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Abstract: Accurate and standardized quantification of reverse transcription PCR (qRT-PCR) results
relies on the use of a dependable reference gene. The precise control of transgene expression in terms
of both spatial and temporal aspects necessitates the utilization of tissue-specific gene promoters.
However, the identification of stable reference genes across various tissues, particularly in fruits at
different ripening stages, as well as tissue-specific genes in bitter gourds, remains largely unexplored.
In this study, we employed RNA-Seq-based transcriptome datasets obtained from nine tissues to
comprehensively screen for new reference genes (NRGs) and tissue-specific genes. Through the
utilization of five algorithms in conjunction with qRT-PCR analysis, we successfully identified two
highly stable reference genes, namely HMG1/2 and PHOS32, from a pool of 11 NRGs and five
traditional reference genes (TRGs). To validate their reliability, we performed expression pattern
analysis of two genes associated with fruit ripening (McACO1 and McACO2) using HMG1/2 and
PHOS32, as well as an unstable reference gene, HSCP2. Furthermore, we conducted qRT-PCR
validation of 12 tissue-specific genes using HMG1/2 as the reference gene. This study not only
contributes to the precise normalization of target genes in bitter gourd but also provides a solid
foundation for regulating transgenes through the utilization of suitable tissue-specific promoters.

Keywords: bitter gourd; RNA-Seq; reference genes; tissue-specific genes; qRT-PCR; fruit ripening

1. Introduction

To ensure accurate gene expression results, it is crucial to normalize the quantitative
reverse transcription PCR (qRT-PCR)-generated data using appropriate reference genes [1].
Ideally, the expression levels of reference genes should remain consistent across different
tissues and environmental conditions [2]. In contrast to the constitutive expression of
reference genes, tissue-specific genes are expressed exclusively in specific tissues. The
promoters of these genes have several potential applications, such as preventing excessive
accumulation of heterologous proteins in non-target tissues and precisely controlling
the expression of target genes based on predictable timing, localization, and expression
levels [3]. Tissue-specific promoters are also utilized in molecular farming to enhance
agronomic traits and drive the production of proteins and secondary metabolites in target
tissues [4,5]. Therefore, given the importance of reference genes and tissue-specific genes, a
detailed study or a suitable method is needed to quickly identify suitable reference genes
and tissue-specific genes.

The selection of reference and tissue-specific genes relies on comprehensive and
accurate gene expression data. With the advancement of RNA sequencing (RNA-Seq)
technology and the reduction in sequencing costs, numerous studies have utilized RNA-
Seq-based transcriptome datasets to globally identify new reference and tissue-specific
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genes, particularly in non-model organisms. For instance, reference gene selection and
validation have been conducted in Nitraria sibirica and Momordica charantia [6,7], while
tissue-specific gene selection has been performed in tomato, soybean, and maize [8–10].
Previous studies have compared nine tissue-specific correlation parameters, with the
τ-value proving to be the most effective [11]. The τ-value ranges from 0 to 1, where
0 indicates broad expression and 1 indicates specificity, making it an efficient tool for
screening reference and tissue-specific genes from transcriptome datasets [12]. However,
candidate reference and tissue-specific genes still need to be quantified using qRT-PCR to
verify their expression stability and tissue specificity.

Bitter gourd (Momordica charantia L.) is an annual climbing herb belonging to the
Cucurbitaceae family and is extensively cultivated in tropical and subtropical regions world-
wide [13,14]. Recent studies have demonstrated the significant pharmacological effects of
bitter gourd extracts from various organs, particularly stems, leaves, and fruits, including
antidiabetic, anthelmintic, antitumor, and anti-inflammatory properties [15–18]. The unripe
fruit of bitter gourd is often used as an economically important vegetable, especially in
China, due to its unique flavor and health benefits [19]. However, bitter gourd is a climac-
teric fruit that rapidly ripens and softens after harvest, resulting in a sharp decline in its
edible and commercial value [20]. To genetically improve bitter gourd, it is essential to
understand the precise expression patterns of post-ripening response genes and ripening
regulation genes. Therefore, identifying stable reference genes in different tissues, espe-
cially in fruits at different ripening stages, and tissue-specific genes serve as the foundation
for these studies.

The majority of genetic studies on bitter gourd have relied on traditional reference
genes (TRGs), such as ACT7 (Actin-7) [21,22], GAPDH (Glyceraldehyde-3-phosphate de-
hydrogenase) [23], 18S rRNA (18S ribosomal RNA) [24], CYP (Peptidyl-prolyl cis-trans
isomerase) [25], and EF1α (Elongation factor 1-alpha) [26]. However, accumulating evidence
suggests that many of these traditional reference genes exhibit unstable expression across
different plant species, tissues, experimental conditions, and developmental stages [27–30].
Furthermore, it remains unknown whether these traditional reference genes can accurately
quantify the expression of fruit ripening-related genes in bitter gourd. A recent study
on new reference genes in bitter gourds only focused on leaf tissue from seedlings and
lacked comprehensiveness [7]. To date, there is no consensus on the use of systematically
validated new reference genes in different tissues of bitter gourd, especially in fruits at
different ripening stages. Additionally, the screening of tissue-specific genes in bitter gourd
has not been reported.

In this study, we utilized an RNA-Seq-based transcriptome dataset to identify 11 can-
didate new reference genes (NRGs) in bitter gourd based on their stable expression profiles
in five organs (root, stem, leaf, male flower, and female flower) and fruit pulps at four
ripening stages. To comprehensively analyze the data, we examined the raw qRT-PCR data
of the 11 NRGs and five TRGs using five algorithms (geNorm, BestKeeper, ∆Ct method,
NormFinder, and RefFinder). Among them, we identified the two most stable reference
genes, HMG1/2 and PHOS32. To validate their reliability, we examined the expression
patterns of two fruit ripening-related genes, 1-aminocyclopropane-1-carboxylate oxidase1
(McACO1) and McACO2, using qRT-PCR with HMG1/2, PHOS32, and HSCP2 as reference
genes. Meanwhile, we screened and validated 12 tissue-specific genes using qRT-PCR with
HMG1/2 as the reference gene.

2. Materials and Methods
2.1. Plant Materials and Tissue Collection

The bitter gourd inbred line K13, which was developed through multiple generations
of self-pollination and selection, was cultivated in the plant bases of the Guangdong
Academy of Agricultural Sciences in Guangzhou.

Various plant tissues, including the root during the flowering and fruiting period,
young stem during the flowering and fruiting period, young leaf during the flowering and
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fruiting period, male flower, female flower, and fruit pulp at different stages of ripening
(green mature stage, breaker stage, turning stage, and yellow stage), were promptly snap-
frozen in liquid nitrogen immediately after collection. Three biological replicates were
randomly sampled for each material, and these samples were subsequently stored in a
−80 ◦C refrigerator for further analysis.

2.2. RNA-Seq and Data Analysis

Total RNA was isolated from the collected materials using the Trizol method. The
integrity of the RNA was assessed using the RNA Nano 6000 Assay Kit of the Bioanalyzer
2100 system (Agilent Technologies, Santa Clara, CA, USA). The mRNA was then purified
from the total RNA using poly-T oligo-attached magnetic beads. First-strand cDNA was
synthesized using a random hexamer primer and M-MuLV Reverse Transcriptase (RNase
H-). Subsequently, second-strand cDNA synthesis was performed using DNA Polymerase
I and RNase H. PCR was then carried out with Phusion High-Fidelity DNA polymerase,
Universal PCR primers, and Index (X) Primer. The resulting PCR products were purified,
and the quality of the cDNA library was assessed on the Agilent Bioanalyzer 2100 system.
The cDNA library was sequenced on an Illumina Novaseq platform, generating 150 bp
paired-end reads.

Clean reads were obtained by removing reads containing adapters, ploy-N sequences,
and low-quality reads using the fastp v0.23.2 software (HaploX, Shenzhen, China). Subse-
quently, the clean reads were assembled and aligned to the bitter gourd reference genome
(available online: https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/995/035/GCF_
001995035.1_ASM199503v1/) (accessed on 22 December 2022) using default parameters
with the HISAT2 v2.0.5 software (UT Southwestern Medical Center, TX, USA). Read count
values were calculated using the featureCounts v1.5.0 software (Olivia Newton-John Can-
cer Research Institute, Melbourne, Australia). The fragments per kilobase of transcript
per million mapped reads (FPKM) values were then calculated from the count values
to represent gene expression levels, considering reads per kilobase of exons per million
mapped. The data that support the findings of this study have been deposited into the
CNGB Sequence Archive (CNSA) of the China National GeneBank DataBase (CNGBdb)
with accession number CNP0005001 [31,32].

2.3. Selection of Reference Genes and Primer Design

Five previously validated reference genes (CYP, EF1α, TIP41, ACT7, and GAPDH)
were chosen as TRGs based on existing research articles.

The coefficient of variation (CV) was calculated using the following formula:

CV =
σ

µ
· 100%

where σ represents the standard deviation of gene expression (FPKM) across all tissues,
and µ represents the mean of gene expression (FPKM) across all tissues.

The tissue specificity index (τ-value) was calculated as follows [11,12]:

τ =
∑n

i=1(1− x̂i)

n− 1
; x̂i =

xi
max

1≤i≤n
(xi)

where xi represents the expression (FPKM) of the gene in tissue i, and n is the total number
of tissues.

Transcripts per million (TPM) were calculated using the following formula:

TPMi =

(
FPKMi

∑j FPKMj

)
· 106

https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/995/035/GCF_001995035.1_ASM199503v1/
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/995/035/GCF_001995035.1_ASM199503v1/
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where TPMi and FPKMi represent the TPM and FPKM values of the gene in tissue i, and
∑j FPKMj represents the sum of FPKM values for all genes in tissue i.

The 11 NRGs were selected based on the following criteria from the RNA-Seq datasets
(Table S1): CV < 0.5, τ-value < 0.5, and 10 > average log2(TPM) > 5.

Specific primers for the 16 reference genes were designed according to the following
specifications: GC content of 50–60%, melting temperature (Tm) of 58–60 ◦C, primer length
of 20–22 bp, and amplicon length of 90–150 bp. The specificity of the primer pairs was
verified by performing melting curve analysis, ensuring that each gene produced a single
peak upon amplification. The amplification efficiency (%) and correlation coefficient (R2) of
the primer pairs were calculated using standard curves generated from a set of 5× serial
dilutions of cDNA as templates. Only primer pairs with an amplification efficiency of
90–110% and R2 > 0.98 were considered eligible for subsequent analysis.

2.4. RNA Isolation and Reverse Transcription

For gene expression analysis, total RNA was isolated from each sample using the
TransZol Up Plus RNA Kit (TransGen Biotech, Beijing, China), following the manufac-
turer’s instructions. The quality and concentration of the total RNA were measured using a
NanoDrop 2000 spectrophotometer (Termo Fisher Scientific, Waltham, MA, USA). Approxi-
mately 2 µg of total RNA was reverse transcribed into 20 µL of cDNA using the TransScript
One-Step gDNA Removal and cDNA Synthesis Super Mix Kit (TransGen Biotech, Beijing,
China), following the manufacturer’s instructions. All templates were stored at −20 ◦C
until further use.

2.5. qRT-PCR Analysis

qRT-PCR was performed using the CFX96 Real-Time PCR System (Bio-Rad, Hercules,
CA, USA) in a 20 µL reaction volume containing 1 µL of cDNA (0.1 µg/µL), 0.4 µL of
forward and reverse primer (10 µM), 10 µL of PerfectStart Green qPCR SuperMix (TransGen
Biotech, Beijing, China), and 8.2 µL of ddH2O. The PCR conditions were as follows: 94 ◦C
for 30 s, followed by 40 cycles of 94 ◦C for 5 s and 60 ◦C for 45 s. The gene relative expression
levels were measured using the 2−∆∆Ct method and determined based on triplicates.

2.6. Stability Analysis

The stability values of the candidate reference genes were calculated using four al-
gorithms: geNorm, BestKeeper, ∆Ct, and NormFinder [1,33–36]. The qRT-PCR data (Cq
values) were exported into a Microsoft Excel 2019MSO datasheet to meet the algorithm
requirements. The web-based tool RefFinder (http://blooge.cn/RefFinder/) (accessed on
15 April 2023) was used to synthesize the results from the four algorithms and provide
a comprehensive evaluation ranking to determine the most stable reference gene [36,37].
Additionally, the smallest number of normalized reference genes was determined us-
ing the Coefficient of Variation (V) analysis by geNorm. When the pairwise variation
Vn/n + 1 < 0.15, n reference genes were considered sufficient to correct the data.

2.7. Identification of Tissue-Specific Genes

The τ-value ranges from 0 to 1.0, with 1.0 indicating the highest tissue specificity. A
total of 327 candidate tissue-specific genes were selected based on the following criteria:
τ-value > 0.9 in one tissue (root, stem, leaf, male flower, female flower, or fruit pulp at the
green mature stage), and expression levels in other tissues less than 50 FPKM. The three
most abundantly expressed tissue-specific genes from each of the six tissues, resulting in a
total of 18 genes, were further analyzed by qRT-PCR analysis.

2.8. Statistical Analysis

The qRT-PCR data presented represents the mean ± standard error (SE) of three
replicates per sample. The data were analyzed using IBM SPSS Statistics v26.0 (IBM Corp.,
Armonk, NY, USA). A one-way analysis of variance (ANOVA) was used to determine the

http://blooge.cn/RefFinder/
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difference between means. Multiple comparisons were performed using Duncan’s test
(p ≤ 0.05).

3. Results
3.1. Identification of Candidate Reference Genes in Bitter Gourd Based on an RNA-Seq Dataset

In our previous research, we conducted gene expression pattern analysis using tran-
scriptome datasets of bitter gourd-inbred K13. These datasets were obtained from Illumina
RNA-Seq libraries prepared from nine different tissues, including root, stem, leaf, male
flower, female flower, and fruit pulp at four ripening stages (green mature stage, breaker
stage, turning stage, and yellow stage) (Figure 1A–I). Upon quantifying the expression
values (FPKM) of all genes in each sample, we illustrate the distribution of gene expression
levels across distinct samples utilizing box plots (Figure 1J). Subsequently, we compute
the correlation coefficients among and between samples by utilizing the FPKM values of
all genes in each sample, followed by the construction of a sample correlation heat map
(Figure 1K).
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squared by the correlation coefficient for each sample. 
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CAAGGTTGTTGCTCCACCAG/ 
GCACTTCCTGTGGACAATGG 

142 105.6 
0.9
97 
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Figure 1. Collection of nine different tissues of bitter gourd for RNA-Seq. (A–E) Bitter gourd root
(A), leaf (B), male flower (C), female flower (D), and stem (E) used for RNA-Seq. (F–I) Bitter gourd
fruit at the green mature stage (F), breaker stage (G), turning stage (H), and yellow stage (I) is used
for RNA-Seq. Scale bars in (B–E) 1 cm. Scale bars in (A,F–I): 5 cm. (J) Box plot of gene expression
distribution for nine samples. The abscissa is the sample name, and the ordinate is log2(FPKM + 1).
(K) Correlation heatmap of nine samples. The abscissa and aspect coordinates in the figure are
squared by the correlation coefficient for each sample.

To identify suitable candidate NRGs, we screened the expression patterns of candidate
genes in the transcriptome datasets using the following criteria: CV < 0.5, τ-value < 0.5,
and moderate expression (5 < average log2(TPM) < 10) in the nine different tissues
(Table S1). Out of the total 799 candidate NRGs, we selected 11 genes: DNAJ (DnaJ
protein; LOC111018672), HSCP2 (Heat shock cognate protein 2; LOC111013580), ARF1
(ADP-ribosylation factor 1; LOC111006269), UP (Uncharacterized protein; LOC111009092),
HMG1/2 (HMG1/2-like protein; LOC111012664), TRXH-1 (Thioredoxin H-type 1-like
protein; LOC111013893), PHOS32 (Universal stress protein PHOS32; LOC111009491),
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GAPDH2 (Glyceraldehyde-3-phosphate dehydrogenase 2; LOC111008959), RPL35-2 (60S
ribosomal protein L35-2; LOC111010277), UBC36 (Ubiquitin-conjugating enzyme E2 36;
LOC111012841), RPS8 (40S ribosomal protein S8; LOC111011823) (Table 1). Additionally,
we selected five commonly used TRGs for further comparison with the NRGs. The five
TRGs included are CYP (LOC111007901) [25], EF1α (LOC111011110) [26], TIP41 (TIP41-like
protein; LOC111017412) [7], ACT7 (LOC111005604) [22], and GAPDH (LOC111016929) [23]
(Table 1).

Table 1. Information on the TRGs and NRGs.

cGene Symbol
(Gene ID) Gene Description Primer Sequence (5′–3′)

Forward/Reverse
Amplicon

Length (bp)
Amplification
Efficiency (%) R2

CYP(LOC111007901) Peptidyl-prolyl cis-trans
isomerase

CCAAATTGTTGACGGCATGG/
GTAGAGCCAAGGCATCAATC 128 99.3 0.999

EF1α(LOC111011110) Elongation factor
1-alpha

CTGTCGCAGTTGGTGTTATC/
CTTGTAAACCTCAGACGGAG 131 103.0 0.989

TIP41(LOC111017412) TIP41-like protein GGACACTCGTATGCATTGCG/
AGATGACGCTGGGATCGTTG 146 103.8 0.998

ACT7(LOC111005604) Actin-7 CAAGGTTGTTGCTCCACCAG/
GCACTTCCTGTGGACAATGG 142 105.6 0.997

GAPDH(LOC111016929)
Glyceraldehyde-3-

phosphate
dehydrogenase

AGTCCTCGACCAGAAGTTCG/
GTTGAGTGCAGCAGCTCTTG 127 94.4 0.995

DNAJ(LOC111018672) DnaJ protein GACTCATTTGGATAGCCGTC/
GAATGGCCTCTGGTACATTG 115 107.8 0.998

HSCP2(LOC111013580) Heat shock cognate
protein 2

CTTATGGTGCTGCAGTTCAG/
CAACACTGTCATGACACCAC 131 108.4 0.996

ARF1(LOC111006269) ADP-ribosylation factor
1

CCTAATGCGATGAATGCTGC/
CTAAACCCTCGTATAGACCC 122 108.3 0.998

UP(LOC111009092) Uncharacterized protein CCGCAACATCTGCATCAATC/
CTTGTTGCGGACGAATTTCC 127 109.7 0.998

HMG1/2(LOC111012664) HMG1/2-like protein GCACCTTACATTGCTAAGGC/
CTCAGACATGGACTTCTCAG 129 105.6 0.999

TRXH-1(LOC111013893) Thioredoxin H-type
1-like protein

GAAAGTGGACGTGGATGAAG/
TCCACCTTATCTGCACCAAC 129 108.8 0.998

PHOS32(LOC111009491) Universal stress protein
PHOS32

CGTGAGAAGTTATGTGAGGC/
CACCACATAGTTGCTGACAC 117 107.1 0.996

GAPDH2(LOC111008959)
Glyceraldehyde-3-

phosphate
dehydrogenase 2

GAAGACGATGTTGTGTCCTC/
TCATTGTCGTACCACGAGAC 119 103.9 0.998

RPL35-
2(LOC111010277)

60S ribosomal protein
L35-2

CGCTTAGGGAAGCTTACAAG/
TCGCTCGGTCTTTAGAGATG 116 100.9 0.993

UBC36(LOC111012841) Ubiquitin-conjugating
enzyme E2 36

CAAATGGAGTCCTGCTCTAC/
GCAATGTTCTCAGAAAGCGG 99 106.5 0.997

RPS8(LOC111011823) 40S ribosomal protein S8 CTGCAGCATCTGCTAAGAAG/
TGTGGGTCAAGCTTACGATC 118 95.9 0.998

3.2. Verification of Primer Specificity and PCR Amplification Efficiency

We designed 16 primer pairs specific to the 11 NRGs and five TRGs for qRT-PCR. To
confirm the specificity of these primer pairs, we analyzed the melting curves. The results
showed that all 16 reference genes exhibited a single amplification peak (Figure S1). We
then examined the primer specificity based on the standard curves of the 16 reference genes,
which were obtained by diluting cDNA in a 5-fold gradient. The amplification efficiency
ranged from 94.4% for GAPDH to 109.7% for UP, and all the correlation coefficients (R2)
were greater than 0.98 (Table 1). These results indicated that the newly developed primer
pairs were specific and efficient for qRT-PCR.
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3.3. Expression Profiles and Cycle Quantification Values of the Reference Genes

We first analyzed the transcriptome datasets from the nine different tissues and con-
structed a heatmap based on the expression profiles of the 16 genes (Figure 2A, Table S2).
The heatmap revealed that the transcript levels of NRGs exhibited less fluctuation than
those of TRGs in different tissues (Figure 2A, Table S2).
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Figure 2. Expression heatmap and expression level range of TRGs and NRGs. (A) Heatmap depicting
the expression levels of the five TRGs and 11 NRGs across nine different tissues, including fruit
pulp at different ripening stages, as determined by RNA-Seq datasets. The heatmap is based on
log2(FPKM) values, with red indicating high transcript levels and blue indicating low transcript
levels. TRGs, traditional reference genes; NRGs, new reference genes; R, root; S, stem; Fm, male
flower; Ff, female flower; L, leaf; Pg, pulp at the green mature stage; Pb, pulp at the breaker stage; Pt,
pulp at the turning stage; Py, pulp at the yellow stage. (B) Expression data presented as threshold
cycle quantification (Cq), with 75% of Cq values falling within the “box” range and 25% within the
“vertical line” range. Whiskers represent the 95% confidence intervals. The lines across the box
represent the medians of the Cq values, while the dots represent outliers. TRGs, traditional reference
genes; NRGs, new reference genes.

To further examine the transcript levels of the 16 genes, we used qRT-PCR to generate
cycle quantification (Cq) values for each candidate reference gene. The Cq value is used as
a measure of transcript abundance, and a suitable reference gene should have a moderate
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transcript level (a Cq value of 15 to 30) to provide the most accurate normalization [38].
With the exception of GAPDH (Cq value of 20.46 to 32.63), all TRGs and NRGs met this
basic requirement for use in standardization (Figure 2B, Table S3). The Cq values for
the five TRGs ranged from 19.28 ± 1.45 (CYP) to 25.42 ± 4.26 (GAPDH), with GAPDH
showing the largest variation between the maximum and minimum Cq values (12.17), while
CYP showed the smallest (4.98). In contrast, the Cq values for the 11 NRGs ranged from
20.41 ± 1.39 (PHOS32) to 23.14 ± 2.68 (HSCP2), with HSCP2 having the largest range of
variation (9.66) and TRXH-1 having the smallest (4.00) (Figure 2B, Table S3). These results
indicated that most NRGs exhibited a more stable expression range than TRGs and were
therefore more suitable as reference genes.

3.4. Expression Stability Analysis of TRGs and NRGs

The expression stabilities of the 11 NRGs and five TRGs in nine tissues were evaluated
using the geNorm, BestKeeper, ∆Ct method, NormFinder, and RefFinder algorithms.
geNorm assessed the stability of the reference genes using the M value (reference expression
stability measure). A lower M value indicates more stable gene expression, and the default
threshold for M is 1.5 [33]. In our study, all TRGs and NRGs were below the default limit
of 1.5. Specifically, HMG1/2 and ARF1 had the same minimum M value, both at 0.42, and
were therefore considered the most stable reference genes (Figure 3A, Table S4). HSCP2
and GAPDH were determined to be the least stable reference genes, with M values of 1.11
and 1.40, respectively (Figure 3A, Table S4).

BestKeeper calculates the coefficient of variation (CV) and standard deviation (SD) of
the Cq value to evaluate the stability of the reference genes, and the gene with a smaller CV
± SD value is considered to be a more stable reference gene [34]. TRXH-1 had the lowest
CV ± SD value (1.08), indicating that it was the most stable gene. This was followed by
PHOS32 (1.10), while GAPDH was the most unstable gene with the highest CV ± SD value
(3.56) (Figure 3B, Table S4).

The ∆Ct method assesses the stability of gene expression by calculating the mean
standard deviation (SD) value for each gene. Genes with a lower SD of mean Cq values
had higher expression stability [35]. According to this method, HMG1/2 was the most
stable gene, with the lowest stability value (1.01). This was followed by TIP41 (1.03), while
GAPDH had the highest stability value (3.40) (Figure 3C, Table S4).

The NormFinder algorithm directly assesses the stability of reference genes based on
within- and between-group variances, with lower values indicating higher stability [1].
According to this algorithm, TIP41 (0.17) and HMG1/2 (0.25) were the most stable genes,
while HSCP2 (1.93) and GAPDH (3.31) were the most unstable genes (Figure 3D, Table S4).

To mitigate the limitations of individual algorithms, we employed the RefFinder
algorithm to synthesize the results obtained from geNorm, NormFinder, ∆Ct, and Best-
Keeper [36]. The comprehensive ranking indicated that the two most stable genes were
HMG1/2 and PHOS32, while HSCP2 and GAPDH were identified as the least stable genes
(Figure 3E, Table S4).

Additionally, we utilized the geNorm algorithm to calculate the pairwise variation
(Vn/Vn + 1) in order to determine the optimal number of reference genes required for
qRT-PCR normalization. If Vn/Vn + 1 is less than 0.15, the optimal number of reference
genes is n [33]. Our analysis revealed that all groups exhibited V2/3 values below the cutoff
of 0.15, indicating that the use of two stable reference genes was sufficient for qRT-PCR
normalization (Figure 3F, Table S5). Based on the results obtained from all algorithms, we
selected HMG1/2 and PHOS32 for further validation of their reliability.
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3.5. Validation of HMG1/2 and PHOS32 as Optimal NRGs

According to the results obtained from RefFinder and geNorm, we selected two
reference genes with the highest stability, namely HMG1/2 and PHOS32, as well as one
reference gene with low stability, HSCP2, to investigate the expression patterns of McACO1
(LOC111022870) and McACO2 (LOC111016812). In addition, we obtained the raw expres-
sion data (FPKM values) for McACO1 and McACO2 in nine different tissues from the
transcriptome datasets. These values were used to represent the expression patterns of
McACO1 and McACO2 and served as controls for the qRT-PCR results (Figure 4A,C).

Subsequently, we compared the normalization of qRT-PCR data for McACO1 and
McACO2 using either HMG1/2 or PHOS32 alone, or in combination, with the normalization
using HSCP2 (Figure 4B,D). The results revealed that the expression profiles generated
using HMG1/2 and PHOS32, either alone or in combination, were similar and significantly
different from the profiles obtained using HSCP2 as the reference gene. Furthermore, the
expression patterns of McACO1 and McACO2, normalized using HMG1/2 and PHOS32,
closely resembled those represented by the raw signal intensity values. However, when
HSCP2 was used as the reference gene, the expression patterns deviated significantly,
particularly in the green mature and yellow stage fruit pulp (Figure 4A–D). These findings
indicated that HMG1/2 and PHOS32 were suitable as new reference genes for bitter gourd.
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Figure 4. Analysis of the identified reference genes. (A,C) The transcript levels of McACO1 and McACO2
in various tissues and fruit ripening stages, as determined by the transcriptome data in the RNA-Seq
datasets. (B,D) qRT-PCR analysis of McACO1 and McACO2 in different tissues and fruit ripening
stages. The most stably expressed reference genes (HMG1/2 and PHOS32) and the least stably expressed
reference gene (HSCP2) were used for normalization alone or in combination. R, root; S, stem; Fm, male
flower; Ff, female flower; L, leaf; Pg, pulp at the green mature stage; Pb, pulp at the breaker stage; Pt,
pulp at the turning stage; Py, pulp at the yellow stage. The data presented are the means ± SE (n = 3)
of three independent biological replicates. Statistical significance (p < 0.05) was determined using the
Duncan’s multiple range test, and different letters denote significant differences.

3.6. Identification of Candidate Tissue-Specific Genes Based on an RNA-Seq Dataset

To identify tissue-specific genes, we analyzed the expression patterns of candidate
genes in the transcriptome datasets using the following criteria: τ value > 0.9, specific
expression in one tissue/organ, and expression levels below 50 FPKM in other tissues.
Our screening results revealed that 84, 12, 106, 7, 38, and 80 genes exhibited tissue-specific
expression in the root, stem, male flower, female flower, leaf, and pulp (green mature stage),
respectively (Figure 5A, Table S6). From each of these six tissues, we selected the three most
highly expressed tissue-specific genes, resulting in a total of 18 genes. We then created a
heatmap to visualize their expression patterns (Figure 5B).
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Figure 5. Analysis of predicted tissue-specific genes. (A) Number of unigenes exclusively expressed
in each of the six different tissues of the bitter gourd. Data from Table S6. R, root; S, stem; Fm,
male flower; Ff, female flower; L, leaf; Pg, pulp at the green mature stage. (B) The heatmap of
18 predicted tissue-specific genes was drawn using transcriptome data from six different tissues in
RNA-Seq datasets. The heatmap was generated using log2(FPKM + 1) values, with red indicating
high transcript levels and blue indicating low transcript levels. R, root; S, stem; Fm, male flower; Ff,
female flower; L, leaf; Pg, pulp at the green mature stage.
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3.7. Validation of 18 Tissue-Specific Genes Using HMG1/2

To verify the reliability of the 18 tissue-specific genes, we examined their expres-
sion profiles using qRT-PCR and normalized the data using the most stable reference
gene, HMG1/2. The expression patterns of the tissue-specific genes that passed val-
idation were as follows: three genes in the root (LOC111009957, LOC111019402, and
LOC111022305), two genes in the stem (LOC111022002 and LOC111022563), three genes
in the leaf (LOC111014945, LOC111022727, and LOC111004830), two genes in the male
flower (LOC111008414 and LOC111010620), and two genes in the pulp (LOC111009438 and
LOC111009556). However, none of the three female-flower-specific genes passed validation,
potentially due to their low expression levels (Figure 6A–F).
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Figure 6. Validation of 18 predicted tissue-specific genes. qRT-PCR validation of the predicted tissue-
specific genes in root (A), stem (B), leaf (C), male flower (D), female flower (E), and fruit pulp at the
green mature stage (F). HMG1/2 was used as the reference gene. R, root; S, stem; L, leaf; Fm, male
flower; Ff, female flower; Pg, pulp at the green mature stage; ND, not detected. The data presented
are the means ± SE (n = 3) of three independent biological replicates. Statistical significance (p < 0.05)
in different tissues for the same gene was determined using the Duncan’s multiple range test, and
different letters indicate significant differences.

4. Discussion

Previous studies have demonstrated that accurate reference genes can be efficiently
selected using gene expression data from public databases [29]. However, for non-model
organisms without a public gene expression database, such as bitter gourd, it is often
necessary to use homologous genes of housekeeping genes like GAPDH, ACT1, and EF1α
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as internal reference genes for qRT-PCR normalization. However, this approach often yields
unreliable results [27,28]. To overcome this limitation, we utilized RNA-seq transcriptome
datasets to rapidly identify 11 NRGs and compared their stability with five TRGs using
five different algorithms. Although the ranking results varied among the algorithms, RPS8,
DNAJ, EF1α, HSCP2, and GAPDH were consistently identified as the least reliable genes
(Figure 3A–E, Table S4). The most stable TRG, TIP41, was also found to be highly stable in
another bitter gourd reference gene study, further supporting its reliability (Figure 3A–E,
Table S4) [7]. Combining multiple analytical algorithms can enhance the evaluation of
internal reference genes [39,40]. Therefore, based on the comprehensive evaluation using
RefFinder, we selected HMG1/2 and PHOS32 as the most reliable reference genes in bitter
gourd organs (Figure 3E).

HMG1/2 is a gene that encodes a chromosomal protein containing an HMG-box do-
main, which exhibits high conservation across eukaryotes. Its primary function is believed
to be the promotion of structural assembly in nucleoprotein complexes [41]. It can be
speculated that HMG1/2 is selected as a stable reference gene due to its crucial role in this
biological process, ensuring consistent expression across various tissues. On the other hand,
PHOS32 encodes a universal stress protein that is widely present in diverse organisms.
In plants, these proteins are known to serve as protein chaperones or RNA chaperones,
assisting plants in coping with molecular stress and enabling them to withstand multiple
environmental pressures [42,43]. Additionally, they can interact with other proteins, reg-
ulating essential plant functions. Considering the potential impact of PHOS32 on gene
expression under plant stress conditions, caution should be exercised when selecting it as an
internal reference gene in stress-related experiments. It is advisable to avoid using PHOS32
as an internal reference gene to ensure accurate and reliable results in such experiments.

Numerous studies have reported significant differences in the expression levels of
target genes when stable and unstable reference genes are used as internal controls [44,45].
To validate the accuracy of our results, we examined the expression patterns of McACO1
and McACO2 in nine samples. McACO1 and McACO2 encode 1-aminocyclopropane-
1-carboxylic acid oxidases, which catalyze the final step in plant ethylene biosynthesis.
The expression of these genes varies significantly during different ripening stages of
climacteric fruit [46,47]. McACO1 and McACO2 expression increases rapidly, especially
during the phase of sudden ethylene release. These expression characteristics make them
suitable target genes for assessing the stability of reference genes. Our results demonstrated
that qRT-PCR data normalized using HMG1/2 and PHOS32 (alone or in combination)
accurately reflected the sharp increase in McACO1 and McACO2 expression at the breaker
stage. However, significant bias was observed when HSCP2 was used for normalization,
particularly in the green mature and yellow stage pulps (Figure 4). These findings indicate
that HMG1/2 and PHOS32 are suitable for normalizing the qRT-PCR results of fruit ripening-
related genes.

Transgenes are typically driven by promoters that determine the temporal and spatial
expression patterns of the transgenes. Constitutive promoters, such as the cauliflower virus
(CaMV) 35S, ubiquitin, and actin promoters, are commonly used [48–50]. However, these
promoters lead to pervasive overexpression of target genes in various tissues and may
compete for energy required for normal plant growth and development [51,52]. Therefore,
tissue-specific promoters are necessary for accurately regulating the expression of target
genes in time and space and for minimizing any adverse effects on plant growth and
development. In this study, we used transcriptome datasets from multiple tissues to rapidly
identify tissue-specific genes and validated 15 of them using qRT-PCR (Figures 5 and 6).
Cloning the promoters of these genes will facilitate the improvement of specific tissue traits
in bitter gourds through transgenic genetics.

As demonstrated in this study, the traditionally used TRGs may not exhibit stable
expression in certain species, leading to significant interference with qRT-PCR results.
Additionally, tissue-specific promoters also have species-specific limitations and cannot
generally be used across different species. Our strategy of screening NRGs and tissue-



Horticulturae 2023, 9, 1262 13 of 15

specific genes from RNA-Seq databases effectively overcomes these problems. Importantly,
this strategy is simple and versatile, making it easily applicable to other species.

5. Conclusions

This study presents a robust strategy for the rapid identification of reference and tissue-
specific genes using transcriptome datasets. By applying this strategy, we successfully
identified two optimal reference genes, HMG1/2 and PHOS32, in bitter gourd. Through
the use of five different algorithms, we unequivocally demonstrated that these two genes
exhibited higher stability compared to TRGs. Furthermore, we identified and validated
three root-specific genes, two stem-specific genes, three leaf-specific genes, two male flower-
specific genes, and two pulp-specific genes in bitter gourd. These findings have significant
implications for improving the accuracy of target gene expression quantification in bitter
gourd and serve as a foundation for the subsequent utilization of tissue-specific promoters
in the design and production of transgenic bitter gourd.
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16 reference genes. Table S6: List of 327 candidate tissue-specific genes after screening.
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