Optimum Nitrogen Application Promotes Sweetpotato Storage Root Initiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Conditions
2.2. Experimental Design
2.3. Sampling Date
2.4. Nutrient Solution Preparation and Application
2.5. Data Collections and Laboratory Analysis
2.5.1. Anatomical Feature Observations and AR Classifications
2.5.2. Root Morphological Characteristics
2.5.3. Biomass and Other SR Parameters
2.5.4. Nitrogen Acquisition during SR Formation
2.6. Statistical Analysis
3. Results
3.1. Anatomical Characteristics of Orleans Roots
3.2. Root Morphology during SR Formation, Plant Performances and Fresh Weigh of Sweetpotato Tubers at 8 Weeks after Planting
3.3. Nitrogen Acquisition in Plants during SR Initiation
4. Discussions
4.1. Anatomical Root Developments
4.2. Root Morphology during SR Formation, Plant Performances and Fresh Weight of Tubers at 8 Weeks after Transplanting
4.3. Nitrogen Acquisition in Sweetpotato Plants
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Bai, S.H.; Blumfield, T.J.; Xu, Z.; Chen, C.; Wild, C. Soil organic matter dynamics and nitrogen availability in response to site preparation and management during revegetation in tropical Central Queensland, Australia. J. Soils Sediments 2012, 12, 386–395. [Google Scholar] [CrossRef][Green Version]
- Taranet, P.; Harper, S.; Kirchhof, G.; Fujinuma, R.; Menzies, N. Growth and yield response of glasshouse-and field-grown sweetpotato to nitrogen supply. Nutr. Cycl. Agroecosyst. 2017, 108, 309–321. [Google Scholar] [CrossRef]
- Ali, A.; Choudhry, M.A.; Malik, M.A.; Ahmad, R. Effect of various doses of nitrogen on the growth and yield of two wheat (Triticum aestivum L.) cultivars. Pak. J. Biol. Sci. 2000, 3, 1004–1005. [Google Scholar] [CrossRef][Green Version]
- Malik, T.H.; Lal, S.B.; Wani, N.R.; Amin, D.; Wani, R.A. Effect of different levels of nitrogen on growth and yield attributes of different varieties of basmati rice (Oryzasativa L.). Int. J. Sci. Technol. Res. 2014, 3, 444–448. [Google Scholar]
- Nadeem, M.A.; Ali, A.; Tahir, M.; Naeem, M.; Chadhar, A.; Ahmad, S. Effect of nitrogen levels and plant spacing on growth and yield of cotton. Pak. J. Life Soc. Sci. 2010, 8, 121–124. [Google Scholar]
- Banjare, S.; Sharma, G.; Verma, S. Potato crop growth and yield response to different levels of nitrogen under Chhattisgarh plains agro-climatic zone. Indian J. Sci. Technol. 2014, 7, 1504. [Google Scholar] [CrossRef]
- Thummanatsakun, V.; Yampracha, S. Effects of interaction between nitrogen and potassium on the growth and yield of cassava. Int. J. Agric. Tech 2018, 14, 2137–2150. [Google Scholar]
- Duan, W.; Zhang, H.; Xie, B.; Wang, B.; Zhang, L. Impacts of nitrogen fertilization rate on the root yield, starch yield and starch physicochemical properties of the sweet potato cultivar Jishu 25. PLoS ONE 2019, 14, e0221351. [Google Scholar] [CrossRef][Green Version]
- Badr, M.; El-Tohamy, W.; Zaghloul, A. Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region. Agric. Water Manag. 2012, 110, 9–15. [Google Scholar] [CrossRef]
- Hill, W.A. Effect of nitrogen nutrition on quality of three important root/tuber crops. In Nitrogen in Crop Production; Library of Congress: Washington, WA, USA, 1984; pp. 627–641. [Google Scholar] [CrossRef]
- ASPG. Australian Sweetpotato Industry. Available online: http://www.aspg.com.au/sweetpotato-industry/ (accessed on 10 February 2021).
- Prabawardani, S.; Suparno, A. Water use efficiency and yield of sweetpotato as affected by nitrogen and potassium application. European J. Agric. Sci. 2015, 7, 260–268. [Google Scholar] [CrossRef][Green Version]
- Nedunchezhiyan, M.; Byju, G.; Jata, S.K. Sweet potato agronomy. Fruit Veg. Cereal Sci. Biotechnol. 2012, 6, 1–10. [Google Scholar]
- Arnold, T.F.; Smith, T.P.; Villordon, A.Q. Improving sweet potato production efficiency. La. Agric. 2013, 56, 14–15. [Google Scholar]
- Desai, D.P. Understanding the genetic basic of storage root formation along with starch and betaacarotene biosynthesis and their inter-relation in sweetpotato. PhD Thesis, University of Natural Resources and Life Sciences, Vienna, Austria, 2008. [Google Scholar]
- Ravi, V.; Indira, P. Crop physiology of sweetpotato. Hortic. Rev. 1999, 23, 277–339. [Google Scholar]
- Villordon, A.Q.; LaBonte, D.R.; Firon, N.; Kfir, Y.; Pressman, E.; Schwartz, A. Characterization of adventitious root development in sweetpotato. HortScience 2009, 44, 651–655. [Google Scholar] [CrossRef]
- Wilson, L.; Lowe, S. The anatomy of the root system in West Indian sweet potato (Ipomoea batatas (L.) Lam.) cultivars. Ann. Bot. 1973, 37, 633–643. [Google Scholar] [CrossRef]
- Gajanayake, B.; Raja Reddy, K.; Shankle, M.W.; Arancibia, R.A.; Villordon, A.O.; Arancibia, R.A.; Shankle, M.W. Quantifying storage root initiation, growth, and developmental responses of sweetpotato to early season temperature. Agron. J. 2014, 106, 1795–1804. [Google Scholar] [CrossRef]
- Ma, J.; Aloni, R.; Villordon, A.; Labonte, D.; Kfir, Y.; Zemach, H.; Schwartz, A.; Althan, L.; Firon, N. Adventitious root primordia formation and development in stem nodes of ‘Georgia Jet’sweetpotato, Ipomoea batatas. Am. J. Bot. 2015, 102, 1040–1049. [Google Scholar] [CrossRef]
- Togari, Y. A study on tuberous root formation in sweet potatoes. Bull. Natl. Agric. Exp. Stn. 1950, 68, 1–96. [Google Scholar]
- Wilson, L.A. Effect of different levels of nitrate-nitrogen supply on early tuber growth of two sweet potato cultivars. Trop. Agr. St. Augustine 1973, 50, 53–54. [Google Scholar]
- Acock, M.C.; Garner, J.O. Effect of fertiliser and watering methods on growth and yields of pot-grown sweet potato genotypes. HortScience 1984, 19, 687–689. [Google Scholar]
- Si, C.; Shi, C.; Liu, H.; Zhan, X.; Liu, Y.; Wang, D.; Meng, D.; Tang, L. Influence of Two Nitrogen Forms on Hormone Metabolism in Potential Storage Roots and Storage Root Number of Sweetpotato. Crop Sci. 2018, 181, 419–428. [Google Scholar] [CrossRef]
- La Bonte, D.R.; Clark, C.A.; Smith, T.P.; Villordon, A.Q. ‘Orleans’ sweetpotato. HortScience 2012, 47, 1817–1818. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants without Soil. Circular. Calif. Agric. Exp. Stn. 1950, 347, 32. [Google Scholar]
- Eguchi, T.; Yoshinaga, M. Effect of application of sucrose and cytokinin to roots on the formation of tuberous roots in sweetpotato (Ipomoea batatas L. Lam). Plant Roots 2008, 2, 7–13. [Google Scholar] [CrossRef][Green Version]
- O’Brien, T.P.; McCully, M.E. The Study of Plant Structure: Principles and Selected Methods; Termarcarphi Pty: Wantirna, VIC, Australia, 1981; p. 352. [Google Scholar]
- Dong, H.T.; Li, Y.; Brown, P.; Xu, C.-Y. Early nitrogen applications promote the initiation of sweetpotato storage roots. J. Agric. Sci. 2022, 14, 19–38. [Google Scholar] [CrossRef]
- Kays, S.J. The physiology of yield in the sweet potato. In Sweetpotato Products: A Natural Resource for the Tropic; Bouwkamp, J.C., Ed.; CRC Press: Boca Raton, FL, USA, 1985. [Google Scholar]
- Maness, N. Extraction and analysis of soluble carbohydrates. In Plant Stress Tolerance; Sunkar, R., Ed.; Springer: New York, NY, USA, 2010; pp. 341–370. [Google Scholar]
- Zvomuya, F.; Rosen, C.J.; Russelle, M.P.; Gupta, S.C. Nitrate leaching and nitrogen recovery following application of polyolefin-coated urea to potato. J. Environ. Qual. 2003, 32, 480–489. [Google Scholar] [CrossRef]
- Villordon, A.; La Bonte, D.; Firon, N.; Carey, E. Variation in nitrogen rate and local availability alter root architecture attributes at the onset of storage root initiation in ‘Beauregard’ sweetpotato. HortScience 2013, 48, 808–815. [Google Scholar] [CrossRef][Green Version]
- Kim, S.-H.; Mizuno, K.; Sawada, S.; Fujimura, T. Regulation of tuber formation and ADP-glucose pyrophosphorylase (AGPase) in sweet potato (Ipomoea batatas (L.) Lam.) by nitrate. Plant Growth Regul. 2002, 37, 207–213. [Google Scholar] [CrossRef]
- Artschwager, E. On the anatomy of the sweet potato root, with notes on internal breakdown. J. Agric. Res. 1924, 27, 157–166. [Google Scholar]
- Matsumoto-Kitano, M.; Kusumoto, T.; Tarkowski, P.; Kinoshita-Tsujimura, K.; Václavíková, K.; Miyawaki, K.; Kakimoto, T. Cytokinins are central regulators of cambial activity. Proc. Natl. Acad. Sci. USA 2008, 105, 20027–20031. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Samuelson, M.E.; Eliasson, L.; Larsson, C.-M. Nitrate-regulated growth and cytokinin responses in seminal roots of barley. Plant Physiol. 1992, 98, 309–315. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sattelmacher, B.; Marschner, H. Nitrogen nutrition and cytokinin activity in Solanum tuberosum. Physiol. Plant. 1978, 42, 185–189. [Google Scholar] [CrossRef]
- Onwueme, I.C. The Tropical Tuber Crops: Yams, Cassava, Sweet Potato, and Cocoyams; John Wiley and Sons: Chichester, UK, 1978. [Google Scholar]
- Meyers, S.L.; Arancibia, R.A.; Shankle, M.W.; Main, J.; Gajanayake, B.R.K.R. Sweetpotato Storage Root Initiation. Available online: http://extension.msstate.edu/publications/sweetpotato-storage-root-initiation (accessed on 10 February 2021).
- Lowe, S.; Wilson, L. Comparative analysis of tuber development in six sweet potato (Ipomoea batatas (L.) Lam) cultivars 1. Tuber initiation, tuber growth and partition of assimilate. Ann. Bot. 1974, 38, 307–317. [Google Scholar] [CrossRef]
- Si, C.; Shi, C.; Liu, H.; Zhan, X.; Liu, Y. Effects of nitrogen forms on carbohydrate metabolism and storage-root formation of sweet potato. J. Plant Nutr. Soil Sci. 2018, 181, 419–428. [Google Scholar] [CrossRef][Green Version]
- Salama, A.M.; Wareing, P.F. Effects of mineral nutrition on endogenous cytokinins in plants of sunflower (Helianthus annuus L.). J. Exp. Bot. 1979, 30, 971–981. [Google Scholar] [CrossRef]
- Osaki, M.; Ueda, H.; Shinano, T.; Matsui, H.; Tadano, T. Accumulation of carbon and nitrogen compounds in sweet potato plants grown under deficiency of N, P, or K nutrients. Soil Sci. 1995, 41, 557–566. [Google Scholar] [CrossRef]
- Okpara, D.A.; Okon, O.E.; Ekeleme, F. Optimizing nitrogen fertilization for production of white and orange-fleshed sweet potato in Southeast Nigeria. J. Plant Nutr. 2009, 32, 878–891. [Google Scholar] [CrossRef]
- Kelm, M.; Brück, H.; Hermann, M.; Sattelmacher, B. The effect of low nitrogen supply on yield and water-use efficiency of sweet potato (Ipomoea batatas L.). In Plant Nutrition; Springer: Berlin/Heidelberg, Germany, 2001; pp. 402–403. [Google Scholar]
- Villagarcia, M.R.; Collins, W.W.; Raper, C.D.J. Nitrate uptake and nitrogen use efficiency of tow sweetpotato genotypes during early stage of storage root formation. J. Am. Soc. Hortic. Sci. 1998, 123, 814–820. [Google Scholar] [CrossRef][Green Version]
- Haile, D.; Nigussie, D.; Ayana, A. Nitrogen use efficiency of bread wheat: Effects of nitrogen rate and time of application. J. Soil Sci. Nutr. 2012, 12, 389–410. [Google Scholar]
Treatment | 10 DAT | 21 DAT | 35 DAT | 49 DAT | 56 DAT | ANOVA |
---|---|---|---|---|---|---|
N0 | 7.3 ± 0.3 | 9.0 ± 0.6 | 8.7 ± 0.3 | 8.3 ± 0.3 | 8.7 ± 0.3 | NL: p = 0.71 |
N50 | 7.3 ± 0.3 | 9.3 ± 0.7 | 8.7 ± 0.3 | 8.7 ± 0.3 | 8.7 ± 0.3 | ST: p < 0.001 |
N100 | 7.7 ± 0.3 | 9.7 ± 0.3 | 8.7 ± 0.7 | 9.0 ± 0.6 | 8.3 ± 0.3 | NL × ST: p = 0.88 |
N200 | 7.3 ± 0.7 | 8.7 ± 0.3 | 9.3 ± 0.3 | 8.7 ± 0.3 | 9.0 ± 0.6 | |
Average | 7.4 ± 0.2 | 9.0 ± 0.3 | 8.8 ± 0.3 | 8.6 ± 0.2 | 8.7 ± 0.3 | |
p value | 0.802 | 0.574 | 0.642 | 0.743 | 0.743 |
Treatment | 10 DAT | 21 DAT | 35 DAT | 49 DAT | 56 DAT | ANOVA | |
---|---|---|---|---|---|---|---|
RL (cm) | N0 | 257 ± 16 | 363 a ± 26 | 424 a ± 26 | 352 a ± 23 | 272 a ± 20 | NL: p < 0.001) |
N50 | 257 ± 22 | 602 b ± 44 | 846 b ± 117 | 774 b ± 39 | 755 b ± 31 | ST: p < 0.001) | |
N100 | 233 ± 12 | 524 b ± 16 | 1014 b ± 15 | 1020 c ± 56 | 1034 c ± 44 | NL × ST: p < 0.001 | |
N200 | 260 ± 20 | 504 b ± 42 | 861 b ± 46 | 1025 c ± 45 | 1189 c ± 31 | ||
p value | 0.69 | 0.01 | <0.001 | <0.001 | <0.001 | ||
RD (mm) | N0 | 0.99 ± 0.02 | 0.73 ± 0.02 | 0.69 ± 0.02 | 0.69 a ± 0.01 | 0.70 a ± 0.01 | NL: p < 0.001) |
N50 | 1.02 ± 0.03 | 0.71 ± 0.01 | 0.70 ± 0.01 | 0.72 a ± 0.01 | 0.73 ab ± 0.01 | ST: p < 0.001) | |
N100 | 1.02 ± 0.06 | 0.74 ± 0.01 | 0.74 ± 0.01 | 0.77 ab ± 0.03 | 0.76 b ± 0.02 | NL × ST: p = 0.37 | |
N200 | 1.05 ± 0.07 | 0.76 ± 0.03 | 0.74 ± 0.01 | 0.83 b ± 0.01 | 0.85 c ± 0.01 | ||
p value | 0.83 | 0.23 | 0.09 | <0.001 | <0.001 | ||
RV (cm3) | N0 | 1.7 ± 0.1 | 3.2 a ± 0.1 | 4.5 a ± 0.2 | 3.4 a ± 0.2 | 3.1 a ± 0.2 | NL: p < 0.001) |
N50 | 1.8 ± 0.1 | 5.5 b ± 0.2 | 9.7 b ± 0.5 | 11.3 b ± 0.5 | 11.7 b ± 0.5 | ST: p < 0.001) | |
N100 | 2.1 ± 0.2 | 6.1 b ± 0.3 | 14.1 c ± 0.3 | 17.4 c ± 0.4 | 18.2 c ± 0.5 | NL × ST: p < 0.001 | |
N200 | 2.1 ± 0.2 | 6.0 b ± 0.2 | 13.1 c ± 0.3 | 20.9 c ± 0.6 | 23.2 d ± 0.5 | ||
p value | 0.12 | <0.001 | <0.001 | <0.001 | <0.001 |
Treatment | ADW (g/Plant) | RDW (g/Plant) | SRL (mm) | SRD (mm) | FSRW (g/Plant) |
---|---|---|---|---|---|
N0 | 1.1 a ± 0.1 | 0.5 a ± 0.1 | 51.2 a ± 3.1 | 4.2 a ± 0.4 | 4.3 a ± 0.8 |
N50 | 3.3 b ± 0.2 | 2.0 b ± 0.1 | 92.0 b ± 5.0 | 5.7 b ± 0.1 | 17.9 b ± 0.9 |
N100 | 5.9 c ± 0.3 | 3.6 c ± 0.2 | 108.5 b ± 12.2 | 7.8 bc ± 0.7 | 27.5 bc ± 2.1 |
N200 | 9.3 d ± 0.2 | 6.0 d ± 0.3 | 120.8 b ± 7.4 | 8.2 c ± 0.4 | 34.8 c ± 2.2 |
p value | <0.001 | <0.001 | 0.001 | 0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, H.T.; Li, Y.; Henderson, C.; Brown, P.; Xu, C.-Y. Optimum Nitrogen Application Promotes Sweetpotato Storage Root Initiation. Horticulturae 2022, 8, 710. https://doi.org/10.3390/horticulturae8080710
Dong HT, Li Y, Henderson C, Brown P, Xu C-Y. Optimum Nitrogen Application Promotes Sweetpotato Storage Root Initiation. Horticulturae. 2022; 8(8):710. https://doi.org/10.3390/horticulturae8080710
Chicago/Turabian StyleDong, Hong Tham, Yujuan Li, Craig Henderson, Philip Brown, and Cheng-Yuan Xu. 2022. "Optimum Nitrogen Application Promotes Sweetpotato Storage Root Initiation" Horticulturae 8, no. 8: 710. https://doi.org/10.3390/horticulturae8080710