-O-Meter measurements, as listed
in Table 1. These indices quantified a wide range of vegetation properties, providing a
basis for implementing deep and machine-learning methods in a variety of agricultural
studies [37]. Because the indoor plant species evaluated in this study differed by canopy
system, measurements were made by aiming the sensor with the criterion of covering a
plane to include maximum leaf coverage during sampling. Soil EC was sampled using the
Hanna Instruments HI 98331 Handheld Soil EC Sensor (Nusfalau, Romania) at 5 cm, 10 cm,
and 15 cm soil depths within a 10 cm radius of plant stems, allowing for non-destructive
measurement toward root systems. This resulted in a total of 52 input samples and
25 covariates evaluated in the study.
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Figure 3. The display of sensing process for: (a) six evenly distributed and representative points
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Plant-O-Meter, based on plant canopy system.

Table 1. Vegetation indices collected using Plant-O-Meter as covariates for the prediction of leaf
SPAD values.

Vegetation Index Formula Reference

Red normalized difference vegetation index NDVIr =NIR−R
NIR+R [38]

Green normalized difference vegetation index NDVIg =NIR−G
NIR+G [39]

Blue normalized difference vegetation index NDVIb =NIR−B
NIR+B [40]

Normalized difference red-edge vegetation index NDRE =NIR−RE
NIR+RE [41]

Simple ratio SR =NIR
R [42]

Dark green color index DGCI =

[
(hue−60)

60 +(1−saturation)+(1−brightness)
]

3
[43]

Structure insensitive pigment index SIPI =NIR−B
NIR+R [44]

Red-green ratio RGR = R
G [45]

Modified simple ratio MSR = R√
NIR

R +1
[46]

Renormalized difference vegetation index RDVI = NIR−R√
NIR−R

[47]

Infrared percentage
Vegetation index IPVI = NIR

NIR+R [48]

Enhanced vegetation index EVI = 2.5(NIR−R)
NIR+6R−7.5B+1

[49]
Green soil adjusted vegetation index GSAVI = 1.5 NIR−G

NIR+G+0.5 [50]
Green optimized soil adjusted vegetation index GOSAVI = NIR−G

NIR+G+0.16 [50]
Transformed difference vegetation index TDVI = 1.5 NIR−R√

NIR2−R2+0.5
[51]
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Table 1. Cont.

Vegetation Index Formula Reference

Wide dynamic range vegetation index WDRVI = 0.28 NIR−R
0.28 NIR+R [52]

Green-red normalized difference vegetation index GRNDVI =NIR−(G+R)
NIR+G+R

[40]

Green-blue normalized difference vegetation index GBNDVI =NIR−(G+B)
NIR+G+B

[40]

Red-blue normalized difference vegetation index RBNDVI =NIR−(R+B)
NIR+R+B

[40]

Visible normalized difference vegetation index PNDVI =NIR−(G+R+B)
NIR+G+R+B

[40]
Inverted simple ratio ISR = R

NIR [53]
B: reflectance in blue band (455 nm), G: reflectance in green band (528 nm), R: reflectance in red band (657 nm),
RE: reflectance in red-edge band (740 nm), NIR: reflectance in near-infrared band (810 nm).

Variance Inflation Factor (VIF) analysis was used to evaluate all multispectral and soil
EC covariates for multicollinearity. The VIF was used as the primary metric to measure the
degree of multicollinearity among predictor variables in a regression model. The VIF values
generated for each covariate indicated the extent to which they were related, with values
greater than 10 strongly indicating multicollinearity [54]. In addition, two multicollinearity
indices (IND1 and IND2) proposed by Ullah et al. [55] were used independently to assess
multicollinearity. IND1 values greater than 0 and IND2 values less than 1 indicated
less multicollinearity.

2.3. Deep and Machine Learning Prediction and Accuracy Assessment

The DNN was built sequentially using the Keras library in R v4.0.3, with each layer
added sequentially to facilitate the flow of data from input to output, as shown in Figure 4.
The data were normalized before entering the network using the –1L axis normalization,
which indicates normalization over the last axis. The normalizer was then fitted to the
training features by applying the fit function to the training data, which was represented
as a matrix. The network consists of several dense (fully connected) layers, each with its
own set of features. The first layer consisted of 32 units and used the Rectified Linear
Unit (ReLU) activation function, which is a popular choice for hidden layers [56,57]. In
addition, to avoid overfitting, these layers were subjected to L1 regularization with a
regularization strength of 0.001. To incorporate regularization by randomly deactivating a
percentage of input units during training, a dropout layer with a dropout rate of 0.1 was
used. This was followed by another 32-unit dense layer with ReLU activation, followed
by a pair of 16-unit layers, the first with L1 regularization and the second without explicit
regularization. Finally, the output layer was a single-unit dense layer, since the network
was designed for a regression problem. The overall design incorporates many features
aimed at maximizing predictive performance and controlling model complexity for the
problem domain addressed in this study.

Two machine learning methods, Random Forest (RF) and Extreme Gradient Boosting
(XGB), were evaluated alongside DNN. RF and XGB achieved superior prediction accuracy
in regression problems compared to current machine learning algorithms in similar studies
on various aspects of horticulture [58,59] and agriculture in general [60–62]. As an ensemble
learning technique, RF builds a forest of decision trees, each trained separately on randomly
selected samples of the data and features [63]. Averaging the predictions from these
trees reduces overfitting, improves model robustness, and captures complex interactions
between variables and the target variable. In contrast, the XGB gradient boosting technique
uses an iterative process based on decision trees [64]. Starting with a simple model, it
builds decision trees in stages, each of which aims to minimize the errors produced by the
previous iterations. Through this repeated learning process, XGB can adapt to complicated
data relationships and continuously improve predictions. This process is guided by the
calculation of residuals. Together, these two techniques successfully take advantage of
both the ensemble approach of RF and the iterative improvement of XGB, enabling the
model to estimate leaf SPAD values with high accuracy. A tuning hyperparameter for RF
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was the quantity of variables randomly sampled at each split (mtry), while for XGB the
contribution of each tree to the overall ensemble was affected by the learning rate (eta), the
number of boosting rounds (nrounds), while alpha controlled the L1 regularization and
lambda controled the L2 regularization on the leaf weights. The hyperparameter turning
was performed using a built-in automated approach in caret library.
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DNN, RF, and XGB were evaluated in two approaches based on the input data,
considering all multispectral and soil covariates (all input data) and only covariates for
which multicollinearity was not detected (filtered input data). Three statistical measures
were used to assess the accuracy and reliability of the prediction models using 10-fold
cross-validation. The primary metric used was the coefficient of determination (R2), which
quantifies the proportion of variation in predicted SPAD explained by the model. A higher
R2 value indicates a better fit of the model to the data, indicating its ability to accurately
capture the underlying relationships. In addition, the root mean square error (RMSE)
and mean absolute error (MAE) were used to assess the prediction performance of the
model. The average size of prediction errors is quantified by the RMSE, which provides a
measure of how well the model’s predictions match the observed data. The average size of
the absolute errors, expressed as MAE, provides a more robust insight into the accuracy
of the model. The use of R2, RMSE, and MAE in this accuracy assessment provided a
comprehensive evaluation of leaf SPAD prediction and allowed a comprehensive analysis
of the accuracy of DNN, RF, and XGB.

3. Results and Discussion

The Pearson’s correlation coefficients shown in the correlation plot (Figure 5) indicate
two main results: (1) the indoor plant type and soil EC covariates generally produced
low correlations compared to the Plant-O-Meter vegetation indices, and (2) the individual
vegetation indices tended to produce high and very high absolute Pearson’s correlation
coefficients when evaluated against each other. The exception to the latter was to some
extent present for DGCI, RGR, RDVI, NDRE and EVI. DGCI is the most distinct vegetation
index among those evaluated because it uses band values transformed to the hue-saturation-
brightness model [65], resulting in Pearson’s correlation coefficients with other vegetation
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indices ranging from −0.73 to 0.48. Although the RGR calculation is based on a simple
red-green ratio, it produced weak to moderate correlations with other vegetation indices.
This was probably due to the specific selection of Plant-O-Meter vegetation indices, which
focused dominantly on the use of red and near-infrared bands [36], with RGR being the
only evaluated index using only red and green bands. However, there is no basis for the
relatively low positive correlation of RDVI with almost all other vegetation indices related
to band selection. Similar to RGR, NDRE resulted in low to moderate correlations with
other vegetation indices, ranging from −0.49 to 0.63, because it was the only vegetation
index evaluated that used the red edge band. Aside from its specificity in band selection,
NDRE likely provided different results from the majority of indices based on red and
near-infrared bands (especially NDVIr) due to its resistance to saturation effect in cases of
high biomass [66]. Based on previous studies, EVI was expected to provide different results
from vegetation indices using only red and near-infrared bands and likely provided a more
robust assessment of plant health due to the inclusion of blue bands [67].
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The multicollinearity indices used in the study, VIF, IND1, and IND2, partially agreed
with the results of the correlation analysis regarding the covariate correlation (Table 2).
With the primary criterion of VIF values less than 10 [54], only four out of a total of
25 covariates indicated an absence of multicollinearity, including plant type, soil EC at 5 cm
and 15 cm soil depth, and NDRE. While the results of plant type and soil EC measurements
strongly indicated their independence relative to all input covariates, NDRE was the only
vegetation index that resulted in the absence of multicollinearity, probably due to the
previously mentioned ability of the red-edge band to provide resistance to saturation in
cases of higher biomass [67]. The multicollinearity observations of VIF were confirmed
by the IND1 and IND2 indices, providing an independent check of the multicollinear-
ity analysis [55]. The final data filtered after the multicollinearity analysis consisted of
four covariates, including plant type, soil EC at 5 cm and 15 cm soil depth, along with
NDRE, as a single vegetation index.

Table 2. The results of multicollinearity analysis for all 25 input covariates evaluated in the study.

Variable VIF IND1 IND2

Type 3.2177 0.2763 0.7223
EC_5 5.3337 0.1667 0.8515
EC_10 14.9256 0.0596 0.9778
EC_15 9.2927 0.0957 0.9352
NDVIr 2492.506 0.0004 1.0476
NDVIg 6035.032 0.0001 1.0478
NDVIb 569.3946 0.0016 1.0462
NDRE 3.3274 0.2671 0.7330

SR 95.0013 0.0094 1.0370
DGCI 39.0306 0.0228 1.0211
SIPI 1699.364 0.0005 1.0474
RGR 235.9476 0.0038 1.0436
MSR 48.4881 0.0183 1.0264
RDVI 18.3978 0.0483 0.9910
IPVI 792.5418 0.0011 1.0467
EVI 20.537 0.0433 0.9970

GSAVI 3612.891 0.0002 1.0477
GOSAVI 6294.054 0.0001 1.0478

TDVI 2112.216 0.0004 1.0475
WDRVI 1432.165 0.0006 1.0473

GRNDVI 3869.734 0.0002 1.0477
GBNDVI 2864.549 0.0003 1.0476
RBNDVI 3019.629 0.0003 1.0477
PNDVI 4943.411 0.0002 1.0478

ISR 1661.771 0.0005 1.0474
Input variables which did not indicate multicollinearity are bolded.

Across all evaluation measures, the DNN model outperformed RF and XGB in terms of
prediction accuracy with the primary criterion of higher R2 (Table 3), while also achieving
highly consistent prediction accuracy regardless of training and test data folds during
cross-validation (Figure 6). The optimal hyperparameters considering input data were
the same for RF (mtry = 2), while XGB produced higher regularization strength for all
input data (eta = 0.3, nrounds = 50, lambda = 0.1, alpha = 0.0001), in comparison to
filtered input data (eta = 0.3, nrounds = 100, lambda = 0, alpha = 0). Furthermore, it
is noteworthy that the results using filtered input data after multicollinearity analysis
improve the prediction accuracy for DNN, which was so far usually evaluated only for
machine learning methods [68]. The two evaluated machine learning methods were less
sensitive to input covariate selection, with XGB producing slightly higher prediction
accuracy using filtered input data. These results underscore the need for multicollinearity
analysis in similar studies that consider numerous input covariates with DNN, supporting
and expanding on the observations of McCaw et al. [69], despite mixed results regarding
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relative accuracy quantified by R2 and absolute prediction accuracy represented by RMSE
and MAE. Meanwhile, machine learning prediction results confirm the observations of
previous studies in which was proven that RF can effectively handle multicollinearity,
providing robust predictions despite a high correlation between input features [70], while
XGB may be more prone to the effects of multicollinearity, given its tendency to construct
deeper and more intricate trees [71]. The results of 10-fold cross-validation also strongly
indicated its superiority over split-sample accuracy assessment, which greatly varies among
folds for RF and XGB, and could otherwise imply inconsistent and unreliable prediction
performance in heterogeneous input datasets [72]. Unlike more frequent studies that
use deep learning based on images, Graditi et al. [73] noted that regression problems do
not require a large amount of input data for accurate prediction, which was confirmed
in studies based on both deep [74] and conventional machine learning [75]. To ensure
resistance to overfitting during the predictions based on smaller datasets, Hosseini et al. [76]
strongly recommended implementing k-fold cross-validation, as was performed in this
study, instead of a simpler and more frequent split-sample approach. However, a study
by Gilbertson and van Niekerk proved that, while smaller datasets can reliably produce
moderately high prediction accuracy, the addition of a larger amount of training samples
would likely lead to higher prediction accuracy [77].

Table 3. Prediction accuracy of evaluated deep and machine learning methods in leaf SPAD prediction
of indoor plants.

Method Value
All Input Data Filtered Input Data

RF XGB DNN RF XGB DNN

R2 Mean 0.504 0.430 0.476 0.461 0.522 0.589
CV 0.725 0.804 0.547 0.629 0.511 0.588

RMSE
Mean 10.65 12.82 12.90 11.30 13.15 11.68

CV 0.458 0.302 0.238 0.516 0.510 0.521

MAE
Mean 8.35 10.36 10.94 9.07 10.39 9.52

CV 0.471 0.263 0.216 0.492 0.465 0.541

The most accurate prediction metrics are bolded.

Although SPAD values are widely used, there are several limitations when it comes
to representing the chlorophyll content of indoor plant leaves. One notable limitation is
the potential effect of environmental variables on SPAD measurements since chlorophyll
fluorescence can be affected by changes in temperature, humidity, and light intensity, which
can introduce variability into SPAD readings [78]. In addition, there are difficulties in
calibrating SPAD meters because the best calibration curves vary with species and highly
heterogeneous indoor growing environments. In addition, because SPAD values cannot
distinguish between chlorophyll a and chlorophyll b, they can only be used to estimate
the amount of chlorophyll present [15]. The possible effect of nutrient supplementation on
SPAD readings should be considered, as indoor plant habitats are often subject to regulated
conditions and excessive or deficient nutrient levels may result in a false representation of
chlorophyll status. Due to the considerable heterogeneity in input indoor plant samples
having ten species represented by 52 samples, the proposed approach can be expected to
be robust with similar indoor plant datasets. Moreover, the increased sample count while
retaining a similar amount of plant species will likely result in an increased prediction
accuracy in all evaluated instances [77].
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Vegetation indices are widely recognized as sensitive indicators of plant health due to
their ability to capture various aspects of vegetation dynamics [37,79]. Thus, it is important
to account for the effect of biomass when utilizing vegetation indices for plant health
assessments [80]. However, the influence of biomass on these indices was not explicitly
considered in the research. The lack of inclusion of biomass-related factors in the research
affects the spectral reflectance properties [81], thus limiting the predictive accuracy of the
model. To overcome this limitation, further calibration and refinement of the proposed
approach are possible. Integration of this approach with deep learning-based plant identifi-
cation algorithms also presents an avenue for future enhancement [82]. By utilizing the
potential of vegetation indices and advanced plant species recognition technology based
on deep learning, a more comprehensive and consistent model for predicting plant health
can be developed. This integration may provide a more thorough understanding of vege-
tation status, including species-specific intricacies and overall biomass-related dynamics,
consequently enhancing the robustness and dependability of plant health predictions.

4. Conclusions

The process of plant health assessment has changed significantly since deep learning
was introduced to the field. However, there are particular difficulties in applying these
methods to complex and heterogeneous indoor plant ecosystems. This research addressed
these issues and highlighted the effectiveness of DNN in predicting leaf SPAD of indoor
plants based on a non-destructive approach.

Indoor plant types and soil EC showed lower correlations compared to the vegetation
indices obtained from the Plant-O-Meter. The evaluation of individual vegetation indices
against each other resulted in high and very high absolute Pearson’s correlation coefficients,
except for DGCI, RGR, RDVI, NDRE, and EVI. Partial concurrence between multicollinear-
ity analysis using VIF, IND1, and IND2 with the correlation results was observed. Only
four out of the 25 covariates, which were plant type, soil EC at 5 cm and 15 cm soil depth,
and NDRE, showed an absence of multicollinearity as indicated by VIF values. The only
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vegetation index without detected multicollinearity was NDRE, likely due to the resistance
of its red-edge band to saturation effects in high-biomass scenarios. The fact that VIF, IND1,
and IND2 all show consistent results provides solid evidence of the accuracy of the analysis
regarding multicollinearity.

The DNN model outperformed both RF and XGB in terms of predictive accuracy
across several evaluation measures. Additionally, it showed superior consistency in its
prediction accuracy across various training and testing data folds during cross-validation.
Notably, this robustness suggests a dependable predictive performance in diverse and
heterogeneous input datasets. Filtering the input data based on multicollinearity analysis
improved the prediction accuracy of the DNN model, which highlights the importance of
accounting for multicollinearity in similar studies. On the other hand, RF demonstrated
the ability to handle multicollinearity effectively, providing robust predictions despite
high correlations between input features, while XGB produced moderately high accuracy
but was more susceptible to multicollinearity because it constructed deeper and more
intricate trees.

Furthermore, by incorporating these technologies into the IoT framework, it is possible
to automatically monitor plant health in real time, which promises to create healthier
indoor environments. The results of this study underscore the importance of considering
multicollinearity when using DNN by selecting variables and emphasize the need for
accuracy in data collection.
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