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Abstract: Elicitors as alternatives to agrochemicals are widely used as a sustainable farming practice.
The use of elicitors in viticulture to control disease and improve phenolic compounds is widely
recognized in this field. Concurrently, they also affect other secondary metabolites, such as aroma
compounds. Grape and wine aroma compounds are an important quality factor that reflects nutri-
tional information and influences consumer preference. However, the effects of elicitors on aroma
compounds are diverse, as different grape varieties respond differently to treatments. Among the
numerous commercialized elicitors, some have proven very effective in improving the quality of
grapes and the resulting wines. This review summarizes some of the elicitors commonly used in
grapevines for protection against biotic and abiotic stresses and their impact on the quality of volatile
compounds. The work is intended to serve as a reference for growers for the sustainable development
of high-quality grapes.
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1. Introduction

Grapevine (Vitis vinifera L.) is one of the essential fruit crops cultivated globally for
its economic and health benefits. The primary product, grapes, are consumed as fresh
fruits or juice (table grapes) or processed into wines (wine grapes) [1]. The quality of grape
products, especially wine, is influenced mainly by the primary and secondary metabolites
of the grapes [2,3]. However, these metabolites are affected by several pests and diseases as
well as vine management practices and many other factors (e.g., soil, climate, weather).

The main aim of grape producers in the past was to enhance grape productivity and
obtain a good yield to meet the high demand for wines. Therefore, different strategies, such
as the use of fungicides and pesticides and other management practices, were employed to
prevent any biotic or/and abiotic stresses that could decrease yield [4–6]. However, the
use of fungicides and pesticides has adverse effects on human health and the environment.
Excessive usage causes residual buildup in soils, plants, and groundwaters, affecting
beneficial soil organisms, humans, and the environment, while continual use leads to
pathogen resistance [7,8].

Although it is necessary to prevent grape diseases and infections, adverse effects on
fruit yield and quality must be avoided. In addition, there has been more emphasis recently
on achieving sustainable quality yields through “green production.” Under this term, the
European Commission has recently announced measures aimed at achieving healthy and
environmentally friendly food production by 2050 [9,10]. This includes reducing the use of
pesticides and fungicides. According to the FAO [11], the world population will grow to
9.7 billion by 2050. To prevent food shortages and ensure the sustainable development of
high-quality food, environmentally friendly methods are currently being increasingly used,
as opposed to pesticides and fungicides.
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Elicitors are stress stimuli capable of inducing similar defense responses in plants as
induced by the pathogen infection [5,7]. Elicitors induce plant resistance against pathogens
by activating signals that enhance the production of secondary metabolites. Elicitors are of
different types; chemical elicitors such as benzothiadiazole or methyl Jasmonate, physical
elicitors such as light, salinity, or temperature, and elicitors of biological origin, such
as oligosaccharides, yeast derivatives, or protein fragments [12,13]. The use of elicitors
as alternatives to agrochemicals in preventing grape diseases and infections also has a
great impact on the quality components of grapes [14,15]. Numerous studies intending
to improve wine aroma quality have investigated the effects of different elicitors on the
volatile compositions of grapes. However, their impact varies depending on several factors
such as grape cultivar, type of elicitor, and dose.

Under this framework, the main focus of this review is to provide an overview of
some of the commonly used elicitors in grapevines and their impact on the quality of
grape-derived aroma compounds. The work is intended to serve as a reference for growers
for the sustainable development of high-quality grapes using elicitors.

2. Grape Composition

Grape quality is primarily assessed by the compositional chemical measures of the
grape, such as the pH, sugars, titratable acidity, color (for red grapes), aroma compounds,
phenolic compounds, and other volatiles [16,17]. These chemical parameters are influenced
by the different vineyard soil conditions, climate conditions, and vine management prac-
tices and changes throughout the development period [2,17,18]. The credibility of these
parameters, especially the sugar content of grapes as a qualifier of “quality” at harvest,
is not a point of contention [19,20]. Sugar as a primary metabolite also influences several
secondary metabolites, especially the concentrations of aroma compounds [21,22]. Ac-
cording to Rolland et al. [23], soluble sugars also function as signaling molecules aside
from their impact on the overall sensory quality of fruits. They modulate genes involved
in defense and metabolic processes, thus, affecting fruit maturity and the biosynthesis of
secondary metabolites.

2.1. Grape-Derived Aroma Compounds

Aroma is an essential characteristic that varies significantly with grape maturity and
ultimately determines the grape and wine quality. The aroma components of wine are
an important factor that reflects the nutritional information of the wine and influences
consumer liking [24]. Depending on the origin of aroma compounds, they are classified
either as primary, secondary, or tertiary aromas [25]. The varietal (primary) aromas are
derived from grapes and vary depending on the cultivars, climate conditions, and vine-
yard practices [4]. Aromas produced during maceration and fermentation are known as
secondary aromas, while tertiary aromas are formed during the aging of wine [4]. Grape-
derived aromas are found both in the skin and the pulp [26], with a low human detection
threshold [27]. Grapes consist of hundreds of volatile compounds, some of which are
present in free odor-active forms, and the majority are found in glycosylated form, serving
as potential aroma reservoirs [28].

2.1.1. Terpenoids

Terpenoids, among the various classes of grape-derived aromas, are the most stud-
ied volatile compounds. Terpenoids are grouped according to their carbon numbers into
hemiterpenes (C5), monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), and tetrater-
penes (C40), with monoterpenes (C10) as the dominant class [4,29,30]. Grapes are catego-
rized into Muscat, non-Muscat aromatic, and neutral varieties based on their monoterpene
concentration levels [24]. Monoterpenes are synthesized through the mevalonic acid (MVA)
pathway and the methylerythritol phosphate (MEP) pathway from isopentenyl diphos-
phate (IPP) and dimethylallyl diphosphate (DMAPP). Thereafter, through the activity
of terpene synthases (TPS), monoterpenes are formed from 2-(E)-geranyl diphosphate
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(GPP) [31]. However, among the two biosynthetic routes, the MEP pathway is said to
be the prime route for the formation of terpenoids in grapes [32]. Terpenoids are stored
as free and bound volatiles, mainly in the grape skin, with trace concentrations in the
pulp [4,30]. Climate, management practices such as grape shading, elicitation, and many
other factors (e.g., pruning, irrigation, fertilization) influence the concentrations of terpenes,
as reported in the literature [33–35]. For instance, concentrations of monoterpenes in Sauvi-
gnon blanc grapes decreased with high canopy density [36], while the concentration of
these molecules increased when Sauvignon blanc grapes were exposed directly to the sun
after leaf removal [37].

2.1.2. Norisoprenoids

Norisoprenoids are volatile compounds of 9, 10, 11, or 13 carbon cyclic chemical struc-
tures derived from carotenoids [4,38,39]. Carotenoids are pigments produced in the chloro-
plast and decline during grape ripening due to the unavailability of the chloroplast [40–42].
Hence, decreasing the norisoprenoids synthesized. Norisoprenoids are formed through
the conversion of biodegraded carotenoids by enzymes to the aroma precursor and sub-
sequently to the aroma-active compound by the acid-catalyzed conversion [4,30,38,40,41].
Norisoprenoids are grouped into megastigmane and non-megastigmane forms, with most
norisoprenoids in the megastigmane form differing based on the position of the oxygen
functional group [4,38]. C13-norisoprenoids are the abundant norisoprenoids in grapes,
with β-ionone, β-damascenone, vitispirane, actinidiol, 1,1,6-trimethyl-1,2- dihydro naph-
thalene (TDN), and 2,2,6-trimethylcyclohexanone (TCH) as the most prevalent compounds
conferring fruity and floral notes [4,30]. Grape-derived norisoprenoids are affected by
vineyard management practices such as leaf removal, cover cropping, irrigation, and many
other factors (e.g., fertilization, grape shading) [39,43,44].

2.1.3. Methoxypyrazines (MPs)

Nitrogen-containing grape-derived volatiles, 3-Alkyl-2-methoxypyrazines (MPs), are
found abundantly in the stems (79.2%) rather than in the berries (20.8%) [45]. The pre-
cise biosynthesis pathway of MPs is still unclear, although they are suggested to be de-
rived from the metabolism of amino acids [4,30]. However, the last step in the synthe-
sis of MPs (O-methyltransferases (OMT) methylation of hydroxypyrazine precursors to
methoxypyrazines) is explicit, as several identified genes correlated positively with the
precursors [46–49].

The most important MPs, 2-methoxy-3-isobutylpyrazine (IBMP), 2-methoxy-3-sec-
butylpyrazine (SBMP), and 2- methoxy-3-isopropylpyrazine (IPMP), out of the seven
detected in grapes, impact grassy, herbal, bell pepper, leafy, and asparagus-like odorants in
several wines such as Cabernet Sauvignon, Sauvignon Blanc, Chardonnay, Cabernet franc,
Carmènere, and Merlot [33,49–52]. The most abundant among the three important MPs
is IBMP, mostly found in the grape skin [4,45]. Koch et al. [53] studied the accumulation
of IBMP in 29 different grapes and reported high levels of IBMP in some cultivars com-
pared to trace levels or undetected IBMP in other cultivars. Several studies have shown
that grape variety and other factors such as maturity, climate, leaf removal, and light
exposure [39,50,54–56] influence the accumulation and concentrations of MPs.

2.1.4. Fatty Acids Derivatives

Fatty acid-derived volatiles, including alcohols, aldehydes, ketones, lactones, es-
ters, and acids, constitute the majority of volatile compounds in grapes [38,42]. These
compounds are synthesized through the α-oxidation, β-oxidation, or lipoxygenase path-
ways [42]. C6 aldehydes and alcohols are the most abundant compounds among these
derivatives. The C6 compounds are produced from linoleic and linolenic acids enzymati-
cally by lipoxygenase (LOX), hydroperoxide lyase (HPL), (3Z), (2E)-enal isomerase, and
alcohol dehydrogenase (ADH) thru the LOX pathway in damaged and crushed grape
tissues [42,57]. C6 compounds are partly responsible for the green, herbaceous odorant
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in grapes and grape products. The concentrations of C6 compounds are varietal depen-
dent [58,59] and also influenced by maturity [39,59,60] and season [59,61]. The concentra-
tions of the C6 compounds in most of these studies were high during the pre-veraison and
veraison stages but started to decline after veraison. However, this was not the case for
all the studies. For example, in the study reported by Salifu et al. [60], they observed de-
creasing concentrations of all C6 aldehydes and alcohols from the pre-veraison to maturity
stages, except for 1-hexanol, which observed higher concentrations during the pre-veraison
and maturity stages. Likewise, the study on Pinot noir grapes by Yuan and Qian [39] re-
ported continuous decreasing concentrations of C6 alcohols after the veraison stage. These
observations affirm that grape variety influences the concentrations of C6 compounds.

2.2. Grape Amino Acids

Amino acids are vital not only for the synthesis of proteins but also as precursors
for the production of aroma compounds [62,63], signaling molecules [64], and triggering
defenses against biotic and abiotic stresses [65,66]. Amino acids are the main nitrogenous
compounds in grapes (approximately 25–30%) amassed in the skin, seeds, and pulp [67–69].
The composition and concentration of amino acids vary with vintage, grape variety, level
of maturity, and soil fertility [70–74]. In relation to the cultivar, previous works [74–76]
observed that total amino acids concentration in white grapes was higher than total amino
acids concentration in red grapes, and within the red grape varieties, those with relatively
high chroma (measure of anthocyanins) had low total amino acids concentration compared
to varieties with low chroma. According to Guan et al. [77], the inverse relation of the
color index and concentrations of amino acids from a metabolic viewpoint hypothesized
that the high color index could be at the expense of amino acid precursors (C-skeleton).
Furthermore, the nutrient status of the vine, especially the nitrogen level, greatly impacts
the composition of grape amino acids, as observed by these authors [70–73,78].

3. Elicitors and Their Classifications

Elicitors protect plants against biotic and abiotic stresses by mimicking the plant’s
metabolic responses triggered by pathogen infection [79–81]. Elicitors do not kill pathogens
but cause plants to stimulate their innate resistance to subsequent attacks. This response of
plants against subsequent attacks has been termed differently by several researchers [80,82,83].
These include induced systemic resistance (ISR) or systemic acquired resistance (SAR),
which involves the accumulation of phytoalexins and pathogen-related proteins and the
thickening of plant cell walls [5,83]. According to Azmina et al. [82] and Romera et al. [84],
SAR is associated with pathogens, while ISR is related to beneficial microorganisms. Com-
pared to conventional agrochemicals, elicitors are eco-friendly and non-toxic. Moreover,
a low concentration is sufficient to enhance the synthesis of secondary metabolites and
protection against a wide array of pathogens [85].

Elicitors are classified differently based on their origin (plants or microorganisms),
molecular structure (general or specific), and nature but are generally grouped under
biotic and abiotic [5,7,81,83]. All elicitors originating from microorganisms are biotic, and
depending on the stress type, they can be classified either as endogenous or exogenous.
Physical and chemical elicitors are abiotic in nature and have no biological origin. Thakur
and Sohal [5] further categorized elicitors based on their structures as general and specific
elicitors. While general elicitors can induce defense in host and non-host plants, specific
elicitors can only trigger defense in host plants. Precisely for specific elicitors, the pathogen
and host plant have complementary pairs of genes. Thus, the infectious gene present in the
pathogen triggers resistance only in a host plant with the corresponding complementary
gene [5]. That means the absence of the complementary gene in the plant will result in
disease. However, the relative nature of general elicitors is restricted and not recognized
by all plants. Plant hormones such as jasmonic acid and salicylic acid are also considered
elicitors [80]. The various classifications of elicitors are shown in Figure 1.
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3.1. Mode of Action

Initially, elicitor was a term used only for molecules that were capable of producing
phytoalexins. However, substances capable of triggering any form of defense in plants are
now also referred to as elicitors [5]. Recent understanding of the plant immune system
shows that the first step of the innate response of plants to elicitors is the perception of the
stimulus by pattern recognition receptors (PRRs) located in plants (plasma membranes or
within cells) [82,86]. These pattern recognition receptors (PRRs) detect pathogen-associated
molecular patterns (PAMPs) and activate PAMP-triggered immunity (PTI), a local defense
mechanism that halts the colonization of pathogens by the induction of mitogen-activated
protein kinases (MAPK) [80], the production of reactive oxygen species (ROS), reactive
nitrogen species (RNS), ion fluxes, among other defense responses [87,88].

In the next phase, signaling molecules such as salicylic acid, jasmonic acid, and
ethylene (SA, JA, and ET) trigger reactions to protect the plant from subsequent at-
tacks [5,14,80,82,83,89]. Effector-triggered immunity (ETI), unlike PTI, deals with modified
pathogens (effector molecules) that act as potential pathogen indicators [82,83,89]. Once
resistance proteins identify these indicators (effectors), ETI will activate and induce im-
mune responses. The induction of ETI results in the death of tissues in the infected region,
preventing the spread of infection to other parts of the plant, a phenomenon known as the
hypersensitive response (HR) [90]. As a result, the plant acquires increased resistance to
subsequent infections through the signal transduction pathways [82,90].

SAR is one of the defense pathways of plants against infectious attacks, and this
response is activated and expressed throughout the plant tissues on account of a previous
pathogen attack [82,83,90]. The induction of SAR occurs through the buildup of salicylic
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acid (SA), a phytohormone that uses the protein Non-Expressor of Pathogenesis-Related
Genes 1 (NPR1) to stimulate the expression of pathogenesis-related (PR) genes [83,84].
Pathogenesis-related (PR) genes are a group of plant defense genes responsible for the
accumulation of phytoalexins, the production of pathogenesis-related proteins, cell wall
reinforcement, and others [5]. Figure 2 shows the general response mechanisms of plants
to elicitors.
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3.2. Uses of Elicitors

To control pests and diseases in grapevines while maximizing fruit yield and enhancing
quality, the use of elicitors as a tool to enhance the immune system and metabolite content
in grapes is on the upsurge [14,91]. Several studies have reported various types of elicitors
and their influence on grapes [5,14,92]. Elicitors can be applied separately or in combination
at specific period(s) of the vine’s physiological state. Due to the antagonistic activities
of elicitors, the suppression or activation of metabolic pathways regulates the grapevine
responses [80]. The combined use of two or more elicitors depends on their efficiency, which
negatively or positively affects the plant response as the signaling pathways could provoke
or complement each other [80,93,94]. The type of elicitor, concentration, and treatment time
may affect grapevine responses in different ways. However, grape genetics and other factors
(Figure 3) play an equally significant role [8,80]. For instance, the concentration of secondary
metabolites induced by the stimulation of elicitors depends on grape genetics. Thus, the
impact of different or same elicitors on grapes of the same or different species varies.
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3.3. Elicitors Commonly Used on Grapevines

Different classes of pathogens infect grapevines, reducing grape yield and quality.
Fungi (Botrytis cinerea) and oomycetes (Erysiphe necator and Plasmopara viticola) are the
most persistent classes causing gray mold, powdery mildew, and downy mildew in grapes,
respectively. These and several other diseases were initially treated and prevented with
fungicides. Nevertheless, due to the negative impact of fungicides on the environment
and the resistance of causative agents to fungicides [8,92], elicitors are currently used as
alternative preventive measures. However, the impact of elicitors on grapes is beyond the
protection function. They also influence the volatile composition and sensory characteristics
of grapes and wines. Several studies have reported the effective resistance induced by
grapevine elicitors against diseases (Table 1) and their impact on the metabolites of elicited
grapes (Table 2). Subsequent subsections of this review focus on some of the commonly
used grapevine elicitors.
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Table 1. List of Some Elicitors and their Defense Impact on Different Grape Cultivars.

Elicitor Grape Defense Response Reference

BTH, Laminarin (Lam),
Potassium phosphonate

(K-Pho)
Moscato, Nebbiolo

All products reduced disease incidence;
significantly reduced disease severity;

Moscato was less susceptible to the
disease than Nebbiolo

[95]

Nano-Methyl Jasmonate Monastrell Increased phytoalexins synthesis and
lower cytotoxicity than MeJ [96]

Ozonated water Bobal limited grapevine infection by
Phaeoacremonium aleophilum [97]

COS-OGA Carignan
Induced 78% protection of grapes against

powdery mildew in France and 76%
in Spain

[98]

Flagellin and harpin Pinot noir
ROS production; accumulation of

phytoalexins; induction of defense genes;
blocked extracellular alkalinization

[99,100]

Rhamnolipids Gamay and Chardonnay
Inhibited spore germination and

mycelium growth of Botrytis cinerea; SA
synthesis; phytoalexin accumulation

[101]

Sulfated laminarin (PS3) Marselan

PS3 induced resistance against downy
mildew under greenhouse conditions;

elicited the emission of Volatile organic
compounds; increased
antimicrobial activity

[102,103]

Cellodextrins (CD) Chardonnay
H2O2 generation; increased calcium flux;
ROS production; stimulation of chitinase

and β-1,3 glucanase activities
[104]

Chitosan Chardonnay

Increased PAL and chitinase activities;
reduced gray mold and downy mildew

infections; increased stilbenes and
phytoalexins accumulations

[105–107]

Cyclodextrins Gamay Accumulation of phytoalexin; peroxidase
activity induction [108]

Ergosterol Ugni Blanc Enhanced protection against
Botrytis cinerea [109]

Benzothiadiazole (BTH) Merlot

Enhanced trans-resveratrol content,
anthocyanin synthesis; induced SAR;

decreased Botrytis cinerea infection;
increased total polyphenols

[110,111]

β-aminobutyric acid (BABA),
Jasmonic acid (JA) Chasselas and Solaris

Callose and lignin deposition; increased
resistance against downy mildew;

expression of LOX-9 and PR-4 genes
[112]

Methyl Jasmonate (MeJ) Cabernet Sauvignon
Induction of peroxidase, chitinase, and,

glucanase activities; phytoalexin
accumulation

[113]

Ethephon Cabernet Sauvignon

Increased number of PR-proteins;
enhanced phytoalexin biosynthesis;

induced protection against
Erysiphe necator

[114]

Soybean and casein
hydrolysates Marselan Enhanced grapevine immunity against

Plasmopara viticola attack [115]

Methyl Jasmonate (MeJ) Barbera Increased berry resveratrol and
ε-viniferin production [116]
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Table 2. Influence of Some Elicitors on Grape and Wine Quality.

Elicitor Grape Impact on Quality Reference

Methyl Jasmonate (MeJ) Hamburg Muscat
(Black Muscat)

MeJ activated terpenoid biosynthesis
pathway; increased concentrations of free
and glycosylated monoterpenes in grapes

and wine; improved aroma quality

[117]

Nano-Methyl Jasmonate
(nano-MeJ) Monastrell Significant increase of beneficial stilbenes

(trans-resveratrol, cis- and trans-piceid) [96]

Ozonated water Bobal

Improved chromatic characteristics;
favored the accumulation of phenolic

compounds; increased some free volatile
aromas; generally improved

grape quality

[97]

Methyl Jasmonate (MeJ) Tempranillo

MeJ improved the synthesis of p-cymene,
methyl jasmonate, and hexanal (1st

vintage) while diminishing the content of
some C6 alcohols, esters, several terpenes,
and β-damascenone in the 2nd vintage;

several positive aroma contributors were
improved in the 3rd vintage

[118]

Methyl Jasmonate
(MeJ), chitosan (CHT), and

yeast extract (YE)
Tempranillo

CHT and YE decreased the
concentrations of several amino acids

while MeJ increased the concentrations of
most amino acids especially Met and Phe;
All treatments decreased the synthesis of

grape volatile compounds

[35,67,119]

Methyl Jasmonate (MeJ) Sangiovese

Delayed maturity, increased
concentrations of several grape aroma

classes, a rise in wine aroma
concentrations with improved sensorial

characteristics

[61]

Methyl Jasmonate (MeJ) and
Phenylalanine (Phe) Grenache

Both elicitors enhanced the volatile
content of grenache grapes; MeJ

improved terpenoids and C13
norisoprenoids; most of the positive
compounds were enhanced by Phe

treated; Phe + MeJ increased
concentrations of most volatiles

[120]

Methyl Jasmonate (MeJ) Graciano and Tempranillo

MeJ increased the concentrations of
several amino acids in Graciano;

decreased the content of some amino
acids in Tempranillo but did not affect

the total amino acids content

[121]

Benzothiadiazole (BTH)
and MeJ Monastrell

No effect on alcohols and esters;
increased concentrations of terpenes;

synthesis of some terpenes only in treated
wines; improved sensory qualities;

increased levels of phenolic compounds

[122–125]

BTH and chitosan (CHT) Groppello

CHT improved the volatile profile, flavor,
and taste of Groppello wine, increased

total acetals, and alcohols; BTH increased
total acetals and esters

[126]

3.4. Chitosan (CHT)

Chitosan is a cationic polymer derived from the polymeric polysaccharide chitin.
Chitosan can be applied directly to plants in a liquid state or the soil in powdery or liquid
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form [127]. Chitosan induces several beneficial responses in plants due to its cationic na-
ture. The antimicrobial, antifungal, among other properties of chitosan, prevent pathogens
from accessing mineral nutrients by disrupting potassium signaling in pathogens and
preventing the pathogens from releasing mycotoxins [128–130]. Chitosan, through sev-
eral investigations, has proven efficient in controlling grape pathogens, especially gray
mold and powdery mildew, distressing grapevine diseases caused by Botrytis cinerea and
Erysiphe necator, respectively [105–107,131]. Moreover, chitosan’s influence on phenolic
compounds [132,133], amino acids [119], volatile compounds [35,126], and other metabo-
lites [12,134] has also been studied. According to some of these studies, chitosan treatment
positively and negatively affected some quality parameters. For example, in the study
reported by Gutiérrez-Gamboa et al. [119], they observed a significant decrease in the
concentration of amino acids in chitosan-treated grapes compared to the control grapes.
Irrespective of the grape cultivar and other factors, the effectiveness of chitosan treatment
depends on the variations in the chitosan extraction and modification processes, such as
the length of the polymer, the degree of acetylation, etc. [127,135]. Differences in these
factors have resulted in different chitosan treatment responses in grapes, as cited in the
literature [12,126,134].

3.5. Methyl Jasmonate (MeJ)

Methyl Jasmonate (MeJ) is an elicitor capable of triggering the synthesis of secondary
metabolites by inducing plant defense mechanisms [136]. Methyl Jasmonate (MeJ), as
a derivative of jasmonic acid (JA), is widely used in viticulture due to its significant
impact on grape metabolites such as volatile compounds [35,61,120,137]. Most recent
MeJ studies are focused on the phenolic and volatile contents of grapes and wines since
these compounds influence their sensorial quality to a greater extent. D’Onofrio et al. [61]
and Román et al. [120], in their studies of MeJ application to Sangiovese and Grenache
grapes, reported an increase in the concentration of volatile compounds in the treated
samples compared to the respective control samples. However, after treating Tempranillo
grapevines with MeJ, grape volatiles concentrations in the treated samples decreased
relative to the control samples [35]. An indication that grape variety is a factor influencing
the effectiveness of MeJ. Similarly, a study on the impact of MeJ on the concentrations of
grape amino acids was influenced by variety and vintage [121].

In the context of phenolic compounds, the grape variety is not a limiting factor, as
most studies have reported increased levels of phenolic compounds after MeJ applica-
tion, irrespective of the variety [124,125,138,139]. However, seasonal variations impact
the effectiveness of MeJ on grape quality components, especially in consecutively stud-
ied seasons. Methyl Jasmonate (MeJ) often improves the content of metabolites in one
season and decreases the levels in the subsequent season, as reported in the following
studies [121,125,136,137,139]. Regarding the time of treatment, MeJ, like other elicitors, is
usually applied on grapes during the veraison stage. However, few studies sprayed MeJ
on grapevines during veraison and mid-ripening and reported that phenolic compounds
were enhanced better in samples treated during mid-ripening than samples treated during
veraison [140,141]. Hence, they postulated that the optimum time for MeJ application could
be a few weeks after veraison.

3.6. Benzothiadiazole (BTH)

Benzo (1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), as reported in
the literature, was isolated from a synthesis project aimed at isolating 2-benzylthio-3-
furanylbenzoic acid methyl ester instead of BTH [142–144]. However, the authors discov-
ered that BTH could trigger defense mechanisms in plants against several infections [142].
Benzothiadiazole, as a chemical elicitor, induces responses similar to the endogenous plant
hormone salicylic acid (SA) at the molecular level. Thus, BTH is said to be a functional
analog of salicylic acid (SA) that induces the activation of several enzymes, especially PAL,
triggering the syntheses of bioactive secondary metabolites [21,111,134,144,145].



Horticulturae 2022, 8, 451 11 of 19

The application of BTH in viticulture has proven efficient in enhancing the polyphenol
contents of grapes and their resulting wines in different grape varieties. BTH application
to Monastrell grapevines at different ripening stages increased the accumulation of antho-
cyanins (in treated grapes) in both studied seasons [140]. Similarly, in the previous work
by Paladines-Quezada et al. [137], an increase in the concentrations of anthocyanins and
flavonols was reported in Monastrell BTH-treated grapes and wines compared to their
respective control samples. Moreover, the application of BTH to different grape varieties
improved the phenolic compounds and chromatic characteristics in the grapes and wines
of Syrah and Merlot treated samples relative to their respective control samples [138].

These positive influences of BTH on polyphenols contents coupled with induced
defense mechanisms in grapes are associated with a metabolic cost [21]. According to
Wang et al. [21], the application of BTH reduces the concentrations of primary metabolites
in treated grapes, especially the total soluble sugars, which serve as signaling molecules
that modulate the set of genes involved in defense and metabolic responses. The authors
postulated that the common precursor (UDP-glucose) of the sucrose metabolism pathway
and phenylpropanoid pathway might have been directed towards the biosynthesis of
polyphenol compounds while reducing the accumulation of soluble sugars. Consequently,
the reduced levels of soluble sugars and other primary metabolites such as amino acids
influence the volatile compositions and sensory quality of treated grapes and their resulting
wines. The extent of the impact on these quality parameters differs with different varieties.
Gómez-Plaza et al. [123], in their study of BTH application to Monastrell grapevines,
reported a significant increase in the concentrations of various volatile classes, especially
terpenoids and norisoprenoids, in BTH-treated grapes compared to the control grapes.
Concerning the impact of BTH on wine volatiles, Vitalini et al. [126] treated Groppello
Gentile grapevines with BTH for two consecutive seasons. Wines volatile profiles from
the treated and untreated grapes were analyzed. The authors reported increased acetals
and esters concentrations in BTH-treated wine during the first season and increased total
esters concentration only in BTH-treated wine during the second vintage. All other volatile
classes recorded low concentrations in BTH-treated wine compared to the wine from
conventionally treated grapes in both seasons. However, Gómez-Plaza et al. [123], in
their study of Monastrell wines from BTH-treated grapes, reported significant increases in
the concentrations of alcohols, esters, terpenes, and norisoprenoids in BTH-treated wine
compared to the control wine. Differences in the accumulation and concentrations of
volatile compounds (Table 2) in these studies could be attributed to the differences in their
primary metabolites as affected by BTH application and several other factors shown in
Figure 3.

3.7. Influence of Elicitors on Grape Aroma Biosynthesis

Aroma biosynthesis is a complex process that involves different metabolic pathways
synchronized during development by several enzymes (Figure 4) [146–149]. External condi-
tions such as elicitation influence the synthesis of volatile compounds [147]. The application
of elicitors mainly impacts the composition of grape aroma in two ways. Elicitors modify
the biosynthetic pathways, thus, influencing the accumulation and distribution of metabo-
lites. On the other hand, elicitors enhance the absorption of water molecules into the berry
cells, causing the size to expand and diluting soluble sugars and other primary metabolites,
altering the volatile concentrations [4,150]. Accordingly, the aroma concentrations either
increase or decrease depending on the skin-to-pulp ratio of the berry as influenced by the
berry size because the grape skin is the essential site for the synthesis and storage of volatile
aromas in large quantities [3,151].
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Figure 4. Summarized biosynthesis pathways of major aromas in grapes. Aroma precursors are
highlighted in green, common pathways are italicized in red, enzymes are italicized in blue, interme-
diate substrates and compounds are highlighted in yellow, and volatile compounds are highlighted
in gray. LOX, lipoxygenase; HPL, fatty acid hydroperoxide lyase; ADH, alcohol dehydrogenase;
AAT, alcohol acyltransferase; PDC, pyruvate decarboxylase; CCD, carotenoid cleavage dioxygenase;
MTS, monoterpene synthase; TPS, terpene synthase; AT, aminotransferase; Acetyl CoA, acetyl
coenzyme A.

The volatile compounds of most grape varieties are similar but differ after elicitation
due to modifications in the pathways. The differences are most likely associated with the
genes and enzymes in the biosynthesis pathways. Elicitors may have altered the aroma-
related genes, and the associated enzymes could either be activated or deactivated [136,150].
Moreover, as secondary metabolites, volatile compounds also play vital physiological roles
such as resisting pests, and attracting pollinators, among others [152,153]. For instance,
terpenoids take part in the defense against herbivores, pathogens, and biotic and abiotic
stressors [153,154]. Since the primary function of elicitors is to induce defense mechanisms,
the concentration of terpenes increases specifically in most elicitor-treated grapes, as shown
in numerous studies.

4. Conclusions

Volatile compounds are essential components of grape and wine and contribute
significantly to the quality and consumer acceptance of the product. Studies have shown
the ability of elicitors to enhance grape aroma quality as well as its anti-pathogenic benefits
on grapes. Chitosan is involved in many antibacterial and antifungal activities and may
positively or negatively affect a grape’s volatile compounds and amino acid concentrations
depending on its extraction and modification methods. Methyl Jasmonate (MeJ) has the
potential to increase the concentrations of volatile compounds, especially terpenes and
C13-norisoprenoids, with different concentrations among grape varieties. Conversely,
benzothiadiazole (BTH) is very efficient in controlling grapevine diseases and improving
grape phenolic compounds but has little influence on the concentration of most volatile
compounds. Nevertheless, the combined impact of MeJ and BTH enhances grape quality
better than BTH only.
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Regardless of the elicitor type applied, its effectiveness is greatly influenced by grape
genetics, seasonal variation, and application time. Most studies used elicitors at veraison,
which yielded significant increases in grape qualities compared to the controls. However,
few studies applied elicitors at the ripening stage and observed better improvement in
grape qualities. Therefore, studies on the optimal application time of elicitors to different
grape varieties are encouraged. Further studies could also focus on the modifications in
grape genes related to the synthesis of volatile compounds after elicitors application.
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