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Abstract: Capsicum is one of the most economically important genera in the Solanaceae family.
Capsicum fruits (peppers) are rich in phytochemicals with high nutritional value and significant
health-promoting characteristics. The phytochemical profile of peppers consists of capsaicinoids,
carotenoids, and phenolics, primarily. Currently, most of the pepper production is carried out under
protected horticulture conditions. The objective of this article was to provide a comprehensive review
on how light characteristics and manipulation by different horticultural technologies can affect the
biosynthesis and accumulation of phytochemicals in Capsicum fruits. The use of shade nets or plastic
covers to reduce light intensity does not seem to yield consistent responses on the phytochemical
profile, as the final profile results from the interaction of several factors. Other factors involved
in the accumulation of phytochemicals include temperature, water availability and plant nutrition.
Exposure of plants to supplemental light with specific wavelengths (using LEDs) seems to result
in a more precise stimulation of specific metabolites. In this article, we examine the effects of light
irradiance and spectrum on the specific phytochemicals of Capsicum fruits.

Keywords: capsaicinoids; carotenoids; irradiance; phenolic compounds; plant secondary metabolites;
spectrum light; solar radiation

1. Introduction

Capsicum is one of the most economically important genera in the Solanaceae family.
This genus encompasses five domesticated species with more than 50,000 cultivars [1]. The
fruits of Capsicum (peppers) are associated with significant health-promoting properties
attributable to their nutritional composition and metabolite contents. These properties in-
clude analgesic, anti-obesity, cardioprotective, pharmacological, neurological, and dietetic,
among others [2]. The specific phytochemicals associated with these properties include
carotenoids (provitamin A), phenolic compounds, and capsaicinoids, primarily [3].

The phytochemical and secondary metabolite profiles of peppers are also a good source
of nutrients and bioactive compounds [4,5]. Secondary metabolites are a large group of
organic compounds with low molecular weight and specific physiological functions. These
metabolites serve as chemical adaptations to stress conditions, or as defensive, protective,
or offensive chemical agents against micro-organisms, insects, and herbivores [6].

The chemical composition of peppers is closely related to genotype, the process
of fruit ripening [3,7], and environmental conditions [8,9]. The environmental factors
that affect the biosynthesis, metabolism, and accumulation of phytochemicals in peppers
include light, temperature, soil-water availability, and plant nutrition [10]. Thus, changes in
environmental conditions can affect the biosynthesis of bioactive compounds in peppers [8].
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Peppers vary in color, shape, and chemical composition [7]. Color properties vary
by genotype and cultivar. Color changes occur during fruit maturation when the plastids
transition from chloroplast to chromoplast in the fruits’ pericarp [3].

Currently, the production of peppers is carried out predominantly under protected hor-
ticulture conditions [11]. In particular, the manipulation of natural light by photo-selective
netting or plastics, and supplemental lighting (artificial light) can be used to reduce heat
and light stress and improve the yield and quality of horticultural crops [12]. These horticul-
tural practices modify the light intensity and spectrum intercepted by the plants and may
also affect the production levels of total phenols, ascorbic acid, and antioxidants due to the
influence of modified light conditions on the metabolic pathways that lead to the formation
of the phytochemicals [13]. Controlled growing conditions in glasshouses impacted the
carotenoid contents in sweet peppers [14]. Thus, light intensity (irradiance) and spectrum
are environmental factors that affect the phytochemical contents of peppers [15].

Even though the pathways for the biosynthesis of the secondary metabolites of peppers
have been described, limited information is currently available on the interaction between
the effects of light on the synthesis and accumulation of bioactive compounds in Capsicum
species. The objective of this review article is to examine how changes in light characteristics
affect the biosynthesis and accumulation of metabolites of Capsicum fruits, and, in turn,
alter the phytochemical profile of peppers.

2. Light Interactions with Capsicum Plants

The growth and productivity of pepper crops are affected by environmental fac-
tors [16]. Among these factors, light is the principal source of energy that drives physiolog-
ical processes, which include: photosynthesis, photomorphogenesis, fruit development,
and maturation [17,18]. Plants interact with light through specific pigments that acquire
light energy, and photoreceptors which are proteins that elicit different responses based
on light conditions [19]. The most important plant photoreceptors reported for pepper
plants include phytochromes, cryptochromes, phototropins, and UV-B-Resistance 8 (UVR8)
photoreceptors (Figure 1) [20]. These photoreceptors have peak absorbance wavelengths
for the induction of the responses.

Currently, most of the horticultural production of peppers is carried out under pro-
tected agriculture conditions [21] primarily by the implementation of photo-selective
shading nets [22], plastics [23], and, in some cases, artificial lighting [9,24] which includes
ultraviolet radiation (UV), fluorescent lamps, and light-emitting diodes (LEDs) [25]. The ac-
tive manipulation of light can improve plant productivity and the quality of peppers [26,27].

The biosynthesis of phytochemicals changes depending on light intensity and spectral
quality. Plants accumulate phenolic compounds and other antioxidants such as carotenoids,
flavonoids, and anthocyanins to protect against damaging high irradiance and UV ra-
diation. Thus, spectral and irradiance manipulation could promote morphological and
physiological responses and influence the biosynthesis, accumulation, and retention of
phytochemicals [28,29]. UV radiation and excessive irradiance produced by different light
sources may cause stress conditions and activate the defense response, changing a variety
of bioactive compounds [25].

Shade nets and plastic covers reduce the light intensity (irradiance) and alter the light
spectra that reach the crops. Reduced light intensity affects the physiological responses
by decreasing photosynthetic rate and promoting an increase in leaf area [12], while
scattering improves the penetration of spectrally modified light into the inner canopy
of the crop [28,30]. Currently, the use of black shade nets is the predominant practice
in the horticultural production of peppers. Black nets reduce light intensity and have a
limited effect on light quality [31,32]. By contrast, colored shading nets selectively filter
the solar radiation and promote specific wavelengths [33]. Colored shading nets could
promote plants’ physiological and morphological responses [34]. Colored shading nets can
selectively change the red to far-red ratios that are detected by the phytochromes, enhance
the radiation available to activate the blue/ultraviolet-A photoreceptors, alter the blue light
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involved in phototropic responses mediated by phototropins, or enhance radiation at other
wavelengths that influence plant response [35].
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Figure 1. Plant photoreceptors (phytochrome, phototropins, cryptochromes, and UV-B-Resistance 
8 (UVR8)) with the corresponding absorbance peaks (wavelengths of the electromagnetic spectrum) 
for each light-sensing photoreceptor protein. The light-responding groups of phytochemicals in 
plants in the specific wavelength ranges are provided on the right. 
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Figure 1. Plant photoreceptors (phytochrome, phototropins, cryptochromes, and UV-B-Resistance 8
(UVR8)) with the corresponding absorbance peaks (wavelengths of the electromagnetic spectrum) for
each light-sensing photoreceptor protein. The light-responding groups of phytochemicals in plants in
the specific wavelength ranges are provided on the right.

The traditional supplemental light sources used for greenhouse and in vitro applica-
tions include fluorescent, metal halide, high-pressure sodium, and incandescent lamps.
These light sources have certain limitations as they produce an impractical mixture of
wavelengths for plant growth [36], and their electricity consumption is high [37]. LEDs
are considered improved light sources for greenhouse production as they can emit specific
wavelengths aimed at increasing crop yield, higher quality yield, manipulation of harvest
dates, and enhanced nutritional value in cultured plants [38]. Currently, these technologies
are preferred for in vitro propagation and indoor plant growth, which are effective for the
stimulation of plant phytochemicals during fruit development and postharvest [39].

3. Effects of Light Characteristics on the Phytochemicals of Capsicum Fruits

The most abundant secondary metabolites in Capsicum fruits include capsaicinoids,
carotenoids, phenolic compounds, flavonoids, and a wide range of volatile compounds.
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The accumulation of phytochemicals in peppers is light-dependent, and the high variability
of these compounds determines the diversity of aroma and flavor of peppers [40].

3.1. Capsaicinoids

Capsaicinoids are secondary metabolites biosynthesized exclusively by the fruits
of Capsicum plants [41]. These metabolites are the bioactive compounds responsible for
the pungent taste of peppers [42]. Capsaicinoids may occur in peppers in a wide range
of contents from ‘Bell peppers’, where they are practically non-existent, to other high-
pungency cultivars such as ‘Naga peppers’ [43]. Capsaicinoids are considered natural
defense mechanisms against herbivores ranging from insects to rodents [1]. Capsaicinoids
also mediate interactions with birds, who act as seed dispersers for wild peppers [44].

In recent years, capsaicinoid research has been influential in the development of
innovative applications in the food and pharmaceutical industries [41] due to their value
as antioxidants (free radical scavengers) [45], anti-arthritic [46], gastroprotective [47,48],
anti-cancer [49], and analgesic agents [50], among others.

The most abundant capsaicinoids in peppers are capsaicin and dihydrocapsaicin [51,52].
Together, these compounds encompass more than 90% of the total capsaicinoid content of
peppers [53]. Nonetheless, at least nine other capsaicinoids including nordihydrocapsaicin,
homodihydrocapsaicin, and homocapsaicin have also been identified [43]. Capsaicinoid
levels are influenced by the ontogenetic development of the peppers. The accumulation of
capsaicinoids starts at the early stages of fruit development, followed by a high peak and a
rapid decline [54].

3.1.1. Biosynthesis of Capsaicinoids

Capsaicinoid biosynthesis is derived from the phenylpropanoid pathway
(Figure 2) [54–56] and occurs after the enzymatic condensation of a molecule of vanil-
lylamine derived from phenylalanine, valine, or leucine to a branched-chain amino acid.
The enzymes whose alleles determine pungency levels in peppers are CaMYB31, pAMT,
CS/AT3/Pun1, and CaKR1 [57]. Capsaicin synthase (CS) is the last enzyme (encoded by
the Pun1 gen) responsible for the condensation between vanillylamine and a fatty acid-
CoA while the aromatic vanillylamine moiety is paired with many acyl groups, mostly
medium-length (from 9 to 11 carbon atoms), giving the immediate reaction of capsaicin
biosynthesis [58,59]. Capsaicinoids differ in their chemical structures, specifically in the
side chain with a variable number of double bonds placed in different positions; the type
of capsaicinoid depends on the products obtained from the different fatty acids in the
dehydration synthesis reaction [55].

Differences in capsaicinoid contents can be attributed to changes in the gene expression
of the phenylpropanoid pathway. This biosynthetic pathway depends on the genotype
and is affected by environmental conditions that include light, temperature, soil-water
availability, and mineral nutrition [36,41]. Light intensity directly affects the biosynthesis
and accumulation of capsaicinoids in peppers. Light exposure has a positive influence
on the expression of the capsaicin synthase gene (CS) that has light-responsive motifs in
its promoter region KAS (keto-acyl ACP synthase) and AMT (aminotransferase), with a
negative effect through the induction of peroxidases that can degrade capsaicin. Currently,
it is not well understood how this balance is controlled and adjusted [54]. The expression of
the CaMYB31, KAS, and pAMT is affected in peppers of the C. annuum genus mainly by light
but also by temperature, mechanical stress, and plant hormones [60]. The promoter of the
Pun1 gene has light-responsive motifs and consensus elements that promote capsaicinoid
biosynthesis [61].
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Figure 2. (A) Capsaicinoid biosynthetic pathway in peppers (Capsicum spp.) via phenylpropanoid
and L-valine Degradation I. The yellow arrow indicates the light signal that regulates transcription
factors at the molecular level. (B) Chemical structure of the most abundant capsaicinoids (pungent)
and capsinoids (non-pungent) molecules of Capsicum fruits. Capsaicinoids and capsinoids differ in
the R group (fatty acids) present.

3.1.2. Effects of Light on Capsaicinoids

In a study on bell pepper production, the optimum light intensity reported to obtain
maximum fruit yield was estimated in the range of 1365 to 1470 µmol·m−2·s−1 [62]. Hor-
ticultural practices that modify irradiance may result in the enhancement or reduction
of capsaicinoid contents (Table 1), depending on the species and the light modification
mechanisms (e.g., color and degree of shading, or quality of light emitted by artificial
illumination) [63].

Capsaicinoid accumulation is affected by the interaction of light intensity with tem-
perature and relative humidity. In high-pungency peppers (C. chinense Jacq.), reduced
light intensity and temperature caused lower capsaicinoid production of 4.82 and 3.49 mg
plant−1 when plants were grown under 50% and 70% shade, respectively [63]. Reduced
capsaicinoid accumulation also occurred at high irradiance levels and high temperatures.
In addition, environments with reduced light intensity (713–783 µmol·m−2·s−1) and higher
relative humidity increased capsaicinoid production [64]. Thus, the authors suggest an
optimum light intensity of 700 to 950 µmol·m−2·s−1 for capsaicinoid production in these
cultivars [63].

Total capsaicinoid contents were significantly affected by the interaction of reduced
light intensity using different color shades and harvest time in C. annuum ‘Star flame’ and
‘Fire flame’ [65]. The capsaicinoid contents of peppers grown under colored shading net
treatments (white, red, and green) were higher than the unshaded treatment. Of those, the
green shade treatment had a considerably higher capsaicinoid content at the first harvest
time. This effect could be related to a higher average temperature (22–28 ◦C) during the
cycle. However, other studies showed that higher average temperature and increased solar
radiation were associated with lower capsaicinoid contents [41].
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Exposure of pepper plants (C. chinense Jacq.) to reduced light intensities using shade
nets increased the contents of secondary metabolites, including capsaicinoids and other
phenolic compounds [63]. Reduced light intensities increased the contents of the phenylala-
nine ammonia-lyase (PAL) enzyme, which plays a vital role in capsaicinoid biosynthesis.
Thus, an increase in the contents of PAL may also cause an increase in capsaicinoids in
peppers [66]. Currently, there is not a full understanding of how capsaicinoid accumulation
relates to the relevant biochemical reactions with precursors and environmental factors [58].

As for supplemental light, pepper fruits accumulated more capsaicinoids in plants
grown in a closed environment under continuous fluorescent illumination
(150–350 µmol·m−2·s−1) and constant temperature (28 ◦C) than pepper fruits grown under
greenhouse conditions during the summer season [67].

Table 1. Effect of light condition treatments on the capsaicinoid content in Capsicum species.

Capsicum spp. Light Treatment Effects on Capsaicinoids
Compared to Control Biosynthetic Effect

C. chinense Jacq. Seven hot
hybrid peppers

Light intensities (1200, 1313,
713, 1112, 774, and

783 µmol·m−2 ·s−1) in
different locations with

shading net with 50% shade

Reduced light intensity
(713–783 µmol·m−2·s−1) and

higher relative humidity
increased capsaicinoid
production in cultivars

Not reported [64]

C. chinense Jacq. ‘Bhut Jolokia’
‘Akanee Pirote’

‘Habanero’

Shading nets with 50%, and
70% shade, and unshaded

as control

‘Bhut Jolokia’ showed the
highest capsaicinoid yield

under 70% shading, ‘Akanee
Pirote’ under 50% shading,

and habanero peppers
showed the lowest

capsaicinoid content under
shading treatments

Levels of phenylalanine
ammonia-lyase (PAL)

increased under low light
intensities [63]

C. annuum
‘Star flame’
‘Fire flame’

Colored shading nets: white,
red, and green with 40%

shade, and unshaded
as control

Capsaicinoid content
increased in color-shading
treatments, specifically in

green treatment in
both cultivars

A high average temperature of
22–28 ◦C may have promoted
capsaicinoid biosynthesis [65]

C. annuum
‘Super hot’

Greenhouse conditions with
LED lighting treatments: blue,
red, and a mixture of blue and
red light, and 12 h of sunlight

as control

Blue LEDs significantly
increased

nordihydrocapsaicin,
capsaicin, dihydrocapsaicin,

homocapsaicin, and
homodihydrocapsaicin

contents by 57, 43, 56, 28, and
54%, respectively

Capsaicin and
dihydrocapsaicin

accumulation helped in
oxidative stress defense.

Valine and phenylalanine
increased in blue LED lights

contributing to a higher
content of capsaicinoids [68]

C. annuum ‘Cheonyang’

LED lighting treatments:
red, blue, and red plus blue,

and fluorescent lamps
as control

Blue LEDs increased
capsaicinoid contents, red
LEDs reduce two times the

capsaicinoid content
compared to fluorescent light

Not reported [36]

C. annuum
‘Shishito pepper’

Continuous fluorescent
illumination (150–350

µmol·m−2·s−1) at constant
temperature (28 ◦C), and
greenhouse conditions

as control

Fewer seeds and higher
concentration of capsaicin in

fruits under continuous
fluorescent illumination

There is a negative correlation
between seed formation and
capsaicin biosynthesis [67]
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Table 1. Cont.

Capsicum spp. Light Treatment Effects on Capsaicinoids
Compared to Control Biosynthetic Effect

C. annuum
Serrano ‘Tampiqueño 74′

Sweet pepper ‘California
wonder’

Artificial light in postharvest
(50 µmol·m−2·s−2) and dark

conditions as control

Light factors increased
capsaicin content in

‘Tampiqueño 74′

CaMYB31-expression analysis
from placental tissue of

pungent and non-pungent
fruits showed a positive

correlation with the structural
genes Ca4H, Comt, KAS,

pAMT, and AT3 expression,
and with the content of

capsaicin and
dihydrocapsaicin during fruit

development [60]

Differences in light spectral quality can also affect the accumulation of capsaicinoids
in peppers. Peppers produced under blue spectrum light-emitting diodes (LEDs) increased
capsaicinoid contents in comparison to plants exposed to fluorescent lights [36]. In a similar
study under greenhouse conditions, supplemental blue light LEDs placed at the top and
between plant rows also increased capsaicinoid levels in peppers. This was attributed to
the blue wavelength, which is near the UV spectra, and causes the same oxidative stress
response during the biosynthesis of capsaicin. Blue light also plays a role in chloroplast
development, chlorophyll formation, and stomatal opening [68]. In postharvest, Serrano
pepper fruits (‘Tampiqueño 74′) treated with light or dark conditions with varying exposure
times, the expression of the structural genes KAS, pAMT, and the transcription factor gene
CaMYB31 was higher under the light stimulus than fruits stored in the dark [60].

3.2. Carotenoids

Carotenoids are a numerous family of more than 850 naturally occurring lipophilic
isoprenoid compounds widely distributed in nature [69]. All photosynthetic organisms,
including plants, algae, and cyanobacteria, and some non-photosynthetic micro-organisms,
including fungi and bacteria, synthesize carotenoids [70]. In plants, the principal function of
carotenoids is the protection of cells and organelles against oxidative damage. Carotenoids
prevent the accumulation of harmful oxygen species by interacting with singlet oxygen
molecules and scavenging peroxy radicals [71]. Carotenoids are also involved in the
photosynthetic process and play a role in photo-protection, photo-morphogenesis, and plant
development. Carotenoids also promote the biosynthesis of other essential compounds
and play a role in the attraction of insects for pollination and seed dispersal [4,71,72].

Carotenoids have several important essential functions in human nutrition and health.
This group of compounds can prevent and protect from cardiovascular diseases, inhibit
carcinogenic cells, macular degeneration, and cataracts [73]. Carotenoids are consid-
ered the most effective antioxidant compounds found in peppers, besides phenolic and
flavonoid compounds, which act synergistically as efficient free radical scavengers [74,75].
Carotenoids deactivate free radicals and quench reactive oxygen species due to the presence
of conjugated double bonds [42,76]. In addition, plant carotenoids are endogenous iso-
prenoid precursors of vitamin A, β-carotene, α-carotene, γ-carotene, and β-cryptoxanthin
which can be converted into retinol, the assimilable form of vitamin A in the human
body [77].

Capsicum fruits are rich sources of carotenoids. The wide range of colors in peppers is
related to the stage of maturation and the differential accumulation of carotenoids [78,79].
Specifically, oxygenated carotenoids are responsible for the yellow, orange, and red colors
of pepper fruits [80].
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3.2.1. Biosynthesis of Carotenoids

Carotenoids are derived from the universal five-carbon precursor isopentenyl py-
rophosphate (IPP, C5) [7]. In Capsicum, the plastidial isoprenoid biosynthesis pathway starts
with the mevalonic acid which is entered into several reactions to produce the C5 building
block precursors—isopentenyl diphosphate and dimethylallyl pyrophosphate. In plants,
carotenoids are synthesized in the plastid using IPP generated from the methylerythritol-4-
phosphate (MEP) pathway (Figure 3) [4,81]. The MEP pathway receives substrates, G3P
and pyruvate, from primary metabolism and delivers IPP to the prenyl lipid pathway.
Phytoene, the first carotenoid in the pathway, is synthesized from eight IPP units in the
prenyl lipid pathway [72]. The carotenoid biosynthesis pathway is split into the α and β

branches. The addition of a hydroxyl group to the end rings characterizes the transition
from carotene to xanthophyll. The end-products found in red Capsicum fruits are the
red pigments capsorubin and capsanthin with κ end groups, the latter being the most
abundant [7].
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Figure 3. Carotenoid biosynthetic pathway in peppers (Capsicum spp.). Yellow arrows indicate the
specific reaction steps at which light signal regulates the transcription factors at the molecular level.
Chemical structures of the most abundant carotenoids present in Capsicum fruits. The circles indicate
the color to which each carotenoid is associated in plant tissue.

In Capsicum fruits, carotenoid accumulation has been associated with the esterification
of xanthophylls to allow for more efficient storage and increased stability, with the expres-
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sion of a putative carotenoid acyl transferase, and an increased fibril content within the
plastid [7].

3.2.2. Effects of Light on Carotenoids

Light signaling regulates the biosynthesis and accumulation of carotenoids through
molecular mechanisms by which photoreceptors detect light signals in different plant
organs [82]. Light regulates Psy (Figure 2) to modulate carotenoid biosynthesis during
photomorphogenesis or de-etiolation, which is the process that occurs by the transition
from the etioplast to the chloroplast [69]. Phytoene (15-cis-phytoene) has two sequential
desaturations by PDS to produce 9,15-cis-phytofluene and 9,15,9′-cis-ζ-carotene, which can
isomerize to ζ-carotene by light [71]. In peppers under protected cultivation, carotenoid con-
tent and Psy expression decreased compared to fruits grown under direct white light [83].
The expression of the Psy gene has also been reported in other plants including tomato
exposed to blue LEDs [84]. The similarities between these two crops include the tran-
sition of tissues from chloroplast to chromoplasts during ripening and the high content
of carotenoids in these chromoplast-containing fruits, resulting in the characteristic red
color [84].

The biosynthesis and final contents of carotenoids are related to the fruit maturation
process. Carotenoid accumulation is associated with a reduction in chlorophyll content. In
immature fruits, chlorophylls are abundant and contribute to the characteristic green color.
As the pepper fruits mature and the chloroplasts differentiate into chromoplasts, the chloro-
phyll contents of the epicarp lower significantly, and the biosynthesis of carotenoids occurs.
During this process, carotenoids start to accumulate and contribute to fruit color [42,76].
The final carotenoid concentration is diverse, and the carotenoid profile is related to fruit
color at harvest [74]. Color changes in response to more than thirty types of carotenoids [42].
In mature peppers, the most diverse carotenoid profile consisted of β-carotene, violaxanthin,
antheraxanthin, zeaxanthin, and the intense red ketocarotenoids (capsanthin, capsorubin,
and capsanthin-5,6-epoxide) [74].

In addition to the maturation process, other factors that affect carotenoid contents in
peppers include genotype differences [85,86], environmental conditions during agricultural
production [87,88], postharvest handling [9], processing [89], and storage (Table 2) [76].

Light is an important environmental factor involved in carotenoid biosynthesis. The
quality and intensity of the light intercepted by the crop have a direct effect on the produc-
tion and accumulation of carotenoids in peppers [15].

In sweet pepper cultivars, enhanced accumulation of carotenoids was obtained by a
reduction in light intensity on the crop using shade nets. The five identified carotenoids
were capsanthin, lutein, β-cryptoxanthin, β-carotene, and phytoene. Of these, capsanthin
was the major carotenoid compound [8]. Similarly, reduced light stress in a shaded green-
house also promoted carotenoid accumulation in three orange-fruited pepper cultivars. For
these cultivars, the primary carotenoids present at the highest concentrations were lutein,
zeaxanthin, and violaxanthin [90]. The increase in carotenoid contents caused by shaded
conditions was also observable in postharvest studies. The use of black nets increased
the carotenoid contents of β-carotene and lycopene in two different red and yellow sweet
pepper cultivars [27].

The use of shading nets (black or colored) affects the accumulation of carotenoids in
peppers. Plants cultivated in unshaded conditions (open field) produced peppers with the
lowest levels of carotenoids in comparison to plants covered by black or colored shading
nets [91]. Unshaded plants yielded fruits with less than 50% of the carotenoid contents in
comparison to those grown under white nets. As for colored nets, peppers grown under
yellow and red nets contained the lowest amounts of carotenoids (except for the unshaded
control plants). However, ‘Kapia’-type red sweet peppers grown under white shading nets
resulted in significantly higher carotenoid contents in comparison to the green and yellow
shades [92].
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In postharvest studies of peppers, the exposure of green ‘Takanotsume’ peppers to
different light wavelengths affected the carotenoid profile (including β-carotene, free-
capsanthin, and total carotenoids). Peppers treated with red LEDs (660 nm) presented the
highest increase in carotenoid contents, followed by those exposed to blue LEDs (470 nm).
This response was associated with a reduction of chlorophyll in the fruits [9].

Accumulation of carotenoids can be induced by UV radiation (wavelengths from
100 to 400 nm). Of these, UV-A ranges from 315 to 400 nm, UV-B from 280 to 315 nm,
and UV-C from 100 to 280 nm [93]. UV-C wavelengths do not reach the Earth’s surface
but can be applied in horticulture by artificial illumination to enhance the biosynthesis of
metabolites. UV-C radiation has shown increased carotenoid levels when applied at low
intensities. Nonetheless, high intensities can negatively affect photosynthesis and damage
plant tissues [92].

The application of UV radiation to red sweet peppers during postharvest increased the
levels of carotenoids after 14 days at 7 ◦C. Carotenoids increased exponentially by exposure
to UV-C and UV-B in comparison to the non-UV treatment [94]. The UVR8 protein may
be the principal UV-B receptor, and its action spectrum also includes the UV-C region.
Thus, the application of low levels of single UV-C can also stimulate carotenoids and other
phytochemicals. Exposure to red and blue (RB) LEDs light and RB with far-red wavelengths
in red and yellow sweet pepper fruits increased the carotenoid content when compared
to natural light exposure. The major carotenoids found in red fruits were capsanthin and
capsorubin, whereas in yellow fruits, they were violaxanthin and lutenin [95]. In peppers
that accumulate plastids after the breaker, the far-red wavelengths can act as a signal for
the initiation of plastid accumulation [84]. Storage of habanero fruits in closed packages
at low temperatures under blue and UV-C treatments affected carotenoid biosynthesis.
During the first five days, the contents of chlorophylls and total carotenoids were reduced
in comparison to the untreated peppers. This response could be attributed to the synthesis
of photosynthetic pigments in chloroplasts to protect the photosystems [96].

Table 2. Effect of light-condition treatments on the carotenoid content in Capsicum species.

Capsicum spp. Light Treatment Effects on Carotenoids
Compared to Control Biosynthetic Effect

C. annuum
Sweet pepper

Colored shading net: white
with 40% shade and

controlled-temperature plastic
tunnel environment

Controlled temperature
plastic tunnel enhanced the
accumulation of carotenoid

components

Capsanthin biosynthesis was not
affected by treatments in most of the

cultivars; peppers showed a
homogeneous behavior in

β-cryptoxanthin biosynthesis, which
was not significantly affected in most

cultivars in any of the treatments.
Shading effect influences a change in

the active form of phytochrome,
facilitating the degradation of

phytochrome interacting factor
(PIF1a) and activating PSY1
expression and carotenoid

biosynthesis [8]

C. annuum
Sweet pepper
‘Cameleon’

Plastic tunnel plus colored
shading nets: red, black, pearl,

and blue shading nets with
40% shade, and open field

as control

Black nets increased the
carotenoid contents of

β-carotene and lycopene
Not reported [11]
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Table 2. Cont.

Capsicum spp. Light Treatment Effects on Carotenoids
Compared to Control Biosynthetic Effect

C. annuum
Sweet pepper

‘Karpex’

Colored shading nets: red,
yellow, red, green, and white

with 40% shade and unshaded
as control

The unshaded control
produced more than 50% less
carotenoid than that under the
white net. Peppers under the
yellow and red nets produced

the lowest content of
carotenoids

Exposure to high temperature and
radiation can lead to inhibition of

carotenoid biosynthesis [91]

C. annuum
Sweet pepper

‘Kapia’

Colored shading nets: white,
green, yellow, red, and

unshaded as control

White shade net resulted in
significantly higher carotenoid
content compared to the green

and the yellow nets

Not reported [92]

C. annuum
‘Fogo’

‘NuMex’
‘Sunset’

‘Orange Grande’

Shaded greenhouse with
40–50% shade, greenhouse
conditions, and open field

as control

Carotenoid concentrations
decreased in fruits grown

under increased light levels
and increased in treatments

with lower light intensity level

Not reported [90]

C. annuum
Red and yellow sweet

pepper

LED lighting treatments:
natural light with red and

blue LED, red and blue LED
with far-red light, and natural

light as control

In both colored fruits,
carotenoid content was higher

in LED treatments

Far-red light can act as a signal for
starting plastid accumulation.

Carotenoids changed by adding
far-red light to the red and blue

lighting [95]

C. annuum
Red sweet pepper

‘Angus’

UV lighting: UV-C, UV-B,
UV-B+C, and no UV treatment

as control

UV treatments induced
carotenoid accumulation; after

14 days at 7 ◦C, UV-B and
UV-C increased by 59% the

total carotenoid content, and
UVB + C by 94%

The active form of UVR8, a UV
photoreceptor specific for UV-C and
UV-B wavelengths, directly interacts

with COP1 and regulates the
expression of the HY5 gene, which

promotes the production of
carotenoids [94]

C. chinense
Habanero pepper

Irradiation treatments: blue
lamps (0, 1.5, and 3 min), and
UV-C light (0, 0.5, and 1 min)

at 4–5 ◦C

Both lights stimulated
bioactive compounds.

Carotenoid content increased
only in the first days of

storage

Blue and UV-C light may stimulate
the synthesis of chlorophylls and total

carotenoids [96]

C. annuum
Sweet peppers

LED lighting treatments in
postharvest: yellow light at a

wavelength of 590 nm and
dark conditions as control

LED light slightly accelerated
the ripening of fruits and
increased the content of
β-carotene, α-tocopherol,

γ-tocopherol, chlorophyll, and
lutein. Fruits showed higher

antioxidant potential

Not reported [97]

3.3. Phenolic Compounds

Phenolic compounds constitute another essential group of secondary metabolites
in Capsicum fruits. This group of compounds is usually reported as total phenolic com-
pounds (TPC) and include phenols, phenolic acids, flavonoids, anthocyanins, lignans and
lignins, stilbenes, and tannins. In peppers, the highest levels of TPC are found in the
pericarp of fruits [95,96]. Peppers are rich in polyphenols, such as p-coumaric, ferulic,
p-hydroxybenzoic, caffeic acid, sinapic acid, and quercetin-3-glucoside (Figure 4) [8].
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Phenolic compounds result from the adaptation of plants to biotic and abiotic con-
ditions that include infection, wounds, water, cold, and light intensity stress, among
others [80,98,99]. Phenolics assist and interact as defense mechanisms with biotic and
abiotic factors [52,100]. Phenolics quench the reactive oxygen species (ROS) produced
during stress and protect the photosynthetic cells, and are related to the capacity of plants
to absorb UV-B radiation [80,101].

Phenolic compounds are considered health-promoting metabolites [102]. Flavonoids
are associated with the prevention of cancer, cardiovascular and autoimmune diseases, and
are involved in the delay of the aging process [2]. These effects can be attributed to their
direct role as free radical scavengers; modulators of detoxification enzymes, oxidation, and
reduction processes; and strengtheners of the immune system, regulating gene expression,
cell signaling, and hormone metabolism [103,104].

Phenolic compounds are phytochemicals with one aromatic ring attached to a hy-
droxyl group at a minimum. Phenolic compounds are divided into different classes by
their chemical structure and the number of carbon atoms in their molecule [105]. The
classification of phenolic compounds depends on the number of phenol units as simple
phenols or polyphenols. Phenols contain one phenol unit, and polyphenols consist of two
or more phenolic groups, up to polymeric structures [98]. Polyphenols rarely appear as
free compounds and can be found in plants in the form of esters or glycosides with other
natural compounds such as flavonoids, alcohols, and sterols [2,106].
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3.3.1. Biosynthesis of Phenolic Compounds

Phenolic compounds are products of the secondary metabolism, in particular the shiki-
mate pathway. Even though the precursors, phenylalanine or tyrosine, are the same, this
pathway has different branches that lead to different compounds, which makes the biosyn-
thetic pathway very complex [107,108]. Multiple genes are involved in the regulation of
the different transcription factors involved in this pathway. Nonetheless, in Capsicum, only
a few of the genes are known. The synthesis of flavonoids and other phenolic compounds
can be regulated through a series of internal and external factors, including light [103]. The
biosynthesis of phenolics is closely related to PAR irradiation and spectral quality; therefore,
the manipulation of light conditions can cause changes in the content of metabolites and,
consequently, alter photoprotection mechanisms [109].

The biosynthesis of flavonoids follows the phenylpropanoid pathway, which is im-
pacted by environmental conditions. Nutrient deficiency, UV radiation, or an increase in
stress levels caused by pathogens can influence the biosynthesis of flavonoids in many
types of peppers [101].

In sweet pepper cultivars, the interaction between cultivar and growing conditions
under protected cultivation affected the accumulation of phenolic compounds and antioxi-
dant activity. Light intensity modified by white shade nets increased the accumulation of
phenolic compounds and antioxidant activity in most of the studied cultivars. Similarly,
the cultivation of peppers in plastic tunnels also favored the production of phenolics in
other cultivars [8]. Similar results under white and red nets were reported, where higher
R/FR ratios in spectral quality and reduced PAR increased the accumulation of phenols,
quercetin, and other flavonoids in peppers [22].

3.3.2. Effects of Light on Phenolic Compounds

Light intensity and spectral quality during cultivation enhance the content of TPC in
peppers [22,88] during cultivation, postharvest, and storage (Table 3) [96].

In postharvest studies, the spectral characteristics of light affect the accumulation
and retention of bioactive compounds and physicochemical parameters in green peppers
at harvest and during postharvest storage [22]. The antioxidant activity in peppers also
increases during postharvest storage; this activity is associated with the metabolic pathways
involved during the ripening and the production of lipophilic antioxidants [110]. Peppers
produced under black or yellow nets showed a reduction of TPC. A further reduction
was observed in fruits under black nets after postharvest storage. By contrast, peppers
produced under pearl and red nets had a higher concentration of total phenols at harvest
and remained high after postharvest storage. Total phenols, flavonoids, and even the
antioxidant capacity in bell peppers were among the highest in unshaded conditions [89].

Exposure of pepper fruits during postharvest to red and blue LED also changed the
TPC. Blue LED resulted in a significant increase in phenolic compounds in fruits when
compared to the red LED and the control (fruits incubated in darkness). This effect was
spectrum-specific as the red LED did not cause a significantly different response of the
TPC [78]. Similar studies revealed an increase in total phenolic compounds in yellow and
green sweet peppers exposed to red LED light and red peppers exposed to blue LED light
during postharvest by increasing phenylalanine ammonia-lyase activity [24]. As described
before, a wide variety of enzyme-catalyzed reactions are involved in the biosynthesis of
phenols and flavonoids. However, only some of the genes involved in the Capsicum genus
are known [98]. Therefore, detailed studies at the genomic and transcriptional levels are
needed to elucidate the mechanism of light effects on phenolic compound production
in peppers.
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Table 3. Effect of light-condition treatments on the phenolic compounds content in Capsicum species.

Capsicum spp. Light Treatment
Effects on Phenolic

Compounds
Compared to Control

Biosynthetic Effect

C. annuum
Sweet peppers

c.v. ‘California Wonder’

Polytrench greenhouse,
shaded greenhouse

(Polytrench + red shade net),
and open field as control

The total contents of phenols
and flavonoids were reduced

by 35.2 and 14.6%,
respectively, in the

greenhouse treatment.

Not reported [106]

C. annuum
Green sweet peppers

Colored shading nets: pearl,
red, and yellow with 40%

shade, and black net with 25%
shade as control

Fruits produced under the
pearl nets showed higher
ascorbic acid content, and

antioxidant scavenging
activity after

postharvest storage

Red–far-red photon ratio
under the pearl net could

have improved the ascorbic
acid content and the

antioxidant scavenging
activity in green peppers [22]

C. annuum
Sweet peppers

Colored shading nets: black,
red, silver, white with 30% to

46% shade, and unshaded
as control

Total phenols and flavonoids
were among the highest in the

unshaded treatment and
under the white net, and the

lowest content under the
black net

Not reported [87]

C. annuum
Sweet peppers, eleven

cultivars

Colored shading net: white
with 40% shade and

controlled temperature
plastic tunnel

White shade nets increased
the accumulation of phenolic
compounds and antioxidant

activity in most of the
studied cultivars

Not reported [8]

C. annuum
c.v. ‘Takanotsume’

LED lighting treatments: red
(660 nm) and blue (470 nm)

light at an intensity of
50 µmol·m−2·s−1

The total phenolic, vitamin C
content, and antioxidant

capacity were higher in the
blue LED-treated fruits

The blue LED was more
effective in increasing the

expression of the phytoene
synthase (Psy) gene [78]

C. annuum
Red sweet peppers

HPS and LED lighting in a
glass greenhouse

LEDs at 622 nm enhanced
phenolic compounds. HPS

lighting supplemented with
different LEDs was

not efficient.

Not reported [111]

C. annuum
Purple bell pepper

LED lighting treatments:
white-red, and blue light

High blue-light fractions
increased anthocyanin levels;
white-red light is not efficient

in the accumulation
of anthocyanins

Increasing anthocyanin levels,
via enhancing anthocyanin

biosynthesis, was supported
by kinetic modeling and

higher expression levels of the
anthocyanin biosynthetic

genes CaMYB, CaCHS, CaDFR,
CaANS and CaUFGT [85]

C. annuum
Yellow, green, and red

sweet peppers

LED lighting treatments: red,
blue, and white light, and

darkness as control

Red LED light for 8 h per day
during storage at 7 ◦C was

beneficial to retain bioactive
compounds such as phenols

and flavonoids

PAL activity in the yellow and
green peppers exposed to red
LED light increased and was

correlated with the number of
bioactive compounds [24]

Exposure of bell peppers to UV-C radiation in postharvest studies reduced the in-
cidence and severity of the chilling injury and reduced the accumulation of phenolic
compounds [112]. The response to UV-C radiation is highly dose-dependent as exposure
to UV-C may significantly affect the enzymes involved in the biosynthesis of phytochem-
icals [113]. Moderate doses induce physiological responses, whereas high doses may
reduce the enzymatic role, which causes a reduction in the production of bioactive phenolic
compounds and other antioxidants [114].



Horticulturae 2023, 9, 72 15 of 19

4. Summary

Light is an elicitor of bioactive compounds in peppers and affects the biosynthesis
and accumulation of phytochemicals. Current horticultural technologies that modify light
intensity and spectrum aimed at improving pepper yields can also cause changes in the
accumulation of bioactive compounds. The use of shade nets or plastic covers to reduce
light intensity does not seem to yield consistent responses on the phytochemical profile,
as the final profile results from the interaction of several factors. Exposure of plants to
supplemental light with specific wavelengths seems to result in a more precise stimulation
of specific metabolites. The molecular mechanisms underlying the specific effects of light
on the phytochemical profile of peppers are still unclear. Further research is needed for a
better understanding of the biochemical and molecular mechanisms of phytochemicals to
reveal the complete effects of light on the phytochemical profile of peppers.
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