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Abstract: In the past years, near infrared (NIR) spectroscopy has been applied to the agricultural
industry as a non-destructive tool to predict quality parameters, e.g., ripeness of fruit, dry matter
content, and acidity. In two years, 2019 and 2020, berries of four table grape cultivars (Cotton
Candy™, Summer Royal, Allison™, and Autumncrisp®) were collected during the season to obtain
spectral measurements and quality data for developing predictive models based on NIR spectroscopy
to be practically used in the vineyard. A SCiO™ sensor was used in 2019 for predicting the ripening
parameters of Cotton Candy™; in particular, total soluble solids (TSS) (R2 = 0.95; RMSE = 0.60,
RPD = 13.13), titratable acidity (R2 = 0.97; RMSE = 0.40, RPD = 7.31), and pH (R2 = 0.96; RMSE = 0.07,
RPD = 26.06). With these promising results, in the year 2020, the above-mentioned table grape
cultivars were all tested for TSS prediction with successful outcomes: Cotton Candy™ (R2 = 0.97;
RMSE = 0.68, RPD = 7.48), Summer Royal (R2 = 0.96; RMSE = 0.83, RPD = 7.13), Allison™ (R2 = 0.97;
RMSE = 0.72, RPD = 8.70) and Autumncrisp® (R2 = 0.96; RMSE = 0.60, RPD = 9.73). In conclusion,
a rapid and economic sensor such as the SCiO™ device can enable a practical application in the
vineyard to assess ripening (quality) parameters of table grapes. Thus, this device or similar ones can
be also used for a fast sorting and screening of quality throughout the supply chain, from vineyard to
cold storage.

Keywords: NIR spectroscopy; PLSR; table grape; TSS; acidity; optical sensor; non-destructive mea-
surement

1. Introduction

In the horticultural industry, in particular for fruits, the rapid and non-destructive
determination of ripening is a very important aspect. A powerful tool in this field is
represented by reflectance spectroscopy, a non-destructive technique which is based on
measuring the electromagnetic radiations reflected at different wavelengths by target
surfaces, especially in the visible (400–700 nm), near infrared (700–1300 nm), and thermal
infrared regions (7500–15,000 nm) [1]. The chemical characteristics of the sample influence
directly the absorption or reflectance of the radiations so that it is possible to monitor
specific elements by analyzing the spectrum response.

In particular, near infrared (NIR) spectroscopy studies the spectral properties of an ob-
ject exposed to an electromagnetic radiation in the range between 780 nm and 2500 nm [2].
In the regions of NIR suitable for food analysis, short-wave NIR (at 700–1100 nm) allows a
deeper penetration through the sample during measurement if compared with the long-
wave NIR (at 1100–2500 nm) [3]; moreover, short-wave NIR, contrary to long-wave NIR,

Horticulturae 2022, 8, 613. https://doi.org/10.3390/horticulturae8070613 https://www.mdpi.com/journal/horticulturae

https://doi.org/10.3390/horticulturae8070613
https://doi.org/10.3390/horticulturae8070613
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/horticulturae
https://www.mdpi.com
https://orcid.org/0000-0002-2129-6723
https://orcid.org/0000-0001-9689-7649
https://orcid.org/0000-0001-5056-6406
https://doi.org/10.3390/horticulturae8070613
https://www.mdpi.com/journal/horticulturae
https://www.mdpi.com/article/10.3390/horticulturae8070613?type=check_update&version=1


Horticulturae 2022, 8, 613 2 of 18

is demonstrated to reduce the measurement time and avoid interference from water ab-
sorption [4]. In general, the physical characteristics and chemical constituents of an object
can reflect, absorb, or transmit the NIR radiation hitting it and thus the total light absorbed
or reflected depends on the properties of the sample [5]. Consequently, by analyzing re-
flectance or absorbance spectra it is possible to build mathematical models aiming to predict
a target variable of interest. For example, fruit tissue presents vitamins, water, proteins,
and carbohydrates which contain a wide spectrum of NIR-active chemical groups [6]. NIR
spectroscopic techniques have been used as non-destructive and rapid tools to evaluate
various quality attributes of fruits and vegetables [7]. Studies demonstrated the ability of
NIR to estimate the quality of fruit at the time of measurement in the orchards [5,8] and
even at post-harvest [9,10]. The estimation on the spectrum response follows the empirical
Beer-Lambert law, which relates the absorption of a sample to the concentration of the
constituents within it [11].

NIR spectroscopy with a wavelength below 1100 nm has been widely applied on stud-
ies regarding fruit such as apple [12–15], mandarins [16,17], peaches [18], mangoes [19],
and tomatoes [20]. In particular, NIR spectroscopy can be a valid tool for simultaneous
measurements of the total soluble solids/soluble solids content (TSS/SSC), pH, titratable
acidity (TA), and anthocyanin concentration of the samples [11,21] or even the total antiox-
idant capacity in gluten-free grains [22]. This technology offers a fast response without
damaging the samples (fruits, vegetables, grains, etc.) or affecting the growth [23]. In
fact, NIR radiation can be absorbed by fundamental vibrations of molecular bonds (O–H,
C–H, and N–H) in organic compounds [24]. The spectrum may provide both chemical and
physical information of the samples such as hardness, total soluble solids, firmness, total
acids, and internal disorders [25–27].

In recent years, some low-cost and portable NIR spectrometers were developed. These
spectrometers can allow easy measurements (from field to lab), sending the acquired data
to cloud databases for instantaneous or further analyses. The integration of these sensors
into smartphones and other handheld devices can make the NIR technology easy to use
and affordable for trained people or even to general users [28] for possible worldwide
applications to assess fruit quality in different conditions and time (supermarkets, stores,
field, orchards, home, etc.).

The most used portable NIR spectrometers are Tellspec® Food Sensor (Tellspec Inc.,
Toronto, ON, Canada), LinkSquare (Stratio Inc., Seoul, Korea), and SCiO™ molecular sensor
(Consumer Physics Inc., Tel Aviv, Israel). The SCiO™ sensor has recently been used for the
identification of many cultivars of some important species (barley, chickpeas, and sorghum).
The data acquired with the spectrometers were analyzed through predictive multiclass
algorithms, returning an identification accuracy of 89% for barley (on 24 cultivars), 96% for
chickpeas (on 19 cultivars), and 87% for sorghum (on 10 cultivars) [29]. McVey et al. [30]
evaluated and compared the performance of three spectrometer devices, including the
SCiOTM sensor, which resulted to have a good prediction ability even though it had a
limited NIR spectrum range (up to 1070 nm) with respect to the other devices. Li et al. [5]
used the SCiOTM sensor in the study of quality prediction for kiwifruit, apple, feijoa, and
avocado. The results were comparable with other commercial products but the authors
highlighted the need for better calibration models and a wider variety of fruit samples.
Kaur et al. [31] tested the performance of SCiOTM (version 1.1) in quality predictions of
kiwifruit and apple and obtained lower results compared with lab NIR spectrometers
which, on the other hand, are not portable and cannot be used in the field.

Among the fresh fruits, grape is currently the 4th most cultivated fruit species (after
banana, watermelon, and apple) in the world with a level of production (more than
78 million tons in 2020) in gradual increase in the last years [32]. Establishment of the
correct harvesting time of table grape is a time consuming and destructive process and
the possibility to speed up this activity in a non-destructive and easy way would be a
step forward in the technological evolution of fresh fruit industry. Moreover, sorting of
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table grape with different ripening grades in the supply chain would be better managed by
workers in this case.

Quality data useful to be assessed by producers, technicians, traders, and consumers
include sweetness (total soluble solids (TSS)), titratable acidity (TA), firmness, and pH.
Nowadays, conventional techniques for determining such internal quality parameters of
table grape and other fruits involve destructive and time-consuming means. For these
analyses, a representative sample is used to predict the quality of cluster/vine/vineyard
and this usually brings variable values depending on the sampling adopted. Therefore, a
rapid non-destructive prediction of TSS (plus pH, TA) for table grape is of great value for
the determination of the best harvesting time with positive effects on the eating quality
tasted by consumers. Moreover, the possibility to check the ripening values in precise
positions of the orchard/vineyard would support the optimal harvesting time for the
fruit to carry on an accurate harvest. This would also meet the demand of consumers for
high-quality fruits perfectly ripened in the different areas of the world. NIR spectroscopy
has also been applied to detect nitrate levels in some fruits such as pineapple [33], soluble
solids content and acidity in kiwifruit [8], pear internal quality indices [34], maturation
levels in Fuji apple [15], and TSS and dry matter of table grape and peach cultivars [35].
Portable NIR spectrometers have been used to determine fruit quality parameters such as
TSS, TA, sugar content, firmness, or other quality parameters in pear, apple, mango, orange,
or nectarine [36–40] but less is known about the application for table grape cultivars [35].

In this research, the SCiO™ sensor produced by Consumer Physics Inc. was tested on
the table grape for evaluating ripening parameters in a two-year trial. Berries of seedless
table grape cultivars were collected during the growing season and the NIR spectral
measurements and quality variables were analyzed for developing predictive models.

Once data were collected, the challenge regards the choice of the data analysis method.
Partial Least Square Regression (PLSR) and Multiple Linear Regression (MLR) are the
most commonly used methods for prediction of a target variable using a multivariate set
of predictors variables [41,42]. These two methods are highly affected by the presence
of environmental noises during the acquisition phase (i.e., temperature and light) and
instrument degradation (mechanical and electrical components aging) which introduce non-
linearities in the spectra. These disturbances can be managed by means of pre-processing
operation based on statistical methods such as logarithmic transformation, first and second
derivatives, and the SNV method [5,43].

On the basis of these considerations, this work focused on the application of an
NIR spectroscopy for assessing table grape quality parameters for four cultivars for the
best time of harvest by means of the SCiOTM portable device. This is the first step to
successively monitor the ripening of the grape in the different blocks of the vineyard by
using a specific application.

2. Materials and Methods
2.1. Table Grape Cultivars

In the present trial, four table grape cultivars were used. The table grapes were
collected in four different vineyards located in the Puglia region, Southern Italy, the most
important region for table grape cultivation in the country. The region has an extension of
19.330 km2, flat for 50% of the territory. More than 60% of the region is used as agricultural
area, mostly for the production of olive oil, cherries, vegetables, and wine and table grapes.
Puglia has short surface water courses and a very extensive underground water system due
to the presence of limestone and dolomitic rocks. The agricultural economy and culture of
the area is supported by the Mediterranean climate characterized by warm summers and
moderate winters, with low rainfall spread over all seasons [44]. The characteristics of the
tested cultivars are described below.

Allison™, also known as Sheegene 20, belongs to the SNFL GROUP. It is a seedless
cultivar obtained in 2000 from the cross Princess × Red Globe. It is characterized by the
red color of the skin, with a round to slightly ellipsoidal shape and with about 18% TSS
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at ripening. In Italy it is generally harvested between September and November, around
2–3 weeks after Crimson Seedless and with a diameter >22 mm. Allison™ was collected
from a vineyard in the countryside of Noicattaro (Ba).

Autumncrisp® or Sugra35 is a cultivar obtained by SunWorld. This is also a late
seedless cultivar, harvested in Italy between September and October. It was obtained by the
cross Italia × Dzhidzhigi Kara (from Turkmenistan), and the program started in the 1980s,
until the first commercialization in 2012. The berries have a green-yellowish skin color with
a large size and a Moscato aroma and with about 15–16% TSS at ripening. Autumncrisp®

was collected from a vineyard in the countryside of Mola di Bari (Ba).
Cotton Candy™ or IFG7, is a seedless IFG cultivar characterized by a unique flavor

reminiscent of cotton candy, which makes it very popular among children. It was obtained
in 2003 through the cross A2674 × Princess. It is generally harvested between the end
of July and the beginning of September. The berries have a green-yellowish skin color, a
medium-large size with about 18% TSS at ripening. Cotton Candy™ was collected from a
vineyard in the countryside of Noicattaro (Ba).

Summer Royal (USDA selection B74–99) is a seedless black grape cultivar obtained
by crossing a seeded cultivar A69–190 and a seedless cultivar C20–149 in 1985, then it was
released in 1999. The berries are round, black, of medium-large size, and this cultivar is
harvested between July and August in Italy, with around 18% TSS. Summer Royal was
collected from a vineyard in the countryside of Noicattaro (Ba).

2.2. SCiO™ Sensors

SCiO™ sensors (Consumer Physics Inc., Tel-Aviv, Israel) were used to acquire the
spectral data of table grape berries in the wavelength range of 740–1070 nm with a wave-
length resolution <10 cm−1 and a sampling interval of 1 nm. Then, the SCiO™ Lab online
application produced by the same company of the sensor device (Consumer Physics Inc.,
Tel-Aviv, Israel) was used on a smartphone for collecting, storing, and analyzing the data.
On detached berries, collected at different fruit growth and ripening stages in both exper-
imental years (2019 and 2020), spectral readings were acquired. Details on sampling are
reported in the following paragraphs. The radiation emitted by the instrument hit the berry
and the reflected light was detected by the SCiO™ sensor. The acquired response spectrum
(740–1070 nm) was visible on the smartphone (Bluetooth acquisition) and sent to the SCiO™
cloud database for successive analyses. The calibration operation was performed daily
by means of the reference tool (a white tile present inside the sensor cover) provided by
the producer [5].

2.3. Berry Sampling and Analyses

The trial was performed over two years: in the first year (2019) the analyses were car-
ried out only on Cotton Candy™ in order to conduct a pre-investigation for the affordability
of the data. A total of 300 berries were collected and analyzed from 12 July to 2 September
2019; 200 berries were used for model calibration and 100 berries for the external model
validation. In the second year (2020), the trial was carried out on the four cultivars and
235 berries for each cultivar were collected from June until September (during the whole
season); for each cultivar, 175 berries were used for model calibration and the remaining 60
berries for the external model validation. In both years the berries were collected at various
development and maturity stages at 7–10 days interval from the stage of berry growth until
ripened for harvesting. Berries to be picked up were chosen to be representative of the
conditions observed (color, size, TSS) in the vineyard at each sampling time. Spectral data of
each single berry were acquired under laboratory conditions by means of the SCiO™ sensor
(v1.2), followed by destructive analysis for the determination of berry quality parameters
(TSS, TA, and pH). For each sample acquisition, three scans per berry were performed at
different locations around the equator, approximately 120◦ apart, at a distance <0.5 cm
from the device. Regression models were developed through the combination of both
quality parameters and spectral data in order to verify the measured quality attributes with
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an instant estimation. The predicted (SCiO™ sensor) and measured (chemical analysis)
quality parameters were compared to assess the model prediction performances.

The TSS (%) of the juice collected from each berry was measured by means of a
hand-held, digital refractometer HI96814 (Hanna Instruments, Woonsocket, RI, USA). For
titratable acidity (TA) expressed as grams of tartaric acid per liter of juice and pH, 1 mL
of juice extracted from each berry was diluted with 49 mL of distilled water, and then the
mixture was titrated against 0.1 N standard NaOH to reach an end point of pH 8.1 with an
automatic titrator (PH-Burette 24, Crison Instruments, Barcelona, Spain).

2.4. Data Analysis

The analysis of the spectral data was performed by means of the SCiO™ Lab online
interface. To develop a model for the quality attribute of interest, the data for the pre-
processing techniques are first identified and then through the option “Create Model”,
model generation is initiated [5]. The software includes the selection of some pre-processing
techniques such as mean centering, first or second order derivation, logarithmic transfor-
mation, and standard normal variate (SNV). In addition, the software allows creating
prediction models through different multivariate statistics and machine learning methods
such as partial least squares regression (PLSR), clustering analysis and Random Forest. In
a previous study, model performance of the SCiO™ Lab online interface was compared
with that obtained with the widely used software for chemometric analysis and a similar
predictive performance was obtained [5].

Common pre-processing operations for spectral data are smoothing, denoising, de-
trending, logarithmic transformation, differentiation, and scatter correction methods such
as first- and second-order derivatives, multiplicative signal correction (MSC) and standard
normal variate (SNV) transformation. Logarithmic transformation is widely used in biome-
try when data are strongly skewed and follow a log-normal distribution. In this case, the
log transformation reduces the skewness effectively, while when the dataset is far from a
log-normal distribution, the transformation can even introduce more skewness [6].

Differentiation is widely applied in spectroscopic studies to enhance spectral resolution
and to eliminate background effects [45]. The standard normal variate (SNV) method aims
to transform each spectrum data obtaining a new variable with zero mean and standard
deviation equal to one [43]. Each spectrum is first centered in zero and then divided by
its standard deviation so absorbance levels can be easily analyzed and compared. This is
extremely useful in presence of changes in optical path length and light scattering since
the standard deviation of the spectra represent these changes [46]. On the other hand, the
multiplicative effects are not uniform over the absorbance response, so SNV can introduce
false artifacts [46]. In general, the first derivative allows removing additive baselines;
meanwhile the second derivative eliminates a multiplicative one. The SNV transformation
also removes the additive and multiplicative baselines with no shape change in the spectra,
but it results more sensitive to the chemical composition [46].

In this study, different combinations of pre-processing techniques were compared on
data collected during the first year (2019) and the best combinations were selected for the
model calibration considering the best performance.

The model was then developed on the cloud database through the partial least squares
regression (PLSR) algorithm. PLSR is a multivariate regression method combining features
from Principal Components Analysis) (PCA) and multiple linear regression [42].

The method aims to find the relationship, by means of a linear multivariate model,
between one (PLS1) or multiple dependent variables (PLS2), named response variables,
and a set of independent variables, named predictors. Then, the prediction is based on a
set of orthogonal factors which are a linear combination of the original variables, named
latent variables, with the best predictive potential. For this reason, this method is also
called projection to latent structures, and it was first applied in social sciences, then in
chemometrics and sensory evaluation [47]. The definition of the optimal number of latent
variables is critical for the method efficiency. The adaptation goodness of the model on
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the response data increases with a high number of elements as long as there is a risk of
overfitting.

The SCiO™ software can select the number of latent variables automatically for
each model, so it is possible to compare the number of the chosen components in the
different models.

Once the model is calibrated using a training/calibration dataset, it requires a valida-
tion phase in which another dataset is tested in order to evaluate the predictive accuracy [48].
The performance of the calibration models was evaluated by means of Root Mean Square
Error (RMSE), coefficient of determination (R2), and Residual Prediction Deviation (RPD)
as well as the number of latent variables.

Specifically, the Root Mean Square Error (RMSE), also known as the Root Mean Square
Deviation, is referred to as the distances, in vertical direction, between the original dataset
and the prediction model; the lower the value, the better the performance of the model.

The R2 indicator or coefficient of determination is used to measure how the model
fits the data assuming a zero value in case the model is completely far from the data
distribution and a value equal to one in case the model describes the data perfectly. An
R2 value between 0.66 and 0.81 provides approximate quantitative predictions, meanwhile
a value above 0.82 indicates good predictions [49,50].

The RPD refers the prediction accuracy and is expressed by the standard deviation of
the dataset over the RMSE [51].

RPD =

√
∑n

i=1(yi−y)2

n−1

RMSE
(1)

The higher the RPD values the greater the power of the model to predict unknown
samples accurately [5]. Usually, an RPD value below 1.5 indicates that the model cannot
be used to describe the dataset, while values between 1.5 and 2.0 indicate that the model
is able to discriminate low from high values of the response variable adequately; values
between 2 and 2.5 indicate that approximate quantitative predictions are possible. For
values between 2.5 and 3.0 and above 3.0, the prediction is classified as good and excellent,
respectively [5,52–54].

The 2019 study was focused on the comparison between the model performance
obtained with the raw spectra and the transformed spectra after the application of a
combination of the above-mentioned pre-processing techniques for the estimation of TSS,
pH and titratable acidity in Cotton Candy™. This analysis was performed five times on
four sample groups (3 for the calibration and one for the prediction) The four combinations
of the pre-processing techniques considered the use of the first or second derivative with or
without the logarithmic transformation:

1. Logarithmic transformation (LOGT), first derivative (FD), and SNV;
2. Logarithmic transformation (LOGT), second derivative (SD), and SNV;
3. First derivative (FD) and SNV;
4. Second derivative (SD) and SNV.

From the results of this analysis, the two best combinations for each parameter were
used to build the prediction model. Specifically, the first three sample groups were used to
build the model and the fourth to validate it.

The 2020 experiment was focused on the study of the evolution of the TSS (%) in the
four cultivars. For this analysis, TSS were monitored from June to September, providing
ripening curves of each cultivar and the relative datasets for the prediction models.

3. Results and Discussion

The SCiO™ Lab online interface allows to visualize raw and pre-processed spectral
data, to duplicate and merge datasets, and data download and upload. However, the
interface presents limited capability for manipulation and statistical analysis of spectra
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data. Nonetheless, the application of NIR spectroscopy for predicting the table grape
ripening quality parameters during the two seasons by means of the portable device SCiO™
sensor allowed to reach promising results.

The data of the 2019 experiment about the comparison between pre-processing opera-
tions and data collected on TSS, pH, and TA of Cotton Candy™ are shown in Table 1. The
predictive performance for TSS estimation of Cotton Candy™ in 2019 from NIR spectral
data collected by means of the SCiO™ sensor was acceptable. In the calibration set of 2019,
the TSS (%) values for Cotton Candy™ ranged from 12.3 up to 19.8, acidity from 9.15 down
to 3.30 (g/L of tartaric acid) and pH from 3.35 to 4.20. In the validation set, TSS values
were from 12.5 up to 19.2, acidity from 9.63 down to 3.30 (g/L of tartaric acid) and pH from
3.31 to 4.20.

Table 1. Comparison between pre-processing operations on TSS, pH, and titratable acidity (TA) of
Cotton Candy™ in the season 2019. In grey background the best pre-processing combinations.

Parameter STD Pre-Processing
Combination RMSE R2 RPD N Latent

Variables

TSS 2.63

Raw Spectra 0.69 0.93 3.80 10
LOGT, FD, SNV 0.68 0.93 3.90 10
LOGT, SD, SNV 0.69 0.93 3.83 6

FD, SNV 0.68 0.93 3.88 10
SD, SNV 0.96 0.93 2.74 7

pH 0.32

Raw Spectra 0.07 0.95 4.37 10
LOGT, FD, SNV 0.06 0.96 4.98 12
LOGT, SD, SNV 0.07 0.95 4.62 6

FD, SNV 0.06 0.95 5.06 12
SD, SNV 0.07 0.96 4.76 7

TA 2.38

Raw Spectra 0.47 0.96 5.06 12
LOGT, FD, SNV 0.51 0.96 4.72 9
LOGT, SD, SNV 0.52 0.95 4.59 6

FD, SNV 0.49 0.96 4.90 10
SD, SNV 0.52 0.95 4.59 10

Generally, a good predictive model should have low RMSE values, an R2 as close
as possible to 1.0, and a RPD over 2.5; therefore the results in Table 1 showed that the
parameter with the lowest value of RMSE was pH, with a mean value around mRMSE ≈ 0.07.
The acidity is the parameter with the R2 closest to 1.0, with an average R2 of mR2 ≈ 0.95,
and with the highest mean RPD value of mRPD ≈ 4.77.

The R2 value for TSS (0.93; Table 1) was much better with respect to previous studies
on other fruit such as feijoa and apple and similar to kiwifruit [5] and other table grape
cultivars [35]. Using NIR sensors in wavelength ranges of 780–1700 nm and 680–1000 nm
on pear studies, the correlation coefficients resulted of 0.60 and 0.68, respectively, for
TSS [55,56]. Higher R2 values (>0.9) similar to this trial have been reported for kiwifruit
using a spectral range from 800 to 1100 nm in McGlone and Kawano [57] and for grape
using a spectral range from 800 to 2500 nm [58] but with non-portable devices. The
RMSE (0.68) was similar to that reported by McGlone et al. [25] for Royal Gala apple (0.72)
and by Donis-González et al. [35] for table grape, but higher than the values obtained
by Nicolaï et al. [55] for pear (0.44), Travers et al. [56] for pear (0.62), and McGlone and
Kawano [57] for kiwifruit (0.39). However, comparisons between models calibrated with
different datasets should be carefully considered even if the same spectral range is covered.
In order to ensure a more robust comparison, the same calibration conditions must be
kept, i.e., similar number of samples, same cultivar, and same TSS range. Thus, the results
of the present study with four cultivars during the ripening process should be carefully
compared with other studies with different cultivars and sample size when using different
NIR devices [59]. In fact, the present data are in agreement with what was recently reported
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for three table grape cultivars, Autumn Royal, Timpson Seedless, and Sweet Scarlett [35],
using the same SCiO™ sensor.

All combinations of pre-processing operations guaranteed good results with no large
differences even though the use of the first derivative followed by the SNV revealed the
best results as reported by Donis-González et al. [35] for other seedless table grape cultivars.
Looking at the number of latent variables, it decreases evidently by means of the second
derivative, which consequently offers lower computational resources maintaining the same
level of performances.

From Table 1, the two highlighted rows with the best performances for each parameter
were extracted and used for the evaluation of PLSR accuracy, obtaining the results presented
in Table 2.

Table 2. PLSR accuracy on grape parameters by means of the best combinations of pre-processing
techniques in the season 2019.

Parameter STD Pre-Processing
Combination RMSE R2 RPD

◦Brix 7.88
LOGT, FD, SNV 0.60 0.95 13.10

FD, SNV 0.62 0.94 12.70

pH 1.82
LOGT, FD, SNV 0.07 0.96 26.05

FD, SNV 0.07 0.96 26.05

TA 2.92
Raw Spectra 0.46 0.97 6.35

FD, SNV 0.40 0.97 7.30

Table 2 showed that the best accuracy belongs to pH with low STD and RMSE, an R2

close to 1 and a RPD over 20. The good estimation of table grape TSS is probably a conse-
quence of the thin skin of the berry which allowed a good accuracy of the measurements
because of appropriate light penetration in the pulp of the berry (where sugars are mainly
located) with respect to fruits with thicker skin (feijoa, orange, etc.). Similar values have
been reported for other table grape cultivars [35].

The depth of penetration of NIR applied on fruits is about 2–3 mm in the range of
900–1900 nm but it can reach up to 4 mm at a shorter wavelength (i.e., 700–900 nm). In the
present study, the depth is consequently around 3–4 mm considering the wavelength region
of the sensor (740–1070 nm). Hence, the obtained spectra data were directly correlated to
the properties of fruit pulp (outer layers) and skin with a positive effect on the accuracy of
both calibration and prediction performance.

The correlation between NIR measurements and the pH was even better than for TSS
with a higher R2 (0.96) and very low RMSE (0.06) values (Table 1). These results were
much better than those reported by Gómez et al. [60] in mandarin (R2 = 0.8; RMSE = 0.18)
or reported for Fuji apple (R2 = 0.87; RMSE = 0.21) by Pourdarbani et al. [14] but using
different NIR devices.

The goodness of fit observed for the model estimating the TA was also very high
(Table 1). McGlone et al. [25] obtained lower significance for apple (R2 = 0.38; RMSE = 11.1),
whereas Maniwara et al. [61] reported promising results (R2 = 0.68–0.83; RMSE = 0.22–0.29)
in passion fruit but lower than what we found in our data, probably for the thicker skin
of passion fruit with respect to berry grape. The good pH and TA predictions are also
consequence of the thin skin and presence of organic acids also in the skin and outer layers
of the pulp.

The obtained calibration models resulted suitable for characterizing the ripening of
Cotton Candy™, since the variations in the quality parameters observed in this study
resulted sufficiently wide for an optimal harvesting of the grapes.

In 2020, the TSS measurements were collected for each of the four cultivars, then the
datasets were used to calibrate and validate the relative models. Data were also used to
create the ripening curves of each cultivar (see Figures 1 and 2).
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Figure 2. TSS (◦Brix) evolution in Allison™ and Autumncrisp® in the season 2020.

A comparison between the pre-processing techniques for the four cultivars is pre-
sented in Table 3; the PLSR accuracy of the best combinations is shown in Table 4. In the
calibration set in 2020, the TSS values for Cotton Candy™ ranged from 3.5 up to 17.6%, for
Allison™ ranged from 3.3 up to 19.7%, for Autumncrisp® ranged from 4.5 up to 17.9%, and
for Summer Royal ranged from 4.0 up to 17.6%. In the validation tests, values of TSS were
3.6–16.4% for Cotton Candy™, 3.9–19.3% for Allison™, 5.0–16.9% for Autumncrisp®, and
4.1–19.2% for Summer Royal. In the calibration models, it is possible to note that the best
performances are reported for Autumncrisp®, with an RMSE average of mRMSE, Aut = 0.50
and consequently a high RPD over 2.5. Nonetheless, all cultivars showed an excellent
R2 value ranging between 0.97 and 0.98. From the computational point of view, all the
pre-processing techniques increased the efficiency of the prediction decreasing the number
of latent variables successfully. The best combinations among the pre-processing tech-
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niques always include the logarithmic transformation (LOGT), first (FD) and second (SD)
derivative, and standard normal variate (SNV). The major peaks are present at 950–1000 nm
in correspondence of a wavelength range of O-H 2nd overtone and N-H 2nd overtone,
that represents NH2 functional groups and H2O, ROH, and ArOH (with OH bond on the
aromatic group) [62,63].

Table 3. Comparison between pre-processing techniques for each cultivar in the season 2020. In grey
background the best pre-processing combinations.

Parameter STD Pre-Processing
Combination RMSE R2 RPD N Latent

Variables

Cotton
Candy™ 4.37

Raw Spectra 0.67 0.98 6.53 6
LOGT, FD, SNV 0.60 0.98 7.29 3
LOGT, SD, SNV 0.63 0.98 6.88 3

FD, SNV 0.59 0.98 7.42 3
SD, SNV 0.61 0.98 7.21 4

Allison™ 5.07

Raw Spectra 0.96 0.97 5.26 7
LOGT, FD, SNV 0.77 0.98 6.56 4
LOGT, SD, SNV 0.87 0.97 5.82 4

FD, SNV 0.88 0.97 5.77 5
SD, SNV 0.91 0.97 5.57 5

Autumncrisp® 3.43

Raw Spectra 0.61 0.97 5.64 6
LOGT, FD, SNV 0.44 0.98 7.75 4
LOGT, SD, SNV 0.43 0.98 8.06 4

FD, SNV 0.54 0.98 6.38 4
SD, SNV 0.50 0.98 6.83 4

Summer
Royal 4.41

Raw Spectra 0.72 0.97 6.14 7
LOGT, FD, SNV 0.57 0.97 7.69 4
LOGT, SD, SNV 0.59 0.98 7.55 5

FD, SNV 0.61 0.98 7.30 4
SD, SNV 0.66 0.98 7.70 5

Table 4. PLSR accuracy for each cultivar by means of the best combinations of pre-processing
techniques in the season 2020. In grey background the best pre-processing combinations.

Cultivar STD Pre-Processing
Combination RMSE R2 RPD

Cotton
Candy™ 5.09

LOGT, FD, SNV 0.68 0.97 7.48
FD, SNV 0.69 0.97 7.37

Allison™ 6.26
LOGT, FD, SNV 0.72 0.97 8.70
LOGT, SD, SNV 0.84 0.96 7.45

Autumncrisp® 5.83
LOGT, FD, SNV 0.66 0.95 8.84
LOGT, SD, SNV 0.60 0.96 9.72

Summer
Royal 5.91

LOGT, FD, SNV 0.88 0.95 6.72
LOGT, SD, SNV 0.83 0.96 7.12

These groups are related to major constituents of water and sugars such as glucose,
fructose, and sucrose of grape. TSS mainly represents sugars but also, to a less extent,
other organic molecules (i.e., vitamins, amino acids, hormones, etc.) containing C–C,
C–O, O–H, and C–H bonds, and an NIR spectroscopy can be used for a non-destructive
measurement [62,64]. After pre-processing of the spectra data, a separation among the
different sampling dates appeared in the pre-treatment spectra profiles for each cultivar,
as shown in Figure 3. This suggests that the growing and ripening stages (indicated by
the TSS values) of table grape berries can be successfully differentiated in the range of
740–1070 nm by pre-treatment processes.
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The principal component analysis (PCA) was used to detect cluster trend in the
spectra data while the pre-processing identified a separation with clear cluster trend as
reported in Figure 4 for each cultivar. PCA was able to either separate berries collected at
different times during ripening, with differences also among the cultivars, or to determine
the primary phenomena in the spectra dataset [65]. Table grape cultivars change their
chemical compositions during ripening which allow a discrimination either among the
stages or cultivars.

A partial least squares regression (PLSR) model was used for the determination of
TSS for all the cultivars (Figure 5) and the measured values reported a linear correlation
with NIR predictions. As reported in Table 4, the best pre-processing combinations resulted
LOGT-FD-SNV for both Cotton Candy™ and Allison™, and LOGT-SD-SNV for both
Autumncrisp® and Summer Royal. These data for the four cultivars indicate that proper
pre-processing techniques are useful to improve the accuracy of the PLS model [66]. After
the pre-processing techniques used (LOGT, FD or SD, SNV), the multivariate models
obtained with NIR measurements predicted the TSS (%) values.

Autumncrisp® resulted in the cultivar with the lowest RMSE and the highest RPD
(Table 4) in the prediction model, whereas Summer Royal was the cultivar presenting the
lowest prediction accuracy. Nevertheless, all the cultivars allowed to build excellent PLSR
models with a RPD value over 6. In line with the results of the TSS range analysis, it seems
clear that absolute error indexes such as RMSE are able to provide a higher reliability than
R2 in the evaluation of the model performance through different datasets. Therefore, the
RMSE can be preferred to R2 when the prediction accuracy is evaluated for short time
periods [59,67].

Since we did not use internal cross validation to assess the performance of the models,
but instead an independent dataset (test) from a sample apart from the calibration dataset,
the results provide a more realistic reliability of the device for the prediction of unknown
samples of ripening table grape berries. The robustness of calibration models across
orchard blocks and between seasons represents a critical issue for determining the use of
non-destructive techniques [68] and consequently should not be overlooked. The predictive
accuracy of the SCiO™ sensor can be affected by the homogeneity and surface properties
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of the fruit, the nature of the data collected, and wavelength range; hence a large sample
should be used across the orchard and the point of illumination should be carefully chosen
avoiding points with damages, diseases, sunburn, etc. SCiO™ sensor performed well for
the determination of dry matter in apple fruit with an RMSEP value of 0.45, very close
to a benchtop spectrophotometer (0.451), but poorly with dry matter of kiwifruit [31].
However, for the four table grape cultivars investigated in the current study, qualitative
analysis of ripening showed interesting results. The capability of this device to distinguish
berries for TSS, pH and acidity demonstrated the potential for portable NIR spectroscopy
to be used as a sorting/grading tool both in the field and in the factory. From a farmer’s
point of view, the spatial variability of TSS accumulation during the season, when used in
combination with a GPS system, can allow the geo-referencing of the measurements for the
different locations/cultivars/blocks of the vineyard/farm. This information can also be
very important in the application of precision viticulture strategies aimed at performing
selective harvesting, not only for table grape but also for wine grape cultivars. Data on
two tomato selections indicated that the SCiO™ can be also used for the prediction of
firmness, dry matter and TSS with good to high accuracy for TSS with R2 of 0.92 and
RMSE of 0.453 [69] and dry matter content was recently predicted in avocado fruit where a
prediction R2 of 0.71 was obtained [70]. The SCiO™ correctly predicted 100% of adulterated
samples (with salt, sawdust, or starch) and 95.6% of the authentic coriander samples in a
recent study in order to be used as screening and rapid technique directly on site rather
than in lab [30].
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The SCiO™ sensor, when compared with lab spectrophotometers, showed good
performances, generally with lower R2 or higher RMSEP, and can be considered to predict
some fruit quality parameters as recently reported for mango firmness [71]. The laboratory-
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based spectrophotometers have lower errors because of a broader spectral range captured,
covering the 1st, 2nd, and 3rd overtones of the N–H, O–H and C–H bonds whereas the
SCiO™ is able to capture only the 740–1070 nm range thus explaining 3rd overtones
of bonds [71]. Despite the positive aspects of the handheld SCiO™ sensor, its spectral
range is limited with a consequent lack of absorption information related to the presence
of carbohydrates, starch, or other possible components which can be better detected by
laboratory NIRS instruments [72], and it probably limits the predictive ability for complex
nutritional parameters [73], such as mineral content in fruits. Minerals, unlike organic
molecules, can only be detected if chelated in organic complexes or indirectly in case there is
an effect on hydrogen bonds [74]; however, when their form is inorganic, the identification
and prediction is difficult [72].

However, when a good model performance is associated with portability, ease-of-
use, low cost, ability to use with mobile phones and a connected cloud framework, the
SCiO™ sensor (or similar devices) can be a valid alternative to traditional laboratory-based
spectrophotometers [70] to be used by a wide number of users.

The chemometric indexes for TSS models of the four cultivars indicated that the
NIR spectra region (740–1070 nm) was able to predict the TSS across the range of 3.6–
19.3% and can be used for non-destructive determination of TSS quality attributes in fresh
table grape cultivars. More chemometrical information is also available at the higher end
of the NIR spectrum (1150 to 2500 nm), but although the SCiO™ is not able to acquire
such wavelengths, data resulted affordable for some qualitative characteristics of table
grape cultivars.

Apart for prediction for fruits and other horticultural products, the SCiO™ can pro-
vide a rapid prediction for the content of both intact casein and total protein in cheddar
cheese [75]. The SCiO™ sensor was also successfully applied for the determination of total
and gelatinized starch in dog food and partially for S and K content, whereas it was not
useful for insoluble fibers and other mineral elements which showed RPD values much
lower than what we found in our data [72].

The model failure for fresh fruit is commonly related to a high biological variability
which can be related to several factors such as: cultivars, sites of cultivation, cultural
practices, season of harvest, ripening stages of fruit, and storage conditions [37,76,77].
Consequently, a natural solution to deal with the calibration failure is to measure a wide
range of samples from different cultivars and harvesting seasons (2–3 seasons) and devel-
oping/ripening stages to calibrate global models to be used worldwide.

4. Conclusions

A portable device such as SCiO™ can support the non-destructive prediction of
table grape TSS, together with pH and TA. Rapid estimation of such quality and ripening
parameters with portable sensors are effective tools for the ripening protocols of table
grape, thus, improving the whole supply chain and reducing both costs and fruit losses
along the supply chain. Predictive models can be used for estimate quality/ripening
parameters thus supporting agronomical consultants, farmers, and retailers to obtain clear
information of the ripening status of the grapes with fast and on-site monitoring. Moreover,
this method is non-destructive, therefore it allows to collect many data without losing or
destroying the berry. Generally, the most robust combination with the best performances
was represented by the use of the logarithmic transformation, the first/second derivative,
and SNV operation.

The use of these models, which can be easily imported into mobile phone technology,
definitely has a high potential for effective, rapid, and simple application in many fields
(orchards, post-harvest, retailers, etc.), and may be the road to the future.
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