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Abstract: Nutrient supplementations are often added to aquaponic systems to optimize plant pro-
duction, and black soldier fly larvae frass is a promising organic fertilizer. However, the mineral
composition of the frass is substantially influenced by the initial substrate. In an 8-week study, sweet-
potato slips were cultured at commercial stocking densities in an aquaponic system which received
weekly additions of either BSFL frass made from high-nitrogen expired fish diets or low-nitrogen
fruits/vegetables. The sweetpotato slips (≥8 nodes) were harvested weekly. Despite differences in
the mineral composition between the frass types, the water quality as well as slip production/sugar
content were unaffected by frass type. The results indicate that a wide array of substrates may
be suitable for producing black soldier fly larvae frass as a fertilizer in aquaponic systems. Lastly,
aquaponics is a viable system to commercially produce sweetpotato slips.

Keywords: sweetpotato slips; insect frass; black soldier fly larvae; organic fertilizer

1. Introduction

Sweetpotatoes (Ipomea batatas) are the sixth-most produced crop in the world and
are increasingly being recognized as a ‘super food’ due to their high content of health-
promoting carotenoids, vitamins, and minerals [1,2]. The storage roots are grown in soil
and while the roots can be used again as planting material, there is a point when this
practice is no longer viable due to the accumulation of viruses and mutations that limit
their production [3]. In response, virus-indexed planting material, known as ‘slips’, are
produced via apical meristem culture and are then vegetatively multiplied [4]. These
first-generation slips are often cultured in greenhouses in order to accelerate their growth
and thus allow a longer growing season for their later storage root production. Sweetpotato
farmers rely on obtaining a sufficient amount of slips and thus, sweetpotato slip production
is itself an industry. Nevertheless, shortages are still common, and it has been suggested
that the nutritional requirements of sweetpotato slips are not fully known and further
research on the most appropriate fertilizer is an area that could be improved to optimize
production [5,6].

One promising method to grow slips under controlled conditions is with aquaponics,
which is the symbiotic fusion of aquaculture with hydroponics [7]. In aquaponics, the
waste excreted from the fish acts as nutrients for plants to enhance sustainability and
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profitability due to the production of two marketable food items. Recently, it was shown
that sweetpotato slips grown in an aquaponic system led to a five-fold and thousand-fold
increase in the amount of slips and total weight, respectively, compared to those grown in
soil [8]. The constant supply of water and nutrients, particularly dissolved nitrogen, were
suggested as the contributors to this result. However, it is common practice to supplement
additional minerals, most notably iron (Fe), calcium (Ca), and potassium (K), to the system
to enhance plant production. Aquaponic supplements are often added in synthetic forms,
such as potash, rock phosphate, Epsom salt (magnesium sulfate), and CalMag (calcium
magnesium), but farmers interested in organic farming could be interested in an organic
fertilizer that contains a variety of essential nutrients.

A by-product of insect farming is ‘frass’, which is the mineral-rich excrement of
insects [9]. In particular, BSFL frass is relatively high in essential minerals compared to
the frass of other edible insect species [10], while the accumulated chitin in the frass may
also act as a plant prebiotic [11]. The use of BSFL frass on terrestrial plants has, in some
cases, exceeded production compared to synthetic fertilizers [10,12,13]. In an aquaponic
context, adding BSFL frass tea enhanced the sugar content in sweet banana peppers and
the manganese content in sweetpotato slips grown aquaponically but had no influence on
the overall production [14]. However, the growth of collard greens significantly increased
when higher amounts of BSFL frass were added in an aquaponic system [15]. While the
amount of BSFL frass additions likely plays a role in plant growth, the type of the initial
substrate used to produce the frass may also be a factor. This is because the initial substrate
greatly influences the mineral composition of the BSFL frass [16]. For example, the use
of vegetable waste led to significantly higher phosphorus and potassium content in BSFL
frass compared to either fruit waste or starches [17].

Nile tilapia (Oreochromis niloticus) is a tropical cichlid native to the Middle East (Jordan,
Egypt, and Israel) and parts of Africa and is the third-most cultured fish in the world [18].
The fish has many highly desirable culture traits which include rapid growth rate, excel-
lent flesh taste and quality, resistance to numerous diseases, ability to reproduce easily
in captivity, possession of dietary requirements on the lower end of the food chain (her-
bivorous/omnivorous), and the ability to tolerate varied environmental and production
conditions [19]. As Nile tilapia are a popular choice for use in aquaponic systems, growth
and survival of the fish can serve as a benchmark when conducting aquaponic research.

The aim of this study was to compare the growth and mineral composition of sweet-
potato slips under commercial stocking conditions in an aquaponic system receiving supple-
mentations of BSFL frass produced with expired fish diets (EFD) or from fruits/vegetables
(FV). It was hypothesized that the different frass types would have a different elemental
composition and thus additions of these to an aquaponic system would influence the
production and/or composition of the sweetpotato slips.

2. Materials and Methods
2.1. Source of Plants, Fish, and BSFL Frass

Virus-indexed sweetpotato slips were produced and provided by the Agriculture
Department at the University of Arkansas at Pine Bluff (UAPB), which had at least 7 nodes.
The all-male tilapia used in this study were purchased from AZGardens and upon arriving
at UAPB, these were kept in a 1000 L acclimation tank. The fish were fed once daily with a
floating commercial pellet (32% protein) designed for tilapia. The BSFL frass were produced
in the lab according to Fischer et al. [20]. Briefly, the eggs of BSFL were placed on top of
spoiled fish feeds designed for catfish (Rangen; 32% protein) or a combination of fruits
(orange peels, banana peels, apple cores, and strawberries) and vegetables (sweetpotato and
peas). The approximate composition of the SF and FV was measured using the standard
Association of Official Analytical Chemists [21] methods and results are presented in Table 1.
Hereafter, the frass made from spoiled feeds or fruits/vegetables will be referred to as SF
frass and FV frass, respectively.
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Table 1. Approximate composition (% dry matter) of expired fish diets (EFD) and fruit/vegetables
(FV) that were provided to the black soldier fly larvae.

EFD FV

Moisture 5.23 85.95
Crude protein 32.13 9.32

Crude lipid 8.47 3.28
Crude ash 7.64 14.52

Crude fiber 4.31 9.27

The BSFL converted these into frass, which took approximately three weeks. The
frass was then dried in a forced air oven (Despatch; LBB Series 2–12-3, Illinois Tool Works,
Inc., Minneapolis, MN, USA) at 100 ◦C for two days and then ground into a fine powder
with a hammer mill. Frass nitrogen was measured using a Leco N analyzer while the
mineral content was measured at the Fayetteville Agricultural Diagnostic Laboratory at the
University of Arkansas with inductively coupled plasma (ICP) analysis. The results are
shown in Table 2.

Table 2. Nutrient composition of black soldier fly larvae frass produced with expired fish diets (EFD
frass) or fruits/vegetable (FV frass).

% mg/kg

N P K Ca Mg S Na Fe Mn Zn Cu B

EFD frass 4.64 2.54 2.95 5.28 0.44 0.75 13,561 463 87 200 30.7 23
FV frass 3.37 1.16 4.12 6.38 0.38 0.50 11,815 295 63 104 22.2 33

2.2. Aquaponic Systems and Experimental Design

There were a total of six identical aquaponic systems (5110 L capacity) that are de-
scribed in detail in Romano et al. [14]. A total of 40 tilapia (initial weight of 45.7 g) were
added into each aquaponic system and fed twice daily to apparent satiation with commer-
cial floating feeds (Rangen; 32% protein). Each tank received gentle aeration with an air
stone and the tanks were covered with netting to provide shade (to minimize algae growth)
and prevent any escapees. The amount of food provided to each system was recorded.

After one week of feeding the fish, a total of 200 sweetpotato slips were planted in
each of the aquaponic media beds and each slip was spaced 2.5 cm (or 1 inch) apart from
each other in media bed (145 cm × 75 cm) filled with expanded lava rock. This stocking
density is the same used in commercial settings [5]. After adding the slips, a total of 10 g of
SF frass or FV frass were sprinkled on top of the media bed containing the slips. This was
performed to potentially encourage frass mineralization but also because, based on past
experience, adding frass to the sump encouraged filamentous algae growth. Every week,
waste that settled in the sump was siphoned out followed by adding 5 mL of iron chelate
(Iron-gluconate; SEACHEM Flourish, Root 98 Warehouse, Lakeland, Florida). No buffers
were added to adjust pH.

2.3. Water Quality Analysis

The ammonia-N, nitrite-N, and nitrate-N levels were measured with an API master test
kit once a week. The water temperature, dissolved oxygen and pH were measured with a
digital multimeter probe (YSI Professional Plus). On week 2, 4, 6, and 8, a water sample was
collected from the sump for later mineral analysis and stored at −20 ◦C. The minerals were
measured with a flame atomic absorption spectrophotometer (AAS, iCE 3000 series, Thermo
Scientific, Santa Clara, CA, USA) with deuterium lamp background correction. Calibrations
were made using single element standard solutions (CPI International, Santa Rosa, CA,
USA). However, for phosphorus (P), the persulfate digestion method (HACH method 8190)
was used because the concentrations were too low for the AAS.
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2.4. Aquaponic Sampling

By week 2 of adding the cuttings, the majority grew to be considered a slip (≥6 nodes)
and were harvested to allow at least 2 nodes remaining in the media bed. The total biomass
of all the slips were weighed among the treatments while 40 were used to measure the total
length, number of nodes, and stem diameter. These were then placed in a zip lock plastic
bag and stored at −20 ◦C for later mineral and sugar analysis. After 8 weeks, the slips were
harvested 7 times in total and all the remaining slips were counted to determine the overall
survival. The tilapia were also harvested after 8 weeks, counted, and were individually
measured for weight and length using a digital scale and metric ruler, respectively.

2.5. Mineral and Sugar Analysis

For mineral analysis, the sweetpotato leaves from each replicate were oven-dried at
60 ◦C for 24 h then digested in a heat block (Environmental Express, Charleston, SC, USA) at
115 ◦C for 30 min in 4.0 mL trace metal-grade HNO3 (69%; Sigma-Aldrich). After digestion,
0.1 mL of H2O2 (30%) was added and then 40 mL of Milli-Q water was added. Samples
were measured for iron, calcium, zinc, magnesium, and manganese using a flame atomic
absorption spectrophotometer (AAS) (iCE 3000 series, Thermo Scientific, Santa Clara, CA,
USA), while phosphorus was measured using the persulfate digestion method (HACH
method 8190) as described above. Each replicate sample was measured in triplicate.

For sugar analysis, total sugar was estimated from 100 mg of sweetpotato leaves from
each replicate that were ground in liquid nitrogen using a mortar and pestle. Ground
samples were transferred to 1 mL 100% acetone and kept overnight at 4 ◦C. Samples were
centrifuged and the residue was repeatedly washed with hot 80% ethanol to remove all
traces of soluble sugars. This filtrate was used for the determination of soluble sugars
while the residue/pellet was used for the determination of the insoluble sugar content. To
the residue, 2 mL of 0.2 N H2SO4 was added, followed by heating at 100 ◦C in a water
bath for 30 min, which was then centrifuged and the supernatant was collected. Anthrone
reagent (150 µL) was added to each microplate well containing 50 mL of glucose standard
solutions, blanks, and samples (soluble and insoluble sugars). Plates were then placed for
10 min at 4 ◦C and then incubated for 20 min at 100 ◦C. A cooling step for 20 min at room
temperature was completed before reading absorbance at 620 nm triplicate in a microplate
reader (PowerWave XS, BioTek Instruments, Winooski, VT, USA). A standard curve was
obtained with different concentrations of glucose. Each replicate sample was measured
in triplicate.

2.6. Statistical Analysis

Sweetpotato slip composition and performance in response to frass type (SF vs. FV)
and harvest period (first versus final composition, or slip performance among harvests 1–7)
were analyzed by factorial mixed model (MIXED) analysis of variance (SAS version 9.4,
SAS Institute, Inc., Cary, NC, USA). Aquaponic system water quality and tilapia growth
performance in response to frass type were analyzed by one-way mixed model analysis of
variance. All response values were natural log-transformed prior to analyses. Differences
among response means were considered significant at p ≤ 0.05.

3. Results
3.1. Frass Characteristics

The approximate compositions of the two initial substrates and subsequent frass
are presented in Table 1. The frass made from the expired fish diet (EFD) contained
30.79% protein, 7.69% lipid, and 24.83% ash. This is in contrast to the frass made from
fruits/vegetables (FV) which contained 22.73% protein, 4.03% lipid, and 31.16% ash.

The analyzed mineral compositions of each BSFL frass is shown in Table 2. There were
differences in the mineral compositions for each frass with FV frass having higher levels of
N, P, Mg, S, Na, Fe, Mn, Zn, and Cu compared to EFD frass, while EFD frass had higher
levels of K, Ca, and B than FV frass.
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3.2. Water Quality and Chemistry

The addition of the two types of BSFL frass to media beds led to only one differ-
ence in measured water quality parameters and all were within acceptable limits for fish.
The aquaponic system water quality was optimum for tilapia culture and did not differ
markedly in response to frass type (Table 3). Averages during the study were as follows:
temperature, 27.4 ◦C; dissolved oxygen, 5.31 mg/L; hardness, 47.4 mg/L; total ammonia
nitrogen (TAN), 0.33 mg/L; nitrite, 0.05 mg/L; nitrate, 42.08 mg/L. Only the pH was
statistically higher in beds receiving the FV frass (7.54) compared to the SF frass (7.49),
which was not biologically significant.

Table 3. Mean (±SE) water quality parameters in an aquaponic system receiving frass by black soldier
fly (Hermetia illucens) larvae fed expired fish feeds (EFD) or fruits/vegetables (FV) over 8 weeks.

Parameter EFD FV

Temperature (◦C) 27.3 ± 0.05 27.5 ± 0.09
Dissolved oxygen (mg/L) 5.14 ± 0.33 5.47 ± 0.01

pH 7.49 ± 0.01 b 7.54 ± 0.01 a

Hardness (mg/L) 45.5 ± 0.14 49.3 ± 0.27
TAN 1 (mg/L) 0.34 ± 0.00 0.31 ± 0.02
Nitrite (mg/L) 0.08 ± 0.04 0.03 ± 0.00
Nitrate (mg/L) 42.08 ± 0.41 42.08 ± 0.12

1 Total ammonia nitrogen (TAN). Different superscripted letters indicate significant difference (p < 0.05).

3.3. Fish Growth

The tilapia growth performance was typical for this species and initial size grown in
optimum conditions, and there were no significant differences between frass types (Table 4).
The averages for length (cm), final weight (g), weight gain (%), specific growth rate (SGR;
%/day), feed intake (g diet/fish), and feed conversion ratio (FCR) were: 21.09 cm, 193.1 g,
147.35 g, 322.2%, 2.95%/day, 162.15 g diet/fish, and 1.11, respectively.

Table 4. Growth performance of Nile tilapia (n = 3) in an aquaponics system receiving frass by
black soldier fly (Hermetia illucens) larvae fed expired fish feeds (EFD) or fruits/vegetables (FV) after
8 weeks.

Response EFD FV

Length (cm) 21.23 ± 0.19 20.95 ± 0.29
Final weight (g) 197.3 ± 4.6 188.9 ± 8.0

Weight gain (%) 1 332.6 ± 13.8 311.8 ± 13.4
SGR 2 3.00 ± 0.56 2.89 ± 0.42

Feed intake (g/fish) 164.6 ± 5.8 159.7 ± 2.3
FCR 3 1.09 ± 0.06 1.12 ± 0.04

1 Percent gain from initial weight. 2 Specific growth rate (SGR) = (ln final weight—ln initial weight)/time. 3 Feed
conversion ratio (FCR) = g dry feed fed/g gained.

3.4. Sweetpotato Slip Production and Mineral Composition

The sweetpotato slip production and quality were unaffected by the frass type but
differed among partial harvests (Table 5). Generally, the slip diameter decreased, whereas
the node length and number of nodes per slips increased between the initial (#1) and final
harvests (#7). The slip length and weight differed by harvest with no discernible pattern.

The sweetpotato slip mineral and sugar composition was unaffected by the frass type
but differed between the initial and final harvests (Table 6). The concentrations of Fe,
Mn, and Zn increased at the final harvest from the initial content, whereas the Ca and Na
concentrations decreased at the final harvest. The concentrations of Mg, P, and K in the
slips were unchanged between the initial and final harvests and were unaffected by frass
type. The soluble and insoluble sugars decreased significantly by three-fold and six-fold,
respectively, from the initial concentrations.
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Table 5. Mean (±SE) production parameters of sweetpotato slips (n = 3) grown in an aquaponics
system with Nile tilapia for 8 weeks when black soldier fly (Hermetia illucens) larvae frass was
produced from expired fish feeds (EFD) or fruits/vegetables (F/V). Main effects of least squares
means with different letters are significantly different (p < 0.05).

Treatments Response Variables

Frass Harvest Length (cm) Weight
(g) Diameter (mm) Nodes/Slip Nodes/Length

EFD 1 31.15 912.7 4.37 7.69 0.263
2 27.75 259.7 3.21 8.88 0.343
3 50.18 1029.7 3.10 9.35 0.213
4 29.52 381.7 3.06 8.69 0.333
5 39.89 644.6 2.97 10.33 0.300
6 22.23 205.1 2.90 8.78 0.420
7 31.03 633.3 2.88 11.14 0.397

FV 1 30.28 758.7 4.24 7.57 0.260
2 31.81 486.6 3.30 8.88 0.310
3 48.03 1102.9 3.11 9.49 0.213
4 30.30 413.7 3.24 8.74 0.310
5 42.85 649.9 2.98 10.08 0.273
6 29.68 299.3 2.89 9.50 0.367
7 31.41 828.5 2.95 11.59 0.393

Pooled SE 4.44 138.7 0.12 0.45 0.026

Main effects of means

EFD 33.11 581.0 3.21 9.27 0.324
FV 34.91 648.5 3.24 9.40 0.304

1 30.72 bc 835.7 a 4.31 a 7.63 d 0.262 bc

2 29.78 c 373.2 c 3.25 b 8.88 bc 0.327 ab

3 49.11 a 1066.3 a 3.10 bc 9.40 bc 0.213 c

4 29.91 c 397.7 bc 3.15 bc 8.72 cd 0.322 b

5 41.37 ab 647.3 ab 2.97 bc 10.20 a 0.287 b

6 25.95 c 252.2 c 2.89 c 9.14 bc 0.393 a

7 31.22 bc 730.9 ab 2.91 c 11.36 a 0.395 a

ANOVA Source, Pr > F

Frass 0.638 0.694 0.792 0.777 0.463
Harvest <0.001 <0.001 <0.001 <0.001 <0.001
F × H 0.818 0.922 0.881 0.907 0.838

Table 6. Mean (±SE) mineral (mg/g dry weight) and sugar composition (mg/g dry weight) of sweet-
potato slips (n = 3) grown in an aquaponics system with Nile tilapia for 8 weeks when black soldier
fly (Hermetia illucens) larvae frass was produced from expired fish feeds (EFD) or fruits/vegetables
(F/V). Main effects of least squares means with different letters are significantly different (p < 0.05).

Treatments Macronutrients (mg/g) Micronutrients (mg/g) Sugar (mg/g)

Harvest Frass P K Ca Mg Na Fe Mn Zn Soluble Insoluble

First EFD 9.47 109.24 7.49 10.94 0.071 0.121 0.137 0.071 30.08 26.20
FV 9.50 109.80 7.47 11.17 0.090 0.118 0.134 0.090 37.63 35.29

Last EFD 9.79 92.73 6.71 10.78 0.175 0.148 1.500 0.175 8.83 5.55
FV 9.17 90.95 6.89 10.46 0.187 0.142 1.499 0.187 13.55 6.01

Pooled SE 0.385 8.36 0.165 0.21 0.047 0.006 0.014 0.015 4.25 4.83

First 9.48 109.52 7.48 a 11.05 0.080 b 0.120 b 0.135 b 0.080 b 33.86 a 30.75 a

Last 9.48 91.84 6.80 b 10.62 0.181 a 0.145 a 1.499 a 0.181 a 11.19 b 5.78 b

EFD 9.63 100.99 7.10 10.86 0.123 0.134 0.819 0.123 49.46 15.87
FV 9.33 100.38 7.18 10.82 0.138 0.130 0.816 0.138 25.59 20.65
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Table 6. Cont.

Treatments Macronutrients (mg/g) Micronutrients (mg/g) Sugar (mg/g)

Harvest Frass P K Ca Mg Na Fe Mn Zn Soluble Insoluble

ANOVA Source, Pr > F

Time 0.934 0.062 0.003 0.071 0.035 0.004 <0.001 <0.001 <0.001 <0.001
Frass 0.456 0.456 0.646 0.837 0.165 0.528 0.860 0.324 0.096 0.422
T X F 0.427 0.752 0.558 0.893 0.537 0.826 0.893 0.774 0.757 0.506

4. Discussion

One of the criticisms of aquaponics is that the production of plants is often limited in
scale compared to terrestrial farming, where hundreds or thousands of acres of crops can be
grown outside and subsequently harvested with tractors and other heavy machinery. Thus,
aquaponics is often viewed as being more suitable for growing niche crops and/or farming
in an urban environment where space is limited [7]. However, in the case of virus-indexed
sweetpotato slips, these are often cultivated anyway under controlled environmental
conditions, like greenhouses, to optimize growth before being transplanted outdoors in
the soil [5]. Consequently, obtaining a sufficient amount of slips is a bottleneck in the
sweetpotato industry and any method to optimize slip growth would help extend the
season for storage root production in soil [4].

Aquaponics appears to be a viable method for sweetpotato slip production in which it
has been previously shown that sweetpotato slips grew substantially faster in aquaponic
conditions compared to those grown in soil [8]. It is known that an abundance and
consistent supply of water and nitrogen in aquaponic systems can promote leafy growth
in a variety of plants [7], and inhibit storage root production in sweetpotatoes [6,22].
Indeed, under aquaponic conditions, storage root growth was not observed and thus it was
suggested that more energy could be diverted to leafy growth [14]. However, the stocking
density used in Romano et al. [14] was low (three cuttings in a 145 cm × 75 cm plant culture
bed) and not representative of commercial conditions. Thus, a higher stocking density of
cuttings was adopted in this study in which a total of 200 cuttings were planted in each of
the media beds (145 cm × 75 cm).

After the cuttings were planted in this study, it took about a week before these began
to discernibly start growing, which indicates a period of acclimation to the new culture
conditions. By the second week, the cuttings were sufficiently long enough to be considered
slips because they had at least six nodes; thus, the slips were subsequently harvested by
week two of this study. Each week thereafter the slips were harvested another six times (for
a total of seven harvests) until the study concluded when the fall season was approaching.
Typically, sweetpotato slips grown in soil are harvested between 10 to 14 days to provide a
total of nine harvests in a year, first starting in April [6]. In this study, harvesting was up
to two-fold faster where it could be possible to harvest up to 18 or more times before the
season ends. Additionally, the number of nodes on each slip gradually increased with each
harvest, which is considered desirable because more nodes means more planting material
for storage root production in the soil.

While nitrogen is generally abundant in aquaponics systems, the most common
limiting nutrients include K, Ca, and Fe and these are often added in the forms of potassium
bicarbonate, CalMag, and iron chelate, respectively [14,20,23]. However, there are other
essential macro- and micro-nutrients that may be at insufficient levels for the optimal
growth and well-being of plants in aquaponic systems. In this common scenario, adding
a mineral-rich fertilizer consisting of various essential minerals may be effective. It was
previously shown that directly adding BSFL frass tea to the water of an aquaponic system
had no effect on sweetpotato slip production [14], but when added in a quantity more
than two-fold higher this significantly increased collard green growth [15]. More recently,
dietary inclusions of BSFL frass at 10% increased the growth of catfish (Ictalurus punctatus)
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as well as stevia (Stevia rebaudiana), and lavender (Lavaridula angustifolia) in an aquaponic
system [24].

While there appears to be strong indications that adding BSFL frass can provide
benefits to aquaponic plants, it is known that the composition of BSFL frass greatly depends
on the initial substrate provided. However, to date, the efficacy of BSFL frass made from
different substrates has not been compared in aquaponics. The two different types of BSFL
frass that were compared in this study were produced with high-nitrogen expired fish diets
(EFD) while the other with low-nitrogen fruits/vegetables (FV). The EFD frass did indeed
have a higher nitrogen content, but the difference was not as remarkable as the difference
between the initial substrates. In terms of the limiting nutrients in aquaponic systems, the
EFD frass had less K and Ca, but more Fe than the FV frass. Despite the different mineral
composition of the BSFL frass, additions of these different frass types led to no difference in
sweetpotato slip production. It could be argued that the amounts added were insufficient
to make a difference. While this could be a factor, it is perhaps worthy to note that 10 g of
BSFL was added weekly in this study compared to 2.5 g each week which was sufficient to
enhance collard green growth in the same system with similar stocking densities of fish [15].
Even though higher amounts were added in this study, the mean ammonia levels did not
exceed 0.5 mg/L, while the other water quality parameters were similar.

Among the tested minerals in the water, P was significantly higher in the EFD treat-
ment at week 8. It is tempting to attribute the higher P to the EFD frass having an over
two-fold higher P content. However, this would not explain the K water content being
significantly lower in both the water and slips from the FV frass treatment at week 6,
because the K content was higher in the FV frass. Moreover, the Fe content of the slips was
significantly higher in FV frass treatment, despite the FV frass having almost two-fold less
Fe. Nevertheless, Fe as well as Mn were consistently at undetectable levels in the water.
This was despite the weekly additions of iron chelate (along with the BSFL frass), indicating
that Fe was being absorbed by the slips at a faster rate than the inputs of this nutrient.
Indeed, this seems to be supported by the increased Fe and Mn (as well as Zn) content of
the sweetpotato slips compared to their initial values. It is conceivable that sweetpotato slip
production could be further enhanced by ensuring Fe is not limiting and perhaps should
be monitored more closely. It is important to point out, however, that chlorosis, which is
yellowing of the leaves and a symptom of Fe deficiency, was not observed in this study.

It has been demonstrated that fish grown in an aquaponic system have normal growth
and survival compared to traditional production methods. Some of the species success-
fully grown aquaponically include largemouth bass (Micropterus salmoides) [20], channel
catfish (Ictalurus punctatus) [24], Nile tilapia (Oreochromis niloticus) [25], rainbow trout (On-
corhynchus mykiss) [26,27], goldfish (Carassius auratus) [28], and white shrimp (Litopenaeus
vannamei) [29]. In this study, the fish growth was acceptable and similar to the production
parameters in other reports [30–33] and the tilapia growth was not adversely affected by
the frass type.

5. Conclusions

Inclusions of BSFL frass, either directly to the water or in aquafeeds, has been pre-
viously shown to benefit plant production in an aquaponic system. The results of this
study appear to indicate that the initial substrate used to make BSFL frass is not a major
factor in sweetpotato slip production. Considering that the farming of BSFL is expected
to increase in the coming years, this could also increase the availability of BSF frass as an
option to aquaponic farmers, particularly those interested in using an organic fertilizer
rather than traditionally relying on synthetic ones. Finally, the production of sweetpotato
slips at commercially stocking densities appears to be a viable farming method that may
improve slip availability and help extend the duration for storage root production. Further
studies on optimizing the BSFL frass dose and potential ways to enhance the Fe and Mn in
the BSFL frass may further improve plant production.
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