

Correction

Correction: Herfort et al. Influence of Sheep's Wool Vegetation Mats on the Plant Growth of Perennials. *Horticulturae* 2023, 9, 384

Susanne Herfort 1,*, Kerstin Pflanz 1, Marina-Sandra Larsen 1, Thomas Mertschun 2 and Heiner Grüneberg 3,*

- ¹ Institute of Agricultural and Urban Ecological Projects, Humboldt-Universität zu Berlin (IASP), 10115 Berlin, Germany
- ² Uabg Society for Environmental Analysis Soil and Water Protection mbH, 12459 Berlin, Germany
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Urban Ecophysiology of Plants, 14195 Berlin, Germany
- * Correspondence: susanne.herfort@iasp.hu-berlin.de (S.H.); hgrueneberg@hu-berlin.de (H.G.)

There was an error in the original publication [1]. A correction has been made to Abstract, 3.1. Nitrogen Content of the Vegetation Mats, paragraph 1, Tables 3 and 7.

Abstract: The vegetation mats with sheep's wool (V1–V3) contained 192.6, 154.0, and 283.5 g nitrogen (N)/ m^2 and the coir mats (V4) contained 7.5 g N/ m^2 .

3.1. Nitrogen Content of the Vegetation Mats, paragraph 1: The analysis of total nitrogen showed 10.4% for the sheep's wool fibres and 0.3% for the coconut fibres. The subsequently calculated nitrogen content in the four vegetation mat types averaged between 7.5 g of nitrogen (variant 100c) and 283.5 g of nitrogen (sandwiched variant) per m² vegetation mat (Table 3).

Table 3. Calculated nitrogen content of the fibres (air dry) of the used vegetation mats.

Mat Variant	N-Content of Sheep's Wool Fibres in the Vegetation Mat (g/m²)	N-Content of Coconut Fibre in the Vegetation Mat (g/m²)	Total N-Content of Fibres in the Vegetation Mat (g/m²)
V1: 50sw/50c	187.2	5.4	192.6
V2: 30sw/70c	145.6	8.4	154.0
V3: Sandwich	280.8	2.7	283.5
V4: 100c	0	7.5	7.5

Table 7. Pearson correlation between nitrogen content and plant height.

	1st Date	3rd Date	5th Date	7th Date
Achillea clypeolata 'Moonshine'	-	-	-	0.617 **
Sig. (2-tailed)	-	-	-	< 0.001
Aster dumosus 'Prof. Anton Kippenberg' Sig. (2-tailed)	0.542 ** <0.001	0.808 ** <0.001	0.878 ** <0.001	0.834 ** <0.001
Aster dumosus 'Silberball'	0.572 **	0.817 **	0.792 **	0.807 **
Sig. (2-tailed)	< 0.001	< 0.001	< 0.001	< 0.001
Centranthus ruber 'Coccineus'	-	-	0.372 **	-
Sig. (2-tailed)	-	-	0.009	-
Salvia nemorosa 'Rosakönigin'	0.437 **	0.536 **	0.561 **	0.446 **
Sig. (2-tailed)	0.002	< 0.001	< 0.001	0.002

^{**} The correlation is significant at a level of 0.01 (2-tailed).

The authors apologize for any inconvenience caused and state that the scientific conclusions are unaffected. The original publication has also been updated.

Citation: Herfort, S.; Pflanz, K.; Larsen, M.-S.; Mertschun, T.; Grüneberg, H. Correction: Herfort et al. Influence of Sheep's Wool Vegetation Mats on the Plant Growth of Perennials. *Horticulturae* 2023, 9, 384. *Horticulturae* 2023, 9, 1166. https://doi.org/10.3390/ horticulturae9111166

Received: 5 October 2023 Accepted: 13 October 2023 Published: 25 October 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Horticulturae 2023, 9, 1166 2 of 2

Reference

1. Herfort, S.; Pflanz, K.; Larsen, M.-S.; Mertschun, T.; Grüneberg, H. Influence of Sheep's Wool Vegetation Mats on the Plant Growth of Perennials. *Horticulturae* **2023**, *9*, 384. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.