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Abstract: The objective of this study was to investigate the plant vegetative growth, flower produc-
tion, nitrogen (N) concentration, and carbohydrate compositions of Encore® azalea ‘Chiffon’ when
fertigated with five N rates—0, 5, 10, 15, and 20 mM N—and grown in two types of containers, a black
plastic and a biodegradable container, during one growing season. Foliar urea of 3% was applied
to half of the plants in late fall to investigate its effect on plant N and carbohydrate concentrations.
The paper biocontainers resulted in superior plant growth, increased plant size, dry weights, root
length and surface area compared with the plastic containers with N rates of 10, 15, and 20 mM. The
paper biocontainers also increased N uptake and carbohydrate concentrations mainly by increasing
plant biomass. High N rates of 10 to 20 mM combined with urea spray and biocontainers generally
resulted in the highest plant N concentrations. Foliar urea application in late fall tended to increase
plant N concentration but decreased carbohydrates, including starch, glucose, fructose, and sucrose,
to varying degrees, likely due to increased N assimilation. Fall foliar urea spray can be effective in
improving the N status of azalea plants without affecting plant biomass.

Keywords: Rhododendron sp.; nitrogen fertilization; urea application; biodegradable container

1. Introduction

Azalea (Rhododendron sp.) is one of the most popular woody perennial ornamental
species in the United States (U.S.), with numerous named cultivars. In 2015, 3.69 million
azalea plants were sold in pots in the U.S., with a market value of USD 18.3 million [1].
Encore® azalea is a series of branded and patented azaleas, and a popular choice for
landscapes because of its good sun tolerance and ability to produce flowers in spring,
summer, and fall [2].

Nitrogen fertigation affects plant N concentration and alters total nonstructural car-
bohydrates in plants, both of which are important nutrient reserves in sustaining plant
growth [3–5]. Cheng et al. [5] concluded that sufficient N supply during the current season
was crucial to sustaining the plant growth and fruit development of ‘Concord’ grape (Vitis
labruscana Bailey). Both plant biomass and N content increased with increasing N fertiga-
tion rate in big leaf hydrangea ‘Merritt’s Supreme’ (Hydrangea macrophylla) [4,6]. In addition,
N concentration in both stem and root tissues were found to be positively correlated with
N fertigation rate in ‘Nonpareil’/’Nemaguard’ almond (Prunus dulcis) trees [3].

The appropriate application rate of nitrogen has long been an issue for commercial
growers aiming to optimize plant growth and minimize the run-off of N fertilizer. Gastal
and Lemaire [7] concluded that N uptake under sufficient N supply was largely driven
by internal plant regulation, i.e., plant growth rate. Therefore, a dwarf cultivar with a low
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growth rate may have a relatively lower N requirement than a cultivar with higher growth
rate within a species. The nutrient uptake of a given species is also subject to a number of
growing conditions, including irrigation methods and temperature conditions [6,8–11].

Foliar spray of urea was applied to a number of plants to increase N reserves and
improve spring growth [4,12,13]. Bi et al. [4] reported that urea sprays in the fall can be
as effective as N fertilization in the spring for improving the growth and flowering of
Hydrangea macrophylla ‘Merritt’s Supreme’. Xia and Cheng [13] reported that concentrations
of both free-amino-acid N and protein N in one-year-old ‘Concord’ grapevines increased in
response to the foliar application of urea. Urea spray was also reported to alter nutrient
uptake, including increased phosphorus (P), copper (Cu), and manganese (Mn), and a
decreased uptake of potassium (K) and magnesium (Mg) during the following growing
season after fall application [14]. Nitrogen reserves from the previous fall were considered
important in promoting new growth for the following spring [15]. The effect of foliar urea
spray on nitrogen and carbohydrate status on reblooming Encore azaleas remains unclear.

Alternative containers made from biodegradable materials, such as paper, feather, peat,
and coir, have been investigated in recent years to reduce the use of traditional petroleum-
based plastic containers and to improve consumer perception of sustainable practices
in ornamental plant production [16–20]. Biocontainers made from different materials
have been investigated under various production systems and were reported to have
varying influences on plant growth and water consumption characteristics [21–25]. Most
biocontainers produced plants of a similar quality as their plastic counterparts [26–28].

The objectives of this study were to: (1) investigate the plant growth and N status
of Encore® azalea ‘Chiffon’ in response to different N fertigation rates; (2) investigate the
influence of fall foliar urea spray application on plant N and carbohydrate concentrations;
and (3) investigate whether use of biocontainers alters plant responses to N rate and
urea treatment.

2. Materials and Methods
2.1. Plant Culture

On 9 April 2013, one-year-old Encore® azalea ‘Chiffon’ liners were transplanted into
two types of one-gallon containers: a black plastic container (treatment abbreviated as P)
(GL 400; Nursery Supplies® Inc., Chambersburg, PA, USA) and a biodegradable container,
also referred as biocontainer, made from a recycled paper mix (treatment abbreviated as B)
(Western Pulp Products Co., Corvallis, OR, USA). The cultivar ‘Chiffon’ was a dwarf Encore
azalea cultivars, selected to accommodate this study in one-gallon containers. Composted
pine bark (100%) amended with 0.59 kg·m−3 lime was used as the growing substrate. All
plants were grown in full sun at Mississippi State University in Starkville, Mississippi,
USA (lat. 33.4552◦ N, long. 88.7944◦ W). Azalea plants were manually fertigated with
250 mL of nutrient solution twice a week from 23 April to 15 September 2013. The nutrient
solution contained a N-free fertilizer (Cornell No. N Eq. 0-6-27; GreenCare Fertilizers,
Kankakee, IL, USA) at a rate of 1.06 g·L−1 with Mg and micronutrients, the formula of
which was specified in Li et al. [6]. The nutrient solution also contains one of the five N
rates of 0, 5, 10, 15, or 20 mM N sourced from NH4NO3 (granular/certified ACS, Fisher
Scientific, Waltham, MA, USA) (N fertigation treatments abbreviated as N0, N5, N10, N15,
N20, equivalent to 0, 70 mg·L−1, 140 mg·L−1, 210 mg·L−1, and 280 mg·L−1 N, respectively).
At each fertigation event, concentrations of the N-free fertilizer and NH4NO3 solution
were prepared separately, mixed in appropriate ratios to achieve each N rate, and then
used immediately after preparation. In addition to the fertigation treatment, irrigation
was provided as needed using a drip irrigation system. On 5 November, 210 days after
transplanting (DAT) and 196 days after N fertigation treatment, half of the plants from each
treatment were sprayed once with 3% urea (98+%, Thermo Scientific, Waltham, MA, USA)
(urea treatment abbreviated as U) to the point of runoff, as described by Bi et al. [4]. As
a control, the remaining half of the plants were sprayed with a similar amount of water
(no-urea treatment abbreviated as W).
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2.2. Growth Measurements

Plant size was evaluated by plant growth index (PGI), which is the average of plant
height and widths from two perpendicular directions measured biweekly, with the last
measurement at 211 DAT. Relative leaf chlorophyll content was estimated by leaf SPAD
values using a chlorophyll meter (SPAD 502 Plus; Konica Minolta, Inc., Osaka, Japan) every
two weeks with the last measurement at 206 DAT. Three readings were measured from
three recently expanded leaves and averaged to represent the leaf SPAD of a given plant.
Flower number on each plant was counted during the season, and the total flower counts
per plant were summed up to evaluate flower production.

Azalea plants were destructively harvested, cleaned and rinsed with deionized water
until free from substrate on 7 December 2013 (242 DAT), 32 days after the urea application.
Each plant was then separated into three structures: roots, stems, and leaves. Leaf area
of each plant was measured using a leaf area meter (LI-3100C; LI-COR Inc., Lincoln, NE,
USA). Three plant roots from each treatment were scanned for total root length and surface
area using an EPSON® Expression 10000XL scanner (Epson America, Inc., Long Beach, CA,
USA) and analyzed using the WinRHIZO software (Regent Instruments Inc., Québec City,
QC, Canada). Then, each plant sample was stored at −80 ◦C before being freeze dried.
Dry weight of each sample was recorded after being freeze-dried to constant weight. Dry
weights of leaves, stems, and roots of a given plant were summed up to calculate total plant
dry weight.

2.3. Nitrogen Analyses

Each dry sample was ground to pass through a 40-mesh (0.42 mm) sieve for subsequent
nutrient analyses using a Wiley mini mill (Thomas Scientific, Swedesboro, NJ, USA). A 9 to
11 mg dry sample was used for total N analyses with a dry combustion method using a
Vario EL III elemental analyzer (Elementar Americas Inc., Mt. Laurel, NJ, USA) [29]. For
each structure, nitrogen content was estimated by multiplying the dry weight of a sample
by its corresponding N concentration. Nitrogen content from the leaves, stems, and roots
of a given plant were then summed to estimate total plant N content. Average plant N
concentration was calculated by dividing the total plant N content by the total dry weight
of each plant.

2.4. Analysis of Starch

Starch extraction followed the procedure described by Smith and Zeeman [30] with
modifications. Briefly, 1.5 mL of 80% ethanol was added to 0.1 g of each freeze-dried
sample. Samples were then vortexed and placed in a water bath at 70 ◦C for 30 min before
being centrifuged at 14,000 rpm for 10 min. The supernatant was carefully decanted. This
procedure was repeated three times. Then, the samples were placed into a fuming hood
with the caps open to allow the alcohol to dry overnight and provide dry residue for starch
analysis. Then, 1 mL of 100 mM sodium (Na)-acetate buffer with a pH of 4.5 was added to
the dry residue, then vortexed. The samples were placed in a boiling water bath for 15 min
and then cooled to room temperature. Next, 0.5 mL of amyloglucosidase solution (with
30 units dissolved in Na-acetate buffer) was added to each sample. Samples were vortexed
and then incubated in a water bath for 10 to 12 h at 55 ◦C to digest starch into glucose. After
incubation, samples were centrifuged at 14,000 rpm for 10 min at room temperature, and
0.8 mL of supernatant was transferred to a new tube. Starch-derived glucose was quantified
using an Agilent Technologies 1260 series High Performance Liquid Chromatography
(HPLC) with an evaporative light scattering detector (ELSD), and each resulting value is
used to represent starch concentration as described by Barickman et al. [31].

2.5. Analyses of Sugars

Soluble sugars were extracted according to the methods described by Barickman
et al. [31]. Briefly, 0.1 g of dry tissue sample was weighed into a 16 × 100 mm2 glass culture
tube. Then, 1 mL of reverse osmosis water was added to the sample, and the mixture
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was centrifuged at 14,000 rpm for 10 min after being horizontally shaken for 15 min at
200 rpm. After centrifuging, 500 µL of supernatant was transferred into a 2 mL micro
tube, and 0.7 mL acetonitrile was added to the supernatant. The mixture was kept at
room temperature for 30 min and centrifuged at 14,000 rpm for 10 min. Then, 500 µL
of supernatant was transferred into a new glass tube and dried. The dried sample was
dissolved in 500 µL of 75% acetonitrile and filtered into an HPLC glass vial. Concentrations
of glucose, fructose, and sucrose were quantified using an Agilent Technologies 1260 series
HPLC with ELSD, as described by Barickman et al. [31].

2.6. Experimental Design and Data Analyses

This experiment utilized a randomized complete block design (RCBD) with five repli-
cations and a factorial arrangement of treatments. The three experimental factors included
N fertigation rate (5 rates), container type (2 types), and urea (with or without urea), result-
ing in 20 treatment combinations. PGI, SPAD, and flower count data were collected prior
to the urea application, and were therefore not subject to urea effect. Significance of main
effects and interactions was examined with the analysis of variance (ANOVA) using the
PROC GLMMIX procedure of SAS (version 9.4; SAS Institute Inc., Cary, NC, USA). Where
indicated by ANOVA, means were separated by Tukey’s honest significant difference (HSD)
at p ≤ 0.05.

3. Results
3.1. Plant Size, Leaf Area, and Dry Weights

The plant growth index (at 211 DAT), leaf area, and dry weights (in leave, stems,
roots, or total plant) were affected by the interaction between the N rate and container type
(Table 1). Azalea plants grown in biocontainers and fertilized with 10, 15, and 20 mM N had
the highest PGI at 211 DAT (Table 1). Generally, N rates of 10 to 20 mM resulted in higher
PGI than 0 or 5 mM N in each container type. Biocontainers increased PGI compared with
plastic containers with each N rate from 10 to 20 mM.

Table 1. Plant size, leaf area, dry weights, and root growth of Encore® azalea ‘Chiffon’ affected by
the N rate and container type interaction.

Dry Weights

N Rate Container 1 PGI 2,3 Leaf Area Leaf Stem Root Total Plant Root Length Root
Surface Area

(mM) (cm2) (g) (g) (g) (g) (cm) (cm2)

0 Biocontainer 10.8 f 21 d 0.23 d 1.48 d 1.63 ef 3.34 d 3653 de 202 de
Plastic 12.8 e 25 d 0.27 d 1.80 d 1.36 f 3.43 d 2602 de 130 e

5 Biocontainer 15.9 cd 149 c 1.61 bc 2.72 c 3.19 c 7.52 bc 5541 c 348 c
Plastic 15.1 d 123 c 1.24 c 2.75 c 2.38 d 6.36 c 3510 de 209 de

10 Biocontainer 22.7 a 399 a 4.31 a 5.40 a 5.89 a 15.61 a 8016 a 599 a
Plastic 18.2 b 218 b 2.16 b 4.15 b 3.25 c 9.56 b 3740 d 269 cd

15 Biocontainer 21.9 a 360 a 3.87 a 5.90 a 5.30 b 15.06 a 7290 ab 563 a
Plastic 17.5 bc 172 bc 1.70 bc 4.01 b 2.53 cd 8.25 bc 2706 de 199 de

20 Biocontainer 22.2 a 351 a 3.67 a 5.94 a 4.53 b 14.14 a 6301 bc 462 b
Plastic 18.0 b 149 c 1.38 c 3.41 bc 2.12 de 6.92 bc 2366 e 163 e

p-value N × C 4 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0011 0.0001

1 The azalea plants were planted in two types of one-gallon containers: a biocontainer made from recycled paper
and a conventional black plastic container. 2 PGI (plant growth index) was estimated by the average of plant
height and widths from two perpendicular directions. 3 Different lower-case letters within a column suggest a
significant difference indicated by Tukey’s HSD test at p ≤ 0.05. 4 N × C stands for the N rate and container
type interaction.

Plants grown in biocontainers and fertilized with N rates from 10 to 20 mM produced
similar leaf areas from 351 cm2 to 399 cm2 per plant, greater than those fertilized with N
rates of 0 or 5 mM regardless of container type (Table 1). With each N rate ranging from 10
to 20 mM, biocontainers resulted in greater leaf area than plastic containers by 83%, 109%,
and 135.6%, respectively. There was no significant difference in leaf area between container
types using N rates of 0 or 5 mM. Urea application did not affect leaf area.
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Plant dry weights shared a similar trend with PGI and leaf area. Azalea plants
produced the greatest dry weights in leaves, stems, roots, and total plants when grown in
the paper biocontainers and fertilized with N rates of 10, 15, and 20 mM. With each N rate
ranging from 10 to 20 mM, biocontainers produced greater dry weights of each structure
and total plant than the plastic containers. Plants fertilized with no N produced the lowest
dry weights of each structure as well as the total plant dry weight. Urea treatment did not
affect the dry weight of any structure or the total plant dry weight.

3.2. Root Length and Surface Area

Root length and surface area were both affected by the interaction between N rate and
container type (Table 1). Plants fertilized with 10 and 15 mM N grown in biocontainers
produced the greatest root lengths of 8106 cm and 7290 cm and the greatest root surface
areas of 599 cm2 and 563 cm2, respectively (Table 1). Biocontainers resulted in better root
growth, including greater root length and surface area, than plastic containers with any
N rate from 5 to 20 mM. There was no difference in root length or surface area between
container types when plants received no N from fertigation. Urea treatment did not affect
root length or surface area.

3.3. Leaf SPAD

Leaf SPAD readings generally increased with increasing N rates from 0 to 20 mM in
multiple measurements during the growing season (data not shown). At 206 DAT, 20 mM
N resulted in the highest leaf SPAD of 33.9, higher than any N rate from 0 to 10 mM, similar
to that of 15 mM N (Table 2). Biocontainers also increased leaf SPAD by 7.2% compared
with plastic containers at 206 DAT (Table 3).

Table 2. Leaf SPAD, flower count, and carbohydrate concentrations in Encore® azalea ‘Chiffon’
affected by N fertigation rate.

N Rate (mM) SPAD 1 Flowers Per Plant Glucose Leaf Fructose Leaf Sucrose Stem

(No.) (mg·g−1) (mg·g−1) (mg·g−1)

0 20.7 d 3.7 c 1.34 d 1.46 c 1.3 c
5 25.8 c 12.5 a 1.72 bc 1.99 a 1.42 bc
10 31.5 b 15.0 a 1.63 c 1.79 b 1.74 a
15 32.6 ab 10.4 ab 1.86 ab 2.01 a 1.64 a
20 33.9 a 6.9 bc 1.93 a 2.08 a 1.48 b

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
1 Different lower-case letters within a column suggest significant difference indicated by Tukey’s HSD test at p ≤ 0.05.

Table 3. Leaf SPAD, flower count, glucose and fructose concentrations in Encore® azalea ‘Chiffon’
varied between container types.

Container SPAD 1 Flowers Per Plant Glucose Leaf Fructose Leaf

(No.) (mg·g−1) (mg·g−1)

Biocontainer 29.9 a 11.5 a 1.88 a 2.12 a
Plastic 27.9 b 7.8 b 1.69 b 1.70 b
p-value 0.0016 0.020 <0.0001 <0.0001

1 Different lower-case letters in each column suggest significant difference indicated by Tukey’s HSD test at p ≤ 0.05.

3.4. Flower Number

Flower number was affected by N rate and container type separately with no interac-
tion (Tables 2 and 3). Nitrogen rates of 5, 10, and 15 mM resulted in similar total flower
counts of 12.5, 15.0, and 10.4 per plant, respectively (Table 2). Higher flower counts resulted
from 5 and 10 mM N compared to 0 or 20 mM N. Plants grown in biocontainers showed
a 46.7% increase in flower number of 11.5 flowers per plant compared to 7.8 flowers per
plant in plastic containers (Table 3).
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3.5. Nitrogen Concentrations

The three-way interaction among N rate, container type, and urea treatment was
significant in affecting N concentrations in leaves, stems, roots and was averaged in the
plant (Figure 1). In leaves, the treatment combinations of N0-B-U, N5-B-U, and N20-P-U
resulted in higher leaf N concentration than any other treatment combinations, except for
being similar to N0-P-U (Figure 1A). Urea application increased leaf N concentration under
each N rate in both container types. Plastic containers produced higher leaf N concentration
than biocontainers using 10 and 20 mM N with urea and 10, 15, and 20 Mm N without urea.

The treatment combinations N15-B-U and N20-B-U produced the highest stem N con-
centrations of 18.0 mg·g−1 and 1.81 mg·g−1, respectively, higher than any other treatment
combinations except for N10-B-U (Figure 1B). When plants were grown in biocontain-
ers, urea application increased stem N concentration compared to no-urea treatment at
each N rate. When grown in plastic containers, the no-urea treatment increased stem N
concentration with N rates of 0, 10, 15, and 20 mM as compared with urea treatment.

The highest N concentrations in roots were found in treatment combinations N10-B-U,
N15-B-U, and N20-B-U (Figure 1C). Urea application increased root N concentration in
both container types under all N rates, except when using 5 mM N and biocontainers.
Biocontainers also increased root N concentrations with each N rate compared with plastic
containers, regardless of urea application.

Nitrogen rates of 15 mM and 20 mM resulted in the highest plant N concentrations of
17.1 mg·g−1 and 17.9 mg·g−1 when grown in biocontainers and treated with urea (Figure 1D).
When grown in biocontainers, the urea application increased plant N concentration with
each N rate ranging from 0 to 20 mM.

3.6. Starch Concentrations

Starch-derived glucose in roots averaged 3.48 mg·g−1 and was not affected by N
rate, container type, or urea treatment. Starch concentrations in stems were affected by
the interaction between N rate and container type (Table 4). Stem starch concentrations
were similar among biocontainer-grown plants fertilized with N rates of 0, 5, 15, 20 mM
and plastic-container-grown plants fertilized with 10 or 15 mM N, ranging from 1.25 to
1.52 mg·g−1. Biocontainers increased stem starch concentration with N rates of 0 and
20 mM whereas plastic containers increased stem starch concentrations compared with
biocontainers with 10 mM N. Starch concentrations in stems were also affected by the inter-
action between container type and urea application, where plants grown in biocontainers
with no urea produced the highest starch concentration of 1.48 mg·g−1 (Table 5).

Table 4. Carbohydrate concentrations in Encore® azalea ‘Chiffon’ affected by the N rate and container
type interaction.

N rate Container Starch 1 Stem Glucose Stem Fructose Stem Fructose Root
(mM) (mg·g−1)

0 Biocontainer 1.37 abc 0.85 de 0.85 de 0.87 bc
Plastic 0.75 e 0.87 de 0.87 d 0.89 b

5 Biocontainer 1.26 abcd 0.87 de 0.86 d 0.88 bc
Plastic 0.96 de 0.91 bcd 0.89 cd 0.85 cde

10 Biocontainer 1.14 bcd 1.11 a 1.15 a 0.92 a
Plastic 1.52 a 0.9 bcd 0.86 d 0.83 ef

15 Biocontainer 1.25 abcd 0.96 bc 0.97 bc 0.87 bcd
Plastic 1.36 abc 0.89 cd 0.86 d 0.83 def

20 Biocontainer 1.38 ab 0.97 b 0.99 b 0.87 bcde
Plastic 1.07 cd 0.81 e 0.77 e 0.81 f

p-value N × C 2 0.0003 <0.0001 <0.0001 0.0021
1 Different lower-case letters in each column suggest significant difference indicated by Tukey’s HSD test at
p ≤ 0.05. 2 N × C stands for the N rate and container type interaction.
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Figure 1. Nitrogen concentrations of Encore® azalea ‘Chiffon’ in leaves (A), stems (B), roots (C),
and averaged in the entire plant (D) affected by the interaction among N rate, container type, and
foliar urea spray. Different lower-case letters in each chart suggest significant difference among all
treatment combinations indicated by Tukey’s HSD test at p ≤ 0.05.
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Table 5. Concentrations of carbohydrates in Encore® azalea ‘Chiffon’ affected by the interaction
between container type and foliar urea application.

Container Starch 1 Stem Glucose Stem Sucrose Leaf

(mg·g−1)

Biocontainer Urea 1.08 bc 0.93 b 3.53 b
No-urea 1.48 a 0.98 a 3.17 b

Plastic Urea 1.27 b 0.88 bc 2.20 c
No-urea 1.00 c 0.87 c 4.05 a

p-value <0.0001 0.0397 <0.0001
1 Different lower-case letters in each column suggest significant differences indicated by Tukey’s HSD test at p ≤ 0.05.

Leaf starch concentration was affected by the three-way interaction among N rate,
container type, and urea (Figure 2A). Plants grown in plastic containers with no urea and
fertilized with 5, 15, and 20 mM N had higher starch concentrations in leaves than those
under any other treatment combinations, with 15 mM N producing the highest leaf starch
concentration of 3.09 mg·g−1. When grown in plastic containers, urea application decreased
leaf starch concentration compared with no-urea application with 5, 15, and 20 mM N.
When compared among structure types, a higher starch concentration of 5.96 mg·g−1 was
found in roots compared to 2.29 mg·g−1 in stems or 1.91 mg·g−1 in leaves (Table 6).
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Figure 2. Carbohydrate concentrations including starch in leaves (A), glucose in roots (B), and sucrose
in roots (C) in Encore® azalea ‘Chiffon’ affected by the interaction among N rate, container type, and
foliar urea spray. Different lower-case letters in each chart suggest a significant difference among all
treatment combinations indicated by Tukey’s HSD test at p ≤ 0.05.
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Table 6. Distribution of carbohydrates in Encore® azalea ‘Chiffon’ among leaves, stems and roots.

Structure Type Starch 1 Glucose Fructose Sucrose

mg·g−1

Leaf 1.91 b 1.74 a 1.91 a 3.25 a
Stem 2.29 b 0.91 b 0.91 b 1.51 b
Root 5.96 a 0.83 c 0.78 c 1.63 b

p-value <0.0001 <0.0001 <0.0001 <0.0001
1 Different lower-case letters within a column suggest significant difference indicated by Tukey’s HSD test at p ≤ 0.05.

3.7. Glucose Concentrations

Leaf glucose concentration was affected by container type, N rate, and urea separately
without interaction. Among N rates, 15 and 20 mM N resulted in the highest glucose
concentrations in leaves (Table 2). Biocontainers resulted in a higher leaf glucose con-
centration of 1.88 mg·g−1 compared to plastic containers of 1.69 mg·g−1 (Table 3). Urea
treatment resulted in lower leaf glucose concentration of 1.72 mg·g−1 compared to the
no-urea treatment of 2.13 mg·g−1 (data not shown).

Glucose concentration in stems were affected by the N rate and container type in-
teraction (Table 4) and the container type and urea interaction (Table 5). When grown
in biocontainers, a N rate of 10 mM produced the highest concentration of stem glucose,
whereas stem glucose concentration was generally similar among N rates when grown in
plastic containers. Biocontainers produced higher stem glucose concentrations than plastic
containers, with N rates of 10 and 20 mM N (Table 4). The combination of biocontainer and
urea application produced the highest stem glucose of 0.98 mg·g−1.

Glucose concentration in roots were affected by the three-way interaction among N
rate, container type, and urea application (Figure 2B). Nitrogen rate of 10 mM grown with
biocontainers and no-urea treatment resulted in the highest root glucose concentration
among all treatment combinations. The no-urea treatment resulted in higher root glucose
than the urea treatment with 0, 5, and 10 mM N in both container types. Biocontainers
increased root glucose concentrations at 10 and 20 mM N without urea, and at 15 mM N
with urea compared with plastic containers.

3.8. Fructose Concentrations

Fructose concentrations in leaves were affected by the main effects of N rate, container
type, and urea treatment separately. N rates of 5, 15, and 20 mM resulted in higher fructose
concentrations of 1.99 to 2.08 mg·g−1 compared to 0 or 10 mM N (Table 2). Biocontainers
increased leaf fructose concentrations by 24.7% compared with plastic containers (Table 3).
Urea treatment decreased leaf fructose concentrations by 28.9% compared with the no-urea
treatment (data not shown).

Fructose concentrations in stems were affected by the N rate and container type
interaction, as well as the N rate and urea interaction (Tables 4 and 7). Plants fertilized
with 10 mM N and grown with biocontainers had the highest stem fructose concentrations
(Table 4). Biocontainers increased stem fructose compared to plastic containers with 10,
15, and 20 mM N. Additionally, 10 mM N and no urea produced the highest stem fructose
concentrations, similar to those fertilized with 10 or 15 mM N with urea, and higher than
any other treatment combinations (Table 7).

Fructose concentrations in roots were similarly affected by the N rate and container
type interaction, and the N rate and urea interaction (Tables 4 and 7). The combination of
10 mM N and biocontainers resulted in the highest fructose concentrations in roots among
all treatment combinations. Biocontainers increased root fructose concentrations compared
with plastic containers with 10 and 20 mM N (Table 4). Urea treatment decreased root
fructose concentration compared to no-urea treatment with 0 to 15 mM N (Table 7).
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Table 7. Carbohydrate concentrations in Encore® azalea ‘Chiffon’ affected by the N rate and foliar
urea application interaction.

N Rate Urea Fructose 1 Stem Fructose Root Sucrose Leaf
(mM) (mg·g−1)

0 Urea 0.82 e 0.85 de 1.82 e
No-urea 0.90 bcde 0.92 ab 2.76 de

5 Urea 0.89 cde 0.83 e 3.11 cd
No-urea 0.86 de 0.89 bc 3.05 cd

10 Urea 0.97 abc 0.83 e 3.11 cd
No-urea 1.05 a 0.93 a 3.82 b

15 Urea 0.97 ab 0.82 e 2.94 cd
No-urea 0.86 de 0.87 cd 3.55 bc

20 Urea 0.85 de 0.81 e 2.64 de
No-urea 0.91 bcd 0.86 de 4.60 a

p-value N × U 2 0.006 0.045 0.002
1 Different lower-case letters within a column suggest significant difference indicated by Tukey’s HSD test at
p ≤ 0.05. 2 N × U stands for nitrogen rate and urea spray interaction.

3.9. Sucrose Concentrations

Sucrose concentration in leaves were affected by two interactions: between N rate and
urea application, and between container type and urea application. The combination of
plastic container and no-urea treatment resulted in the highest leaf sucrose concentration of
4.05 mg·g−1, followed by biocontainers with or without urea treatment (Table 5). A nitrogen
rate of 20 mM with no urea treatment produced the highest leaf sucrose concentration of
4.60 mg·g−1 (Table 7).

Sucrose concentrations in stems varied among N rates but were not affected by con-
tainer type or urea application. Nitrogen rates of 10 and 15 mM resulted in higher stem
sucrose concentrations of 1.74 mg·g−1 and 1.64 mg·g−1, respectively, compared to 0, 5, or
20 mM N (Table 2).

Sucrose concentrations in roots were affected by the three-way interaction among N
rate, container type, and urea treatment (Figure 2C). The highest root sucrose concentration
of 2.97 mg·g−1 resulted from the combination of N10-B-W. Urea application decreased root
sucrose concentration with 10 mM N and biocontainers. Biocontainers produced higher
sucrose concentrations in roots than plastic containers did, using 10 mM N with or without
urea and using 15 mM N with urea.

Among the three structures, leaves contained higher concentrations of glucose, fruc-
tose, and sucrose than stems or roots did, with stems having higher concentrations of
fructose and glucose than roots. There were no significant differences in sucrose concentra-
tions between stems and roots (Table 6).

4. Discussion

Azalea plants, known as light feeders with low nitrogen requirements, did not respond
to increasing N rate to the same extent as reported for hydrangea, known as a heavy feeder,
when plant dry weight and N concentration in hydrangea increased with increasing N rates
from 0 to 20 mM [4,6]. Nitrogen rates of 10, 15 and 20 mM generally produced similar plant
sizes, dry weights (in any structure or the entire plant), leaf and root growth within one
container type, suggesting that 10 mM N might be sufficient for producing a quality plant
of Encore® azalea ‘Chiffon’. This dwarf cultivar ‘Chiffon’ was slow-growing, with one of
the lowest growth rates in the Encore® azalea series. With a sufficient N supply, Gastal and
Lemaire [7] considered the uptake of N to be regulated by the internal requirements of a
plant, i.e., the plant growth rate. For this reason, increasing N supply will not increase plant
growth. When fertilized with 10, 15, or 20 mM N, biocontainer-grown plants had higher
readings of the aforementioned response variables than did plastic-container-grown plants
at a given N rate. Therefore, the paper biocontainers used in this study produced larger
plant than plastic containers did by increasing plant growth rate during the growing season.



Horticulturae 2022, 8, 525 11 of 13

The superior effects of using the biocontainers became significant later on in the
season in September, when there could be a second growth flush (data not shown). This is
corroborated by our previous study investigating the seasonal growth and N requirement
of the same Encore® azalea cultivar [32]. Greater PGIs resulted from the use of plastic
containers early in the season, whereas the use of biocontainers with higher N rates resulted
in higher PGI from mid-September through to plant harvest. The paper biocontainers were
reported to use more water than traditional plastic containers with increased evaporative
loss through the container side wall [26–28]. However, increased water use introduced an
evaporative cooling effect, which was reported to reduce heat stress and enhance plant
growth under hot summer conditions [28]. In our study, azalea plants grown in full sun
likely benefited from this cooling effect with the use of the biocontainers.

Similar beneficial effects in increasing the plant size and shoot dry weight of dwarf
Burford holly (Ilex cornuta ‘Burfordii Nana’) were found when using fabric containers with
increased sidewall evaporation and increased irrigation demand. The fabric containers
were also reported to reduce the substrate temperature and reduce leachate loss of N and
P loss by 30% and 47%, compared with conventional plastic containers, respectively [33].
The effect of biocontainers on plant growth can be species-dependent. For example, the
same paper biodegradable containers resulted in similar plant sizes and dry weights to the
plastic containers when they were used to grow Hydrangea macrophylla ‘Merritt’s Supreme’
with high water and nutrient requirements [6].

When the effect of container type on carbohydrates was significant, biocontainers gen-
erally increased concentrations of sucrose, fructose, glucose, and starch compared to plastic
containers, except that plastic containers resulted in higher starch concentrations than
biocontainers in roots. In addition, biocontainers also increased flower counts and plant
N concentration with urea treatment. Such results confirmed that the paper biocontainers
used in the study increased plant growth, N uptake, and carbohydrate concentration by
promoting a larger and heathier azalea plant.

The application of urea in our study increased N concentrations in the azalea plants
without altering biomass. Improved N status was also found in rhododendron (Rhodo-
dendron ‘P.J.M’), azalea (Rhododendron ‘Cannon’s Double’), and hydrangea (Hydrangea
macrophylla ‘Merritt’s Supreme’) [4,34]. Rhododendrons and azaleas sprayed with urea
had more new growth in the following spring whether they received fertilizer in spring
or not [34]. In our study, increasing the N fertigation rate from 0 to 20 mM did not result
in increased plant N concentration, with plants fertilized with 20 mM N showing stress
symptoms to certain degrees. Foliar urea treatment may serve as a good alternative to
increase N reserve for better spring growth. Azalea leaves grown in biocontainers fertilized
with 0 and 5 mM N showed the highest N concentrations after the urea spray, suggesting
that N-deficient plants can be more efficient in absorbing foliar-applied urea.

The effect of urea on carbohydrate concentrations was opposite to the effect on N
concentrations. Urea spray decreased carbohydrate concentrations, including fructose,
glucose, and sucrose in leaves and roots as well as starch in leaves. These results are in
agreement with the effect of the urea application reported in almond trees and ‘Concord’
grapevines [5,12,13]. The decreased carbohydrate concentrations were attributed to the
increased N assimilation and improved plant N status caused by increasing the N fertigation
rate or application of urea [12].

Depending on plant species, either N or carbohydrate reserves can be considered as
the main resources for promoting spring growth [5,12,15]. There have been no reports
regarding the effect of the major form of nutrient reserves on any of the Encore® azalea
cultivars. The major forms of carbohydrate and storage N also vary among species. Bi
et al. [12] suggested that protein was the primary form of storage N for almond trees.
Cheng et al. [5] concluded that nitrogen reserves, instead of carbohydrates, were mainly
responsible for both the vegetative growth and fruiting of young ‘Concord’ vines. Similar
conclusions were reported in young apple trees [15]. Good N status in the current growing
season can be important in sustaining the reblooming of the Encore® azalea ‘Chiffon’, which
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requires further investigations in plant growth and flower production during multiple
growing seasons.

5. Conclusions

In conclusion, a nitrogen rate of 10 mM can be used as the economically optimal rate
for the plant growth and flower production of Encore azalea ‘Chiffon’, given that high
nitrogen rates of 10, 15, and 20 mM generally produced similar plant sizes, dry weights, leaf
areas, and root growth in biocontainers or plastic containers. With sufficient N supply of 10
to 20 mM, the paper biocontainers resulted in superior azalea plants by increasing biomass
production compared with plastic containers, and therefore serve as a good sustainable
alternative to conventional plastic containers. Foliar urea application was effective in
improving the N status of the tested azalea cultivars without affecting plant biomass.
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