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Abstract: Fruit ripening is a process that produces fruit with top sensory qualities that are ideal for
consumption. For the plant, the final objective is seed dispersal. One of the fruit characteristics ob-
served by consumers is texture, which is related to the ripening and softening of the fruit. Controlled
and orchestrated events occur to regulate the expression of genes involved in disassembling and
solubilizing the cell wall. Studies have shown that changes in pectins are closely related to the loss
of firmness and fruit softening. For this reason, studying the mechanisms and enzymes that act on
pectins could help to elucidate the molecular events that occur in the fruit. This paper provides a
review of the enzyme rhamnogalacturonan endolyase (RGL; EC 4.2.2.23), which is responsible for
cleavage of the pectin rhamnogalacturonan I (RGL-I) between rhamnose (Rha) and galacturonic acid
(GalA) through the mechanism of β-elimination during fruit ripening. RGL promotes the loosening
and weakening of the cell wall and exposes the backbone of the polysaccharide to the action of other
enzymes. Investigations into RGL and its relationship with fruit ripening have reliably demonstrated
that this enzyme has an important role in this process.

Keywords: fruit ripening; rhamnogalacturonan-I; rhamnogalacturonan lyase enzyme; cell wall remodeling

1. Introduction

Ripe fruit has organoleptic qualities, such as flavor, aroma, and texture, that are
optimal for consumption [1]. Texture influences the molecular mechanisms that result in
changes to phytohormone levels, protein synthesis and volatile compounds, chlorophyll
degradation, the accumulation of fat-soluble pigments, solubilization, and disassembly
of the polysaccharides of the cell wall and middle lamella [2]. During the fruit ripening
process, changes associated with texture lead to reduced firmness, a short shelf life, and
susceptibility to attack by pathogens and other organisms [3,4].

To understand this phenomenon from the primary cell wall degradation perspective,
studies have been performed on enzymes that cleave links between polysaccharides such as
cellulose, hemicellulose, and pectins. The cell wall composition varies between species and
tissues, and conditions such as biotic and abiotic stress can affect their composition [5–7].
Among the pectins, rhamnogalacturonan I polysaccharide (RG-I) is an interesting polymer
to study, because an increase in the activity of the enzymes α-arabinofuranosidases and
β-galactosidases has been reported to alter RG-I levels at different stages of fruit ripening.
These enzymes cleave ramifications of arabinans and galactans; as a consequence, during
ripening, an increase in solubilization and depolymerization occurs in this type of pectin,
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as in the case of European and Chinese pear, banana, strawberry, and apple [8–11]. The
rhamnogalacturonan endolyase enzyme (RGL), which is responsible for cleaving the back-
bone of RG-I, appears to be an active element in fruit ripening [12,13]. Therefore, RGL has
been a target of RNAi experiments and heterologous expression to understand its relevance
in plant development and fruit ripening [14,15].

This review offers a panoramic view of our current knowledge about α-L-rhamnopyran
osyl-(1→4)-α-D-galactopyranosyluronate endolyase, also known as rhamnogalacturonan
endolyase or RGL, which belongs to polysaccharide lyase group four. Here, we describe their
role in fruit ripening and present new perspectives for investigation into these enzymes.

2. Rhamnogalacturonan-I in the Fruit Ripening

Pectins are abundant polysaccharides involved in the growth and development of cells;
they are mainly present in the middle lamella, which are soft tissues in the joint between
the primary and secondary cell walls [16]. Seventeen different polysaccharides and twenty
types of links compose three types of pectins described in plants: homogalacturonan
(HG), rhamnogalacturonan-I (RG-I), and rhamnogalacturonan-II (RG-II) (Figure 1) [17].
These polysaccharides are found in average proportions of 65%, 20–35%, and 10% [18].
Kaczmarska et al. [19] presented an elaborate review of RG-I focused on the structure and
functionality of this polysaccharide in the plant cell wall.
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Figure 1. Schematic representation of principal pectins in the primary cell wall of plants. (A) HG; 
(B) RG-I and (C) RG-II. Sugars are represented according to the Symbol Nomenclature for Glycans 
(SNFG) [20]. Based on [16,21,22]. 
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fruit development, in the transition between the cherry and black stages during ripening, 
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arabinans helps determine the ripening stage [27]. 
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Figure 1. Schematic representation of principal pectins in the primary cell wall of plants. (A) HG;
(B) RG-I and (C) RG-II. Sugars are represented according to the Symbol Nomenclature for Glycans
(SNFG) [20]. Based on [16,21,22].

The structure of RG-I is composed of alternating units of rhamnose (Rha) and galac-
turonic acid (GalA), linked to α-1,2 and α-1,4, respectively. In addition, Rha can be found
in conjunction with a various proportions of galactose (Gal) and arabinose (Ara) [23].

The differences in fruit ripening and softening between different kinds of fruits depend
on the cellular structure and composition, as well as enzymes present in the cell wall during
this process [24].

Peña and Carpita [25] described RG-I debranching resulting in the loss of arabinans
with high sugar units and correlated that loss with changes in the firmness and cell sepa-
ration in the fruits of four cultivars of apple that had been stored for a long time. In olive
fruit development, in the transition between the cherry and black stages during ripening,
a release of the side chains of RG-I occurs [26]. In particular, the release of side chains of
arabinans helps determine the ripening stage [27].

In Dacryodes edulis, a fruit from Africa, a 50% loss of the harvest has been described
as a result of a rapid reduction in firmness. The analysis of the pectins that compose the
fruit indicates that in the ripening stage, it is possible to find low molecular weight RG-I
because of the modifications to this polysaccharide during the fruit ripening process [28].
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3. Structural and Phylogenetic Classification of the Rhamnogalacturonan
Endolyase Enzyme

The RGL enzyme is not only found in plants but has also been described in saprophytic
fungi and bacteria of the genera Aspergillus, Bacillus, and Dickeya [29–32]. This species
secretes enzymes into the extracellular environment that cleave the cell wall polysaccharides
of plants for use as a carbon source [33]. Silva et al. [34] detailed a comprehensive review of
endo- and exohydrolases that cleave RG-I. The authors built a phylogenetic tree in which
RGL was classified into two groups: polysaccharide lyase 4 (PL4) and polysaccharide
lyase 11 (PL11). This information is directly related to a report by Lombard et al. [35], which
explains that enzymes in the same PL group have the same enzymatic activity but a different
three-dimensional structure due to convergent evolution from different scaffolds. For this
reason, the PL4 and PL11 enzyme groups cleave the same linkages, but their proteins differ
structurally. In addition, PL4 is present in plants and fungi, and PL11 is present solely
in bacteria. In particular, heterologous expression of two RGLs of the PL11 group from
Bacteroides ovatus revealed a different preference for substrates: the Bo4416 clone prefers
RG-I without substitutions in its side chains, while Bo3128 degrades polysaccharides with
short substitutions in their side chains [36]. This result implies that different isoforms
of the same enzyme have activity depending on the side chains of the substrate. This
phenomenon has not been reported or studied in the RGLs of plants or fungi.

Garron et al. [37] described the structure of the PL4 group of enzymes as having three
β-sandwich domains and that of the PL11 group as having eight bladed β-propellers. Fur-
thermore, both groups depend on Ca2+ ions for enzymatic activity, where the β-elimination
catalytic mechanism requires a Ca2+ ion coordinated between sites −1 and +1 [38]. Never-
theless, other reports indicate that Ca2+ is a hexacoordinated ion that interacts with five
protein ligands and one water molecule and plays a structural role in promoting cataly-
sis [39]. The enzymatic activity of RGL in plants is suppressed in the absence of Ca2+ ions.
A 2 mM concentration of CaCl2 recovered the activity to 100% [15].

In the Protein Data Bank (https://www.rcsb.org/, accessed on 25 January 2022), four
crystallographic structures of RGL from the PL4 group exist in fungi and bacteria. All
reported structures share Ca2+ ions as single molecules coordinated by protein-ligand
residues [31,39] (Table 1). Although there are no crystallographic structures of RGL in
plants, sequence alignment between RGL from Fragaria chiloensis and Aspergillus aculeatus
shows a high percentage of identity in the carbohydrate binding module (CBM) [15].

Table 1. Crystallographic structures of RGL belonging to the PL4 group, deposited in the Protein
Data Bank.

PDB ID Specie Reference

3NJX Aspergillus aculeatus [31]
2XHN Aspergillus aculeatus [31]
3NJV Aspergillus aculeatus [31]
1NKG Aspergillus aculeatus [39]

The PL4 group of RGL enzymes (EC 4.2.2.23) cleave the backbone of RG-I internally
between L-α-rhamnopyranosyl-(1→4)-α-D-galactopyranosyluronic acid bonds. The result
of this cleavage is the formation of L-rhamnopyranose at the reduced end and 4-deoxy-4,5-
unsaturated D-galactopyranosyluronic acid at the nonreduced end [40]. Three functional
domains have been reported in plant RGLs, similar to those in A. aculeatus: domain I or the
catalytic domain; domain II or the fibronectin type III-like domain (FnIII); and domain III
or the carbohydrate binding module (CBM) (Figure 2) [15,35].

To determine the phylogenetic classification of RGLs, Mokshina et al. [41] built a phylo-
genetic tree using 98 plant-derived sequences containing the three functional domains. Six
classification groups were generated. Similar to dicotyledonous plants, monocotyledonous
plants are classified into two clades tagged as Groups I and II. Vascular plants and primitive
angiosperms are classified into two separate clades. In F. chiloensis, similar results have

https://www.rcsb.org/
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been obtained, where dicot plants formed two clades, while monocots formed a different
group [15]. Unfortunately, the authors of both reports did not establish which sequences or
regions were key to the differences in clade classification. However, monocots could be
classified into another group, due to their low level of pectins; for that reason, there could
be a smaller number of isoforms.
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Figure 2. (A) Three-dimensional protein structure of RGL from A. aculeatus (PDB ID 1NKG) with a
crystalized ligand from PDB ID 3NJV with the K150A mutation. Every domain is tagged, and the
calcium ion is represented in VDW (green). The active site is shown in the dotted box. (B) Active site
zoom (dotted box Figure 1A); the ligand is in blue, and the different amino acids are presented in
different colors. H210 and K150 are key amino acids for enzyme activity [31]. The representation was
created with Visual Molecular Dynamics [42].

4. Rhamnogalacturonan Endolyase in Fruit Ripening

As mentioned earlier, changes in fruit texture are directly associated with the molec-
ular event that alters the cell wall composition, either by depolymerization of glycans
and polysaccharides, pectin solubilization, or the loss of neutral sugars during pectin
ramification [43] (Table 2). Wang et al. [44] summarized genes that code for enzymes that
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participate in the fruit ripening process as those with activity on fruit pectins, where the
publication by Molina-Hidalgo et al. [14] focused solely on an RGL of F. x ananassa. At the
molecular level, the gene that encodes FaRGlyase1 is located in a locus related to fruit hard-
ness and firmness. The transcript levels of this gene increase as the fruit ripens, whereas
silencing of this gene by agroinfiltration of RNAi into fruits indicates that no phenotypic
differences are observed; however, at the histological level observed by pectin staining,
the cell wall remains more intact with RGL inhibition. Similar experimental results were
reported by Méndez-Yáñez et al. (2020) [15], who observed an increase in the transcript
levels of the gene that codes for RGL during fruit ripening. Using the heterologous ex-
pression of RGL from F. chiloensis in Pichia pastoris yeast, the biochemical parameters and
enzymatic characterization of the enzyme were obtained. An assay in seeds of A. thaliana
dyed with ruthenium red demonstrated that the heterologously expressed enzyme was
active and could cleave seed mucilage, which is rich in non-ramified pectins [45]. Promoter
analysis of Fragaria vesca accounts for the increased regulation of response elements for
phytohormones, such as abscisic acid (ABA), methyl jasmonate, gibberellins, salicylic acid,
and auxin, and stress response, such as drought, defense, and low temperature [46].

RGL enzymes have also been studied in the fruit ripening process of tomato (Table 2).
Unlike strawberry, tomato is a climacteric fruit, and for this reason, the crosstalk between
phytohormones and transcription factors associated with the ripening process differs
considerably [47]. Promoter analysis of the gene that encodes RGL in S. lycopersicum
and A. thaliana demonstrated a response to ABA, dehydration, and light [48]. In another
study, the expression of the RGL promoter Solyc11g011300 was constitutively induced in
fruits via the CaMV35S sequence and tagged with GUS as a reporter gene; the results
showed that gene expression was first observed in the red ripe stage [49]. On the other
hand, constitutive expression of three RGL isoenzymes during the development and
ripening of S. lycopersicum fruit resulted in firmer tomatoes with a longer shelf life due to a
cosuppression mechanism [12]. One of the genes evaluated displays a strong correlation
with the increase in ethylene production and therefore could be important for the loss
of firmness. Regarding the expression of the other genes, the authors suggest that they
participate in the modification of RG-I at the initial stages of the ripening [13].

Table 2. Summary of results obtained in research on RGL, until the year 2022.

Specie Results Reference

F. x ananassa

Changes in the spatio-temporal expression of FaRGlyase1 across the fruit ripening.
Transient silencing of FaRGlyase1 induces a high conservation of cell wall.

FaRGlyase1 expression could be induced by abscisic acid.
FaRGlyase1 gene is located in a QTL linked to firmness.

[14]

F. chiloensis

Structural characterization and biochemical parameters of RGL enzyme.
Transcripts levels increase during fruit ripening.

Phylogenetic tree with same results according to Mokshina et al. (2018) [37].
Calcium dependence on enzymatic activity.

[15]

F. chiloensis
Elements of response to phytohormones: ABA, methyl jasmonate, gibberellins,

salicylic acid, and auxin; response elements to biotic and abiotic stress such as defense,
low temperatures, and drought.

[46]

S. lycopersicum L.
GUS under the control of an RGL promoter induces expression in the red

ripe stage of fruit ripening.
Increased expression levels of GUS 40 days after anthesis.

[49]

S. lycopersicum L.

Constitutive expression of RGL promoter to produce tomatoes with
greater firmness and a longer shelf life.

Overexpression under CaMV35S of Solyc11g011300 promoter reduces viability
and pollen germination and decreases the number of seeds and fruits.

Delay in fruit ripening of one week.

[12]
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Table 2. Cont.

Specie Results Reference

S. lycopersicum L.
and A. thaliana RGL genes respond to abscisic acid, dehydration, and light. [48]

S. lycopersicum L.

Solyc11g011300 gene increases activity in fruit ripening, correlated
with ethylene production increasing.

Solyc04g076630 and Solyc04g076660 could participate in re-engineering on
RG-I pectin at the beginning of fruit ripening.

[13]

5. New Perspectives and Challenges

A large battery of enzymes participate in the fruit ripening process, acting in a coordi-
nated manner to disassemble the cell wall. Environmental and other signaling conditions,
phytohormones, and transcription factors, among others, are responsible for regulating the
protein level and activity of these enzymes. The matrix formed by cellulose, hemicellulose,
and pectin constitutes one of the most important components of the plant cell wall and is a
key target for enzymes and proteins during the developmental processes of fruit ripening
and softening. In this matrix, RG-I accounts for almost 30% of the pectic fraction and
is of paramount importance for understanding the structural dynamics during different
physiological processes. The challenge for researchers is to identify the key enzymes that
take part in these different processes with special attention given to fruit ripening and
conditions needed for adequate enzyme performance. The integrative understanding of
the participation of each of these members, specifically RGLs, in the changes in fruit texture
could help to create strategies that delay their emergence or inhibit their activity, thus
prolonging the shelf life of the fruit. Possible strategies will be generated depending on the
role each enzyme plays in modulating the functional properties of the cell wall at a specific
developmental stage.
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