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Abstract: Sustainable agriculture requires factors to directly stimulate plant growth and induce
the plant’s innate immune system to protect against stresses. Protection of plants is one of the
main approaches to the supply of food resource. Furthermore, improved techniques for plant
disease management must be environmentally sustainable, reliable, acceptable by society, and
chemical-free to ensure sustainable food security. Although it is not possible to accurately determine
postharvest losses due to diseases and physiological disorders, the use of proper harvesting and
transportation methods that minimize damage to the product, along with optimal storage conditions
that prevent the development of diseases, will be effective in reducing these postharvest losses. Since
handling and storage conditions are potential threats for postharvest spoilage, it is necessary to
identify environmentally friendly approaches and their precision mechanisms for postharvest disease
management. Recently, biological control, non-chemical, and eco-friendly techniques have been
investigated for this purpose.
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1. Introduction

Plant diseases are a major threat to various ecosystems and crops, so researchers
develop new strategies to prevent pathogen growth and increase produce quality. The use
of resistant species and cultivars produced by gene transfer [1] is eco-friendly and affordable
in inhibiting losses caused by pathogens [2,3]. As well, the selection of somaclonal variation
and mutation induction provides an essential strategy for disease management [4]. The
importance of genes such as smutin and peroxidase that contain antifungal compounds
for inducing resistance to pathogens has been proved [5]. Down-regulation of terpenes in
transgenic oranges induces defense reactions against Penicillium digitatum [6,7]. In addition,
it has been noted that myrcene stimulates the spore germination of P. digitatum through the
upregulation of central carbon and energy metabolism [8], and terpene limonene causes
citrus green mold through the regulation of reactive oxygen species (ROS) homeostasis
in P. digitatum spores [9]. Additionally, appropriate agricultural practices [10], including
lack of planting pathogen-host plants near fruit trees, removing sources of inoculation such
as diseased branches or fruits, and using windbreaks to reduce spore dispersal will be
effective [11].

The factors limiting the shelf life such as postharvest diseases are among the biolog-
ical limitations that cause more economic losses than occur during cultivation [12,13].
Most postharvest pathogens are necrotrophic fungi that destroy cells using cell-wall-
degrading enzymes (CWDEs) or mycotoxins (toxic secondary metabolites of fungi). Fungal
species from the genera Alternaria, Aspergillus, Botrytis, Colletotrichum, Fusarium, Geotrichum,
Gloeosporium, Monilinia, Mucor, Penicillium, and Rhizopus are known to produce mycotoxins
and postharvest diseases [14,15]. Mycotoxins are low molecular weight compounds able
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to elicit a toxic response in humans through exposure at very low levels [16]. Posthar-
vest disease development is influenced by pathogen biology, growth stage, and handling.
Infection of pathogens could be delayed by using resistant cultivars [17]. On the other
hand, the production of mycotoxins depends on physical, biological, and environmental
factors [18]. The most important environmental factors are temperature, relative humidity,
carbon dioxide levels, nutrient availability, and physical damage [19]. Due to the increase
in world population, prevention of postharvest losses has become more critical. Generally,
good agricultural practices and controlled storage conditions are essential to minimize
pathogen contamination. In recent years, physical methods such as thermal treatments
(hot water, steam heat, and hot air) to control plant pathogens have been effective [20–22].
The thermal process disrupts normal metabolism (ripening or senescence) by creating
moderate and reversible stress [23]. Proteomic analysis showed that up-regulated proteins
by heat treatment were related to defense response and redox metabolism. Therefore, the
loss reduction is due to the expression of proteins related to carbohydrate and energy
metabolism [24]. Investigating the effect of thermal processing on the microbiome of apple
fruit indicates a decrease in fungal–bacterial diversity [25]. However, heat treatment has
undesirable effects on nutritional quality among vitamin reduction, protein denaturation,
and sensory properties [26]. In order to reduce the adverse effects, non-thermal food pro-
cessing techniques such as ionizing radiation, cold plasma, and high-pressure processing
pulse electric field radiation were used [27].

Microwave heating is used as dielectric heating through the emission of electromag-
netic waves for pasteurization and sterilization [20]. Electromagnetic energy leads to an
increase in the internal temperature and a decrease in the pasteurization time, and it main-
tains the bioactive components, antioxidant activity, and appearance characteristics [28].
Other physical methods, such as radiation and ultrasound, have been investigated to
control fungi and mycotoxins [29]. Resistance mechanisms induced by radiation, the ex-
pression of pathogenicity-related proteins (PR) [30], the activity of antioxidant enzymes [31],
the synthesis of phenolic compounds, and cell-wall strengthening were mentioned [30].
Gamma radiation is a method for the disinfection of various fruits [32]. Gamma radiation
inhibits fungal growth by disrupting the fungal cell membrane leading to the loss of intra-
cellular contents and cell death [33]. Similarly, Yoon et al. (2020) stated X-ray irradiation is
an effective method to inhibit strawberry decay and maintain sensory and physicochemical
characteristics [34]. In the mentioned methods, there is a limitation in using an effective
radiation dose to control the disease without damaging the DNA and cell membrane and
destroying essential proteins.

Meanwhile, the new physical method of interest to researchers is the non-thermal
technique of cold plasma to control fungus and mycotoxin. Cold plasma is an ionized
gas containing partially ionized atoms and molecules with a roughly zero net electrical
charge [35]. Cold plasma treatment destroys fungal DNA and cell walls and allows the
leakage of intracellular contents [35,36]. Also, cold plasma causes rapid destruction of
mycotoxins [35,37]. Despite the above mentioned, physical methods play a role as a
surface disinfectant by suppressing pathogen activity and following it application of other
techniques is necessary for sustainable resistance. Therefore, new and effective strategies
for controlling postharvest diseases, which are also safe for the environment are necessary.

This review summarizes studies that use innovative techniques as management strate-
gies to reduce postharvest diseases of fruits and vegetables.

2. Postharvest Diseases Management
2.1. Biological Control

Despite recent advances in genetic engineering, interest in biological control as a po-
tential approach to plant pest and disease management has increased [38,39]. With regards
to developing biological control products with promising economic benefits, we will be
examining the use of microbial antagonists to control diseases and their commercialization
potential. Basic approaches to using microorganisms in postharvest disease control include
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managing beneficial microflora on fruit surfaces or artificially introducing antagonists
against postharvest pathogens. Biological control using artificially introduced antagonists
is a more effective technology [40].

The primary benefit of a fruit-based diet is the modification of nutrients, including enrich-
ment with fiber, phenolic compounds, and complex sugars that maintain a healthy microbiota
in the human gut [41,42]. One of the most effective methods to prevent disease is the application
of biological control agents (BCAs) [43]; through competition for nutrients, the production of
secondary metabolites such as volatile organic compounds (VOCs), lytic enzymes, and the
activation of the plant defense system, they function as antagonists of fungal diseases [44–46]
(Figure 1). Microbial antagonists significantly modulate the fruit microbiome and improve fruit
health by inhibiting pathogenic aerobic microbial species and promoting beneficial microorgan-
isms [47]. The role of endophytic microorganisms in increasing resistance to stresses, availability
to nutrients, and promoting growth has been proven [48]. Endophytes Debaryomyces hansenii,
Galactomyces geotrichum, Pichia kudriavzevii, Rhodotorula glutinis, and Schwanniomyces vanrijae
isolated from apple fruit [49], Proteobacteria, Actinobacteria, and Bacilli isolated from banana,
guava, mango, papaya fruits [50], Metschnikowia, Hanseniaspora, Acinetobacter, Gluconobacter iso-
lated from grape berries [51] and Lactobacillus plantarum CM-3 in strawberries [52] as microbial
antagonists through the synthesis of phytohormones and VOCs inhibit fruit pathogens [53].
VOCs are low molecular weight compounds that are composed of alcohols, aldehydes, esters,
aromatic and aliphatic hydrocarbons, terpenes, nitrides, and sulfides with strong antimicrobial
effect [54]. VOCs as bio-fumigants exert their antifungal effects by destroying cell membranes
and the morphology of fungal hyphae such as alteration of cell vacuolation, membrane perme-
ability, and swelling in the hyphae [55]. Aiello et al. (2019) observed that Pseudomonas synxantha
isolated from kiwi fruit significantly inhibited pathogens that affect stone fruits such as Monilinia
fructigena and Monilinia fructicola [56]. Similarly, the microbial antagonists of Lactococcus lactis
and Weissella cibaria led to the inhibition of Erwinia mallotivora and the reduction of papaya fruit
disease [57].
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Acceptance of bacteria as BCAs in the control of fungal diseases can be attributed to
their strong inhibitory capacity, rapid colonization, and low nutritional requirements [39,44].
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Probiotic bacteria’s secondary metabolism enables them to synthesize and release secondary
metabolites with antimicrobial capacity, such as non-volatile organic compounds and VOCs
with a broad range of biological functions [58,59]. Bacterial antagonists belong to the group of
plant growth-promoting bacteria (PGPB) [60]. PGPB are a group of non-pathogenic beneficial
bacteria that live autonomously in the soil or rhizosphere, the phyllosphere (epiphytes), and
plant tissues (endophytes) [61]. Plant growth-promoting rhizobacteria (PGPR) reduce the level
of ethylene under stress and pathogen attack [62], suppress the activity of pathogens through
competition for nutrients, production of lytic enzymes, inhibition of the synthesis of toxins [63],
and stimulation of plant growth and survival [62]. PGPR both rhizospheric and endophytic
bacterial strains inhibited Panama disease in field and greenhouse by inducing resistance to
Fusarium wilt in banana [64], and compounds produced by PGPR such as antibiotics with
pathogen control are related [65]. Antibiotics are a heterogeneous group of low molecular
weight organic compounds [66] which inhibit the growth of phytopathogenic fungi such as
Aspergillus flavus, Alternaria solani, Fusarium oxysporum, Colletotrichum gloeosporioides by disrupting
the structure of the cell wall or the function of the membrane of microorganisms, disrupting
the synthesis of proteins and the function of respiratory enzymes [67]. Iturin, pyrrolnitrin, and
syringeomycin are the most important antibiotics for postharvest diseases [68]. PGPR known
as NJN-6 of Bacillus amyloliquefaciens produces various secondary metabolites for inhibiting
soil-borne pathogens. Therefore, the NJN-6 strain reduced the severity of Panama disease and
improved the growth of banana seedlings [43]. Fan et al. (2017) showed the ability of Bacillus
subtilis in producing antibiotics and VOCs to suppress postharvest pathogens such as Botrytis
cinerea, Rhizopus stolonifer, and Colletotrichum spp. in strawberries [69]. Likewise, B. subtilis
antagonist in inhibiting Penicillium italicum and Penicillium digitatum in orange was shown to be
involved [70]. B. cinerea in strawberries and blueberries and Alternaria alternata in blueberries
was inhibited by Bacillus pumilus and Pseudomonas fluorescent bacteria [71]. Biological control of
mango anthracnose using bacterial antagonists has been successful [72–74]. Bacillus siamensis
reduces the decay of R. stolonifer and B. cinerea in raspberries by producing volatile antifungal
compounds [75]. Pseudomonas chlororaphis reduces B. cinerea rot in Chinese cherries through
the production of volatile antifungal compounds such as alkanes, aldehydes and ketones,
alcohols, alkenes, acids, esters, aromatic compounds, and sulfur [76]. In grapes, Pseudomonas
fluorescent prevents B. cinerea rot by producing volatile antifungal compounds such as dimethyl
disulfide, dimethyl trisulfide, geranyl formate, acetic acid, butyric acid, 2-methyl butyric acid,
isobutyric acid, and isovaleric acid [77–79]. Lactobacillus delbrueckii reduces grape rot through
the production of non-volatile antifungal compounds [80]. Bacillus licheniformis, B. subtilis, and
Leifsonia aquatica inhibit the growth of R. stolonifera and decay by producing siderophores in
blackberries [81]. The growth and colonization of iron-dependent microorganisms are limited
by siderophores [82]. Bacillus strains significantly inhibit the growth of B. cinerea in strawberries
and grapefruit [83], Colletotrichum musae in bananas [84], and Alternaria brassicae, Botrytis cinerea,
Fusarium graminearum, Pyricularia oryzae, Rhizoctonia solani Kuhn in pear after harvest [85] due
to lipopeptide production, cellulase, and protease activity [85]. Pang et al. (2021) reported
that the endophytic strain of B. amyloliquefaciens isolated from kiwi showed antifungal activity
against Botryosphaeria dothidea and the C12-surfactin A lipopeptide secreted by the bacteria was
effective in its function [86]. On the other hand, bacteria can produce lytic enzymes [87]. Bacteria
destroy the cell wall and mycelium of pathogens by secreting hydrolases such as chitinase and
glucanase [13]. For example, B. amyloliquefaciens inhibits Fusarium oxysporum by the destruction
of the cell wall [88]. Bacillus halotolerans reduces strawberry rot by producing chitinases against
B. cinerea [89]. Antagonist fungi such as Purpureocillium lilacinum inhibit P. digitatum by damaging
the main cell wall components [90]. B. amyloliquefaciens can change the structure of fungal hyphae
(production of deformed and evacuated hyphae) due to the secretion of metabolites [91]. Bacillus
velezensis inhibited hyphal growth and sporulation of C. gloeosporioides [84].

Bacteria indirectly activate local and systemic responses in plants [13]. Studies have
shown that genes related to L-phenylalanine metabolism, amino acid biosynthesis, plant
hormone signal transduction, and programmed cell death (PCD) regulation are induced by
antagonistic microorganisms [92]. Bacterial antagonist B. siamensis decreased the expression
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of catalase (CAT); however, the expression of superoxide dismutase (SOD) was increased.
Increasing SOD activity can enhance defense against pathogens [93]. In grapes, P. fluorescent
and B. amyloliquefaciens reduce the incidence of B. cinerea by increasing the enzyme activity
of CAT, peroxidase (POD), polyphenol oxidase (PPO), phenylalanine ammonia-lyase (PAL),
and chalcone isomerase (CHI) [94,95]. It has been reported that Bacillus halotolerans and
B. subtilis induce activities of POD, PPO, PAL, and CHI enzymes in strawberries and
blueberries for resistance to B. cinerea [89,96]. The responses induced by Bacillus licheniformis
and Bacillus sonorensis against the pathogen P. digitatum in Indian gooseberries and grapes
are considered a type of plant defense response [97,98]. The application of Aureobasidium
pullulans cell suspension maintained chitinase and 1,3-glucanase levels of avocado fruit [99],
and Serratia sp. bacterial extracts showed high potential to control postharvest rot caused
by C. gloeosporioides in avocados [100]. Likewise, the extracts of B. subtilis, Pseudomonas
brenneri, and Pseudomona koreensis significantly inhibited germination and hyphae growth
of B. cinerea and A. alternata in blueberries by producing metabolites like arthrofactins [101].

According to several studies, when antagonists are combined with natural compounds
such as growth regulators, chitosan, amino acids, antibiotics, and bicarbonates they more
effectively controlled postharvest pathogens [39,102,103]. B. amyloliquefaciens combined
with salicylic acid (SA) controlled the brown rot of nectarine [104]. Up-regulation of defense
genes, such as PAL, and the expression of pathogenesis-related (PR) genes is associated
with the SA signaling pathway [105,106]. Similarly, the antagonist bacteria B. amylolique-
faciens and SA inhibited P. digitatum citrus and reduced disease severity [107]. Calcium,
iron, potassium, magnesium, and sodium levels of treated oranges were significantly af-
fected [107]. These changes may be a defense response against the pathogen and were
confirmed by measuring the activity of PAL, total polyphenols, and flavonoids. Changes
in the content of phenolic and aromatic ring bands using Fourier-transform infrared spec-
troscopy (FTIR) of citrus peel indicated induced resistance against pathogenic fungi [107].
Therefore, polyphenols, flavonoids, and PAL, which have antifungal activity, were affected
by biological treatments. In addition, the content of some bands, especially lignin and
carbohydrates, decreased in the presence of biological treatments, which indicates degrada-
tion of the fungal cell wall [107]. The efficacy of M. guilliermondii Y-1 and melatonin against
apple gray mold was due to a significant increase in PAL [108]. Yeasts act as antagonists
due to their ability to secrete lytic enzymes, synthesize toxins, and release VOCs that
lead to the induction of defense responses and mycoparasitism [109]. Candida oleophila
yeast was effective in inhibiting P. expansum and B. cinerea kiwi [110], and Meyerozyma
guilliermondii yeast was effective in inhibiting P. italicum and P. digitatum of orange after har-
vest [111]. Pichia membranefaciens yeast had a significant biological effect against Rhizopus
rot of peaches by inducing the activity of defense enzymes, such as CAT, POD, PAL, and
PPO [78]. P. membranefaciens induced mitogen-activated protein kinase (MAPK) cascade
signaling pathway and ethylene (ET), jasmonate (JA), and SA signal transduction pathways
to regulate transcription factors (TFs). TFs activate the downstream defense-related genes,
glutathione S-transferase genes, and genes involved in secondary metabolite synthesis
to increase disease resistance [78]. Pretreatment Debaryomyces hansenii yeast with man-
nitol and sorbitol [112] or mild stress [113] improved biocontrol efficiency by increasing
the expression of antioxidant genes, such as CAT and copper-zinc superoxide dismutase
(CuZnSOD). Palmieri et al. (2022) observed the antagonistic activity of Papiliotrema terrestris
yeast against Monilinia fructigen of plum fruit [114]. It was stated that direct contact is
essential for nutrient and space competition. Yarrowia lipolytica yeast grew on tangerine
wounds more than P. digitatum and P. italicum pathogens at different temperatures [115].
Similarly, the rapid colonization of Metschnikowia citriensis in citrus wounds leads to com-
petition for nutrients with Geotrichum candidum var. citri-aurantii [116]. Competition is the
essential mechanism of BCAs to suppress postharvest decay. Colonization and nutrient
reduction during the first 48 h after the application of yeasts are vital due to their direct
effect on fungal spore germination [117]. On the other hand, endophytic fungi act as
antagonists against B. cinerea or Fusarium proliferatum through the synthesis of secondary
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metabolites and extracellular enzymes [118]. A. pullulans mold was considered as a mi-
crobial antagonist against Penicillium expansum of pears [119]. Di Francesco et al. (2018)
reported that A. pullulans reduced kiwi gray mold by increasing glutamic and aspartic
acids [120] (Table 1).

Table 1. Direct and indirect effects of microbial antagonists in the control of postharvest diseases of
fruits and vegetables.

Biological
Control Agents

Mode of Action Biological
Control Agents

Main Function of
Biological

Control Agents
References

Antagonistic
bacteria

Rapid colonization in host tissue; Synthesize and
release secondary metabolites (non-volatile

organic compounds and volatile organic
compounds); Produce siderophores and inhibit
the growth and colonization of iron-dependent

microorganisms; Suppress the activity of
pathogens through competition for nutrients,
production of lytic enzymes, inhibition of the

synthesis of toxins; Activation of the plant
defense system; Neutralization or decrease the

stress-related hormones and stimulation of plant
growth; Nutrient supply and improvement of

host plant growth

Inhibition of postharvest
pathogens [39,44–46,59,62,63,82,87]

Antagonistic fungi
Synthesis of phytohormones and volatile organic
compounds; Destruction cell membrane and the

morphology of fungal hyphae

Inhibition of postharvest
pathogen [90,91]

Antagonistic yeasts

Suppress the activity of pathogens through
competition for nutrients, production of lytic
enzymes, inhibition of the synthesis of toxins;
Increasing the expression of antioxidant genes;

Induction of defense system and mycoparasitism

Inhibition of postharvest
pathogens [78,109]

2.2. Biosensors

Disease development is closely related to physiological stages, host tissue charac-
teristics, and environmental conditions. Biosensors transform biological responses into
detectable electrical signals [121]. Biosensors such as antibodies, antimicrobial peptides,
cells, organelles, microorganisms, enzymes, and nucleic acid [121] have the capacity to
monitor the microbial flora of fruits and vegetables. Antibodies and antimicrobial peptide-
based biosensor design to detect bacteria due to their superior properties such as stability,
multiple site for bacteria capture and high specificity were considered [122]. Nucleic acids
are molecules with high affinity and specificity to interact with a target [123] and enzymatic
sensors measure target components by utilizing the catalytic reaction of enzymes with
sugars, amino acids, proteins, and lipids as substrates [123]. The development of sensors
based on phytochemicals or ripening genes is effective in controlling spoilage. Recently, a
sensor composed of a metal catalyst and carbon nanotubes has been developed to mon-
itor ethylene to determine the time of spoilage of fruits and vegetables [124]. Based on
the luminescent responses of the bacteria to changes in VOCs following contamination,
whole-cell bacterial biosensors can detect P. digitatum in oranges [125]. In this way, a colori-
metric sensor containing AuNPs modified with the Aspergillus niger spore-binding peptide
was developed to detect A. niger spores [126]. Addition of nanoparticles to electrochem-
ical biosensors was used for rapid monitoring of Penicillium through immobilization of
penicillinase enzyme using N-5-azido-2-nitrobenzoemideyl [127].
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2.3. Nanotechnology

Nanotechnology use is efficient for antimicrobial agents in fresh products. Nano-
materials offer advantages such as bioavailability, controlled release, bio preservatives,
and performance improvement. Nanoparticles are variable in size and amorphous or
crystalline and are able to link with biological molecules like nucleic acids, peptides, and
proteins [128,129]. A wide range of metals and their oxide-based single- and multi-walled
carbon nanotubes and nanocomposites have been used. Gold, silver, zinc, cerium, titanium
dioxide (TiO2), silica, silica–silver, alumina–silicate, and chitosan are nanoparticles used to
control plant pathogens [130,131].

The fungicidal activity of TiO2 nanoparticles has been proven against fungal pathogens
Venturia inaequalis and Fusarium solani [132] and likewise manganese oxide (MnO2) nanopar-
ticles against the pathogens causing wilt diseases in watermelon, eggplant, and toma-
toes [133]. The inhibition of pathogens B. cinerea and P. expansum by using nanoparticles
of zinc oxide is due to the induction of reactive oxygen species [134]. A honeycomb-like
structure of silica nanoparticles is used in the targeted delivery of DNA and chemicals
into plants [135]. Similarly, growth suppression of B. cinerea, C. gloeosporioides, Magna-
porthe grisea, and Pythium ultimum was shown in solution of silica–silver [136]. Myco-
toxin determination of pathogens has been conducted using nanocarbon materials like
carbon nanowires and nanotubes [137]. Spray drying, precipitation, ionic gelation, emul-
sion cross-linking, sieving, and reverse micellar are used to produce chitosan-based agro-
nanochemicals [138]. Chitosan-based nanoparticles have been used to reduce postharvest
decay [139,140] through an inhibitory effect against Aspergillus sp., Fusarium sp., and Al-
ternaria sp. [141]. Nanomaterials with chitosan coating films can control mesophilic aerobic,
yeast, and mold contaminations by modulating the ripening index and increasing enzyme
activities [142]. The chitosan-AgNPs based-composite showed remarkably higher anti-
fungal activity against C. gloeosporioides [143]. Nanocomposites of selenium and chitosan
nanoparticles synthesized using pomegranate peel extracts and Fenneropenaeus indicus
shells stimulated the deformation of P. digitatum hyphae [144]. Thyme oil in an edible
coating based on chitosan nanoparticles showed complete inhibition of C. gloeosporioides of
avocado [145]. Mango preservation using carrageenan-based coating with zinc nanoparti-
cles was also satisfactory [146]. Similarly, chitosan-coated iron oxide nanoparticles inhibited
R. stolonifer on peach fruits [147].

Decay and storage disorders of pomegranate fruit were reduced in nano bags con-
taining a high level of carbon dioxide [148]. Biodegradable nanoparticles loaded with
essential oils have been used to control fungal decay by damaging the integrity of the
spore membrane, resulting in homeostatic imbalance and cell death [149]. Since nanoemul-
sions are kinetically stable encapsulation techniques, their extended-release dose is either
sustained-release or controlled-release dosage [150,151]. Essential oil can be fixed by using
nanoemulsions to increase the potential and delivery against various pathogens. Pong-
sumpun et al. (2020) reported that cinnamon oil nanoemulsions showed more efficacy than
conventional emulsions against the fungi A. niger, C. gloeosporioides, Rhizopus arrhizus, and
Penicillium sp. [152]. Sodium alginate coating with eugenol, carvacrol, and cinnamaldehyde
nanoemulsion had a growth-inhibiting action on P. digitatum and caused better stability
of the physical parameters of tangerine [153]. Thyme oil encapsulated in zein nanofiber
significantly lowered total bacterial counts, fungi, and yeast, and maintained the total
phenol content, antioxidant activity, and titratable acidity of strawberries [154].

2.4. Plant Growth Regulators (PGRs)

PGRs are factors affecting gene expression and related biological activities. As a
short- to medium-term strategy, plant-derived natural compounds, such as plant hormones,
associated with defense systems have been considered [155]. Melatonin (MT), as a signal-
ing molecule and antioxidant [156], is vital in physiological processes [157], response to
stresses [158], and resistance to pathogens [159]. Exogenous application of MT significantly
increased disease resistance in strawberries [160], kiwi [161], plums [162], bananas [160],
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and grapes [163] and reduced decay. The effects of synergism MT with NO and ROS induce
disease resistance [164,165]. Induction of resistance by MT is associated with the expres-
sion of defense genes/proteins, such as POD, lipid transfer proteins (LTPs), chitinases,
β-1,3-glucanases, and pathogenesis-related (PR) proteins [163,166]. MT and NO induce
phytohormones such as SA, JA, and MAPK signaling pathways [167,168]. Exogenous
melatonin stimulated endogenous melatonin production in the mesocarp and exocarp of
plum, and total phenol and anthocyanin increased in the mesocarp [169]. A rise in JA
and its precursor (oxo-phytodienoic acid (OPDA)) was detected in mesocarp by hormonal
analysis [169]. Therefore, melatonin induces the JA signaling pathway to increase total
phenol and anthocyanins. JA is involved in promoting the biosynthesis of phenylpropanoid
compounds such as anthocyanins [170] by regulating the WD-repeat/bHLH/MYB com-
plexes [171]. MeJA activates defense responses against stresses [172]. Sun et al. (2013)
confirmed that methyl jasmonate (MeJA) stimulated enzymes and reduced hydrogen
peroxide (H2O2) and malondialdehyde (MDA) in banana plants after Fusarium inocula-
tion [173]. Exogenous melatonin increased disease resistance in apples, peaches, and kiwi
by increasing the activity of CAT, POD, SOD, and ascorbate peroxidase (APX) [161,174].

Artificial inoculation of table grapes immersed in MT showed that MT did not signifi-
cantly inhibit hyphae growth and spore germination but reduced the severity of gray mold
disease [175]. MT reduces the MDA content and prevents the increase in cell membrane
permeability by synthesizing and accumulating phenols and flavonoids. Simultaneously,
the activity of defense enzymes such as SOD, POD, CAT, PAL, PPO, chitinase, and β-1,3 glu-
canase significantly increases [176]. Similarly, DPPH inhibition and activity of antioxidant
enzymes SOD, POD, and APX strawberries immersed in melatonin increased, and B. cinerea
decay decreased [177]. MT increases the activity of glucose-6-phosphate dehydrogenase,
shikimate dehydrogenase, and PAL, which cause the accumulation of total phenol and
endogenous SA, and thus is effective in inhibiting decay and increasing shelf life [178].
It seems that melatonin is involved in plant innate immunity against pathogens through
SA/JA/ET and NO-dependent pathways [179].

SA is a natural phenolic molecule that facilitates signal transduction as a plant growth
regulator [180]. SA induces defense genes, especially genes encoding pathogenesis-related
(PR) proteins with antimicrobial activities [181,182]. Therefore, SA is involved in the induc-
tion of systemic acquired resistance (SAR) [183]. Disease inhibition in jujube inoculated with
A. alternata was influenced by SA [174]. SA treatment of apple fruits before inoculation with
P. expansum effectively inhibited blue mold [184]. SA increases resistance to P. expansum by
increasing SOD activity [185]. Methyl salicylate (MeSA) vapors increased epicatechin, PAL,
chitinase, β-1,3-glucanase activity and reduced anthracnose of avocado significantly [186].
Pre- and postharvest SA treatment increased the shelf life of pomegranate, mango, jujube,
and strawberries by inhibiting decay [187–190]. Salicylic acid maintained the content of
total phenol, total antioxidant, and activity of CAT, SOD, and POD and reduced papaya
rot [191]. SA may have ability for induction of systemic or local acquired resistance (LAR)
against pathogens to inhibit microbial decay [183].

SA and MeJA are critical in plant interactions to induce systemic defense against
pathogenic microorganisms [191]. The activity of PPO and POD, increased proportionally
to the content of SA and JA in citrus treated and infected with P. italicum and P. digitatum,
resulted in inhibiting both molds [192]. Pan et al. (2020) reported that MeJA significantly
reduced the diameter of the lesions caused by B. dothidea on kiwifruit [193]. MeJA signif-
icantly increased the activity of defense-related enzymes such as CAT, POD, SOD, PPO,
chitinase, and β-1,3-glucanase. It also increased the accumulation of total phenolic com-
pounds, while lipid oxidation decreased [193]. MeJA increased the activity of PAL and
4-coumarate-CoA ligase (4CL), total phenol, total flavonoid, lignin, individual phenols
such as chlorogenic acid, neochlorogenic acid, and epicatechin in peach [194]. Furthermore,
the increase of PpPAL and Pp4CL transcripts after inoculation with R. stolonifer indicates
the induction of primary defense through phenylpropanoid pathway activation [194].
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2.5. Edible Coatings

Natural films and coatings include polysaccharides (pectin, cellulose, starch, gums),
lipids (fatty acids, acetylated glycerides, surfactants, waxes), proteins (fatty acids, colla-
gen, gelatin, waxes, resins, whey), and composite polymers. The principal components
for producing biodegradable films are film-forming biopolymers which include carbohy-
drates, proteins, solubilizing medium, and plasticizers [195]. The majority of the edible
coating components are polysaccharides such as chitosan, alginate, cellulose, carrageenan,
pectin, starch, and proteins such as whey and casein [196]. In addition to maintaining
structural integrity due to the arrangement of hydrogen bonds, polysaccharide-based films
have good barrier properties [197]. Protein-based coatings have lower moisture barrier
properties than polysaccharide-based films [198]. Lipid-based coatings have very high
moisture barrier properties due to the greater polarity difference [199]. Polysaccharides
and proteins due to their hydrophilic nature are used for transport active components
such as antioxidant and antimicrobial agents [200]. Starch and alginate are considered for
bio-packaging due to their gelatinization properties [201] and the ability to form hydrogels
and encapsulation barriers, respectively [202]. Chitosan has attracted attention due to its
properties as a gelling agent and the ability to form hydrogen bonds and hydrophobic
interactions [203]. Low gaseous permeability is an important property of edible coating in
order to slow down the respiration and transpiration processes, thereby delaying ripening
and senescence. Among other features is the control of the migration of oxygen, carbon
dioxide, and moisture from the outside environment into the products, the inertness of
coating substances, nature transparent, non-toxic, non-sticky, low viscous, economical and
possessing a quick drying nature, digestible, and no change in sensory characteristics (taste,
smell or color) of products [204]. Reduced water loss, microbial decay inhibition, protection
against chilling damage, and appearance enhancement are among the benefits of coatings
in food preservation [205]. The mechanical properties of edible films and coatings are
highly influenced by the types of biopolymers, and also the addition of plasticizers and
surfactants [206]. Chitosan is one of the principal edible coatings in postharvest disease
management of fresh products [207]. Chitosan has shown significant antifungal activity
inhibiting growth conidium and mycelium [208]. Transcriptional studies of chitosan inter-
actions with pathogens indicate the effect of chitosan on metabolic pathways that lead to
morphological and biochemical changes and inhibition of growth and germination [209].
The electrostatic interactions between chitosan and the phospholipids in the cell membrane,
which increase the permeability of the fungal cell provide the antifungal ability of chitosan.
In addition, the short chain of chitosan may penetrate through the membrane and cell wall
and disrupt the function of DNA and RNA [209]. Chelation mechanisms (the reaction of
amino groups with metal ions) reduce the availability of essential metals in enzymatic
reactions and prevent pathogenesis [210]. Moreover, coatings transfer antioxidants and an-
timicrobial compounds to food [211]. Zheng et al. (2017) showed that chitosan induces CAT
and SOD activity, ascorbate peroxidase gene expression, and total phenolic compounds
of kiwifruit, and is involved in resistance to gray and blue molds [212]. Low molecular
weight chitosan (LMWC) and high molecular weight chitosan (HMWC) significantly in-
hibited the growth of gray mold in kiwifruit. However, LMWC had higher antifungal
activity [213]. Expression of chitin elicitor receptor kinase 1 (CERK1), mitogen-activated
protein kinase 3 (MPK3), and pathogenesis-related gene 1 (PR1 and PR5) was due to induc-
tion by LMWC and HMWC. LMWC has tremendous penetration power in the epidermal
cell wall, therefore induction is an appropriate defense response [205]. Recently, it has been
shown that chitosan–silica nanocomposite polymers significantly reduce the decay of grape
berries [214]. Chitosan edible coating on blackberries significantly inhibited the growth of
Mucor racemosus [215]. The inhibitory efficiency of chitosan against B. cinerea, A. niger, and
R. stolonifer was observed in grapes [216] and strawberries [217]. De Oliveira et al. (2014)
reported that chitosan inhibits spore germination, radial growth, and germ tube elongation
and causes morphological changes in spores and hyphae of B. cinerea, P. expansum, and
R. stolonifer in strawberries and grapes [218,219]. Another defense response of grapes



Horticulturae 2023, 9, 1099 10 of 23

was with the synthesis of organic metabolites, such as catechin, epigallocatechin gallate,
quercetin, myristin, or resveratrol against B. cinerea [216]. Furthermore, chitosan-based
edible coatings are used to stimulate the hormones JA and SA and their derivatives [220].
The resistance against B. cinerea depends on the function of chitosan in inducing JA and
modulating oxidative stress [221]. Simultaneous use of chitosan and propolis inhibited the
growth of mycelium of C. gloeosporioides in vitro and reduced the severity of anthracnose
disease in vivo [222]. Studies show that chitosan causes the biosynthesis of arginine vaso-
pressin (AVP), which protects the fruit of avocado against C. gloeosporioides [223]. Chitosan
induces defense genes through the up-regulation of PAL and down-regulation of lipoxyge-
nase (LOX) genes and it helps to control anthracnose by increasing the epicatechin content
of exocarp [224].

Some natural components have been used to formulate edible coatings. Natural gums
can induce defense reactions and reduce plant diseases. Gum arabic increased PPO activity
in strawberries [225], and peach gum increased PPO, POD, PAL, and chitinase activity in
blueberries [226]. Propolis extract significantly reduced the postharvest microbial decay
of blueberries [227]. The application of propolis extract in an edible gelatin coating on
raspberries had an inhibitory effect on B. cinerea and P. digitatum strains [228]. The traga-
canth gum coating preserves the sensory and quality properties of apple fruit by reducing
the microbial load [229]. Corn starch with papaya leaf extract significantly extended the
shelf life and decreased the fruit spoilage percentage [230]. The incorporation of antioxi-
dant, antifungal, and antimicrobial additives in bioactive bio-packaging is common [231].
Chitosan–polylactic acid films containing Melaleuca alternifolia essential oil improved
the flexibility and elongation at break of the film and controlled postharvest diseases in
mango [232]. Increasing the concentration of cinnamaldehyde in chitosan-graph-based
edible films, in addition to improving the mechanical properties of elastic modulus, tensile
strength, and elongation at break, had antifungal properties against P. italicum and Rhizopus
stolonifera [233]. The hydroxyl group in the EO chain replaces the internal hydrogen bonds
between the polymers by forming hydrogen bonds and leads to an increase in the free
spaces between the molecules, thus reducing the stiffness and increasing the flexibility
of the film [234]. The reaction between essential oil compounds and the cell membrane
of microorganisms results in antimicrobial properties [235]. The bioactive film based on
chitosan and gum arabic with the addition of cinnamon essential oil created an entangled
structure and the water barrier properties increased in addition to the antioxidant poten-
tial [236]. Pectin beeswax coating containing eugenol is a viable method to maintain the
quality of citrus [237]. Although essential oils enhance antimicrobial properties, they may
lead to low water-solubility and offensive odors from the edible coatings [238]. Therefore,
the effectiveness of edible coatings was studied as a biological control strategy [239], and
simultaneous use of edible coatings and probiotics was investigated for their antifungal
activity [240]. As a result, wax-based edible coatings with B. subtilis as a biocontrol agent
were developed [241]. These coatings increase resistance to R. stolonifer by producing
biofilms, antibiotics, or siderophores and maintain strawberry quality [241]. Lactic acid
bacteria (LAB) incorporated into edible coatings by producing hydrogen peroxide, organic
acids, fatty acids, or cyclic dipeptides reduced the fungal rot of grapes [242]. Similarly,
the probiotic bacterium L. plantarum incorporated into edible coatings reduces fungal rot
caused by B. cinerea of grapes [243]. A combination of candellila wax and the probiotic
bacterium B. subtilis completely inhibited the fungal rot caused by R. stolonifera in straw-
berries [241]. Simultaneous use of edible coatings based on alginate/gelatin and inulin
with Lacticaseibacillus rhamnosus bacteria reduced the decay of blueberries and strawber-
ries [244,245]. Additives such as plasticizers or stabilizers are used to modify mechanical
properties, ensure flexibility, and reduce the brittleness, and uniformity of the coating
solution [201]. Hydrophilic plasticizers, such as glycerol promote elasticity and perme-
ability in films, and sorbitol increases the percentage elongation of edible films [246]. To
improve wettability and homogeneity of coatings certain emulsifiers or surfactants are
added (oleic acid, tween 20 and 80) that significantly reduce the surface tension [247].
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The simultaneous application of plasticizers and surfactants has better results in terms of
wettability and permeability [248]. To overcome the side effects of the additives mentioned
above, composite coatings (combination of hydrocolloids, lipids, acylglycerols, and waxes)
are applied. In this way, lipids create a water barrier and hydrocolloids a respiratory gas
barrier [249]. The composite film composed of pectin, sodium alginate, and xanthan gum
had excellent tensile strength and minimized water vapor transmission [250] (Figure 2).
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2.6. Essential Oils (EOs)

Applying EOs is an eco-friendly and sustainable method for postharvest disease
management [251]. The function of EOS against postharvest fungi happens at the level
of the cell membrane (disruption of the cell membrane integrity) or at the level of cell
metabolism (dysfunction of mitochondria, vacuole, and inhibition of efflux pumps) [252]
EOs often have a complex composition containing terpenes (monoterpenes, sesquiterpenes,
diterpenes, norterpenes), phenylpropanoids, and sulfur and nitrogen compounds [253].
The synergistic effects of the constituents of EOs [254] reduce the possibility of pathogen
survival or resistance [255]. It seems the presence of monoterpenes (hydrocarbon and oxy-
genated monoterpene) and sesquiterpenes (hydrocarbon, oxygenated sesquiterpenes) in
EOs, is thought to produce antioxidant and antibacterial properties [256]. In fact, molecules
with a phenolic structure, for example, thymol and carvacrol, or aldehydes, such as p-
anisaldehyde and ketones, significantly inhibit pathogen growth [257]. Pomegranate peel
phenolic extracts stimulate expression of PAL, chitinase, chalcone synthase (CHS), and
mitogen-activated protein kinase kinase (MAPKK), which contribute to the activation of
plant defenses for response to reactive oxygen species (ROS) [258] and therefore inhibits
the germination of P. italicum and P. digitatum conidia [258]. Applying EOs to manage
mango anthracnose showed that clove and thyme oils inhibited conidia germination and
mycelia growth [259]. An assay growth inhibition of fungal strains and Escherichia coli
showed that the inhibitory activity of cinnamon and clove oils was due to the bioactive com-
pounds of cinnamaldehyde and eugenol, respectively [260]. Thymol fumigation reduced
anthracnose in avocados [261]. Thymol fumigation increased the activity of chitinase and
β-1,3-glucanase, which can hydrolyze fungal cell wall polymers and activate plant defense
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systems [262]. Thymol inhibited citrus blue mold [263] and in addition to direct antifungal
effects, it caused a rapid accumulation of hydrogen peroxide, leading to increased activity
of defense enzymes such as β-1,3-glucanase, chitinase, PAL, POD, PPO, and LOX [263].
Thymol inhibits pomegranate fruit rot by disrupting the function of cell-wall-degrading
enzyme fungi such as cellulase and pectinase [264]. Studies have proven the effectiveness of
carvacrol against Alternaria tomatophila, Podosphaera xanthii, and Xanthomonas perforans [265]
as well as eugenol and thymol against B. cinerea [265,266]. Chemical structures with iso-
merization of the double bond or nitro group on the aromatic ring were associated with the
antifungal activity of phenylpropanoids derived from the compounds [266]. The structure
of EOs determines their hydrophobicity and allows them to pass through cell walls and
membranes, resulting in cell death or inhibiting sporulation and germination of fungi [252].
Studies have shown that hydrophobic compounds interact with ergosterol, a vital molecule
that maintains cell integrity, viability, function, and growth [267]. Therefore, clove and
thyme oils effectively inhibited ergosterol synthesis [267,268]. Changing cell membrane
fluidity and permeability leads to ion leakage, proton pump disorder, and reduces mem-
brane potential. Additionally, interactions of phenolic compounds and membrane proteins
cause them to precipitate and leads to the leakage of intracellular constituents [269,270].
EOs inhibit certain enzymes such as mitochondrial ATP synthase, malate dehydrogenase,
and succinate dehydrogenase, while reducing energy metabolism, eventually exerting their
antifungal activity by mitochondrial dysfunction [271] (Figure 3).
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3. Conclusions and Future Prospects

For pathogen control strategies to become generally recognized as safe (GRAS) and ac-
ceptable to the public, they must be cost-effective and sustainable. Concurrently, they must
be compatible with the environment and have a low impact on the profile of nutritional
and organoleptic compounds of products. Despite the careful selection of antagonists for
disease control, biological control often raises safety concerns. Therefore, it is essential to
have public knowledge of the advantages of using these techniques. The lack of sufficient
information about the potential of biological control agents in orchards may be due to the
lack of pre-harvest application information and the facts on the necessity of resistance of



Horticulturae 2023, 9, 1099 13 of 23

biological control agents to radiation, extreme temperatures, water stress, nutrient limi-
tation, and climate change. Accordingly, applied research is needed to identify resistant
antagonists and overcome the barriers to the commercialization of biocontrol agents and
promote sustainable agriculture. Biosensor technology must be evaluated at all stages
of the production chain, transportation, and storage to ensure its effectiveness. Since the
role of plant growth regulators in inhibiting postharvest decay and their relationship with
each other is unclear, a detailed investigation is necessary with the goal of identifying the
mechanisms involved in this process. The application of edible coatings containing active
substances has been developed to control pathogens; however, other variables should be
considered such as interference with sensory characteristics. Although plant extracts show
potential for pathogenic agent control, there is a principal limitation in the availability and
commercialization or formulation. In addition, the effects on changing nutrient compounds
and organoleptic properties were discussed here. Future studies should not only have
good agricultural practices, proper facilities, and controlled storage conditions, but also
focus on the application of new and eco-friendly biological controls, nanomaterials, EOs,
PGRs and their combinations which are essential to minimize postharvest diseases of fruits
and vegetables.
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