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University, 400084 Cluj-Napoca, Romania; anca.keul@ubbcluj.ro (A.B.-K.); anca.farkas@ubbcluj.ro (A.F.)

2 Laboratory of Plant and Microbe Biotechnologies and Environmental Interactions, Center of Systems Biology,
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Abstract: In Romania, Prunus species have great economic and social importance. With the intro-
duction of new cultivars arises the need to preserve and characterize the local Prunus germplasm.
Thus, a set of 24 polymorphic SSRs were selected for the overall characterization, including 10 peach,
11 apricot and 5 nectarine cultivars. The average number of alleles per locus (Na = 1.958), in addition
to overall observed (Ho = 0.299) and expected heterozygosity (He = 0.286) were lower or comparable
to those reported in similar studies, probably explained by the smaller number of analyzed cultivars
restricted to a smaller geographic area. Among 26 genotypes a total of 101 alleles were identified,
of which 46 alleles were in peach, 55 in apricot and 40 in nectarine, respectively. Six alleles from
six loci (CPPCT-030, Pchgms-003, Pchgms-004, Pchgms-010, UDP97-401, UDP98-405) were common
to all taxonomic groups. The most informative loci were BPPCT-025, Pchgms-021 and UDP96-001 in
peach; BPPCT-025, BPPCT-001 and UDP96-001 in nectarine; and BPPCT-002, BPPCT-025, Pchgms-004,
Pchgms-020 and Pchgms-021 in apricot. Clustering and genetic similarity analysis indicated that the
degree of interspecific divergence in peach and nectarine cultivars was less than that in peach and
apricot. These results will be useful to prevent confusion between cultivars, to improve breeding
strategies and to benefit the management of Prunus cultivars bred in Romania.

Keywords: apricot; germplasm; microsatellites; nectarine; peach; SSR markers

1. Introduction

Peaches (Prunus persica (L.) Batsch var. persica), apricots (Prunus armeniaca L.), and
nectarines (Prunus persica (L.) Batsch var. nucipersica (Suckow) C. K. Schneid) are among the
most important stone fruit crops in temperate climate zones. The centers of domestication
of apricot cultivars are Central Asia, China and the Near East [1]. There are hypotheses
assuming that several cultivars originated directly from the primary centers and others
arose from the hybridization of genotypes from the secondary centers [2]. According to
Kostina [3], apricot cultivars are classified into four major eco-geographical groups: Central
Asian, Irano-Caucasian (with the richest variability), European and Dzhungar-Zailing (the
Tien-Shan area on the border of Kazakhstan and China). The cultivars belonging to the
European group show low diversity [4] and similar characteristics that make difficult the
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discrimination between cultivars [5] by traditional methods based on morphological de-
scriptors. Thus, molecular markers could provide valuable tools for cultivar discrimination
and selection of new genotypes. A different situation can be observed in the case of the
Siberian apricot from China, where a relatively high level of genetic diversity was observed
among populations, but at the same time, heterozygosity was reduced, most probably as a
result of low-level inbreeding [6]. A high genetic diversity among cultivars was also found
in Turkey, considered a rich source of diverse apricot germplasm [7], and also in Iran [8].

There is a similar situation in the cases of peaches and nectarines, with a low number
of genotypes having been used for the selection of new varieties that have been cultivated
around the world [9,10]. The diversity of these crops has been reduced by the use of
varieties having parents from the same gene pool [11]. The United States peach cultivars
are considered especially limited in their diversity [9], because most commercial cultivars
originated from a few parental cultivars used in United States breeding programs in the
early twentieth century. The result of these breeding practices was the erosion of the genetic
variability of peaches [12–14]. Low level heterozygosity of peaches was also observed in
Spain, where traditional varieties have been replaced by new ones from North America [15].

Considering the high genetic similarities among cultivars, priority should be given
to find the most effective method of cultivar identification and discrimination. Hence,
to avoid misidentification, efficient DNA fingerprinting tools are needed. SSRs (Simple
Sequence Repeats) are one of the most powerful marker systems available for such ap-
plications because of characteristics such as high levels of polymorphism, codominant
inheritance and high discrimination power [16]. Many SSR markers have been developed
for different Prunus species [17], including peach and nectarine [18–24], and apricot [25,26].
Besides allowing DNA fingerprinting and phylogenetic relationship evaluation in Prunus
germplasm [27–29], SSR markers have also proved to be useful for the identification of dif-
ferent peach and nectarine hybrids [30], the differentiation of closely related genotypes [31]
and the identification of important agronomic traits through QTL mapping [32–34].

Over recent years, most of the Romanian publicly held Prunus collections were reor-
ganized and the number of Prunus accessions increased, mainly due to the introduction
of new selections and hybrids [35–37]. Despite their great importance, most stone fruit
cultivars currently present in different Romanian collections have not been characterized by
molecular methods. For this reason, we considered it appropriate and essential to perform
a comprehensive screening of several apricot, peach and nectarine cultivars using SSR
primers typically used for germplasm characterization in other countries, to further support
breeding programs and good management practices in local collections.

2. Materials and Methods
2.1. Plant Material

In this study, 10 peach (Prunus persica (L.) Batsch var. persica), 11 apricot (Prunus
armeniaca L.), and 5 nectarine (Prunus persica (L.) Batsch var. nucipersica (Suckow) C. K.
Schneid) cultivars [38,39] were analysed by SSR markers. The cultivars were maintained in
the germplasm collection of the Agricultural Research and Development Station, Oradea.
Cultivars were described according to specific descriptors (Table 1, Genres Project 61—for
peach cultivars, IPGRI—for apricot cultivars).
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Table 1. Characterization of apricot, peach and nectarine cultivars according to descriptors used in
the genus Prunus: 1. Genotype; 2. Country; 3. Vigor of the tree (1. very small; 3. small; 5. medium;
7. great; 9. very great); 4. Blooming (1. extremely early; 2. very early; 3. early; 5. intermediate; 7. late;
8. very slow; 9. extremely late); 5. Harvest time (1. extremely early; 2. very early; 3. early; 5. average
season; 7. late; 8. very slow; 9. extremely late); 6. Size of the fruit (1. very small (<20 g); 3. small
(21–30 g); 5. medium (31–40 g); 7 great (41–50 g); 8. very big (51–60 g); 9. extremely big (>60 g);
7. Shape of the fruit (Apricot: 1. spherical; 3. ovoid; 5. cordiforme; 6. ovo-conical; 7. oblong;
9. elliptical. Peach: 1. very flat; 2. slightly flattened; 3. ovoid; 4. cordiforme; 5. oblong, 6. elongated);
8. Color of the fruit skin (Apricot: 1. greenish yellowish; 2. open cream; 3. cream; 4. yellow; 5. open
orange; 6. orange; 7. dark orange. Peach: 1. green; 2. yellowish green; 3. cream; 4. yellowish cream;
5. yellow; 6. open orange); 9. Extension color coverage (Apricot: 1. absence; 3. reduced; 5. medium
expansion; 7. widely extended. Peach: 1. absent; 2. red trail; 3. red stripe; 5. partially red; 6. red
extended; 7. red; 8. bright red); 10. Color of the pulp (Apricot: 1. yellowish green; 2. yellowish white;
3. cream; 4. cream; 5. yellow; 6. opened orange; 7. orange; 8. dark orange; 9. Red. Peach: 1. greenish
white; 2. white; 3. white yellowish; 4. yellowish; 5. yellow; 6. yellow orange; 7. orange; 8. red);
11. Firmness of the pulp (1. extremely soft; 3. soft; 5. medium; 7. firm; 9. very firm); 12. Taste of the
pulp (1. very poor; 3. lower; 5. mediocre; 7. good; 9. excellent); 13. Adhesion of the kernel to the pulp
(1. nonadherent; 2. semiadherent; 3. adherent); 14. Origin; 15. Compatibility (SI–Self-incompatible;
SC–Self-Compatible).
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Peach cultivars

P1 Alexia RO 5 3 3 8 2 4 3 2 5 9 2 Cross Flacara x Marygold
SCDP Baneasa SC

P2 Collins USA 5 5 4 6 2 4 6 5 6 6 1
Jerseyland x NJ188 (=Raritan

Rose x NJ125). NJ125 = NJ66325
op (=J.H. Halle x Goldfinch)

SC

P3 Amalia RO 5 3 5 7 3 3 3 3 5 8 1 Roubidoux x Flacara SC

P4 Jerseyland USA 7 5 6 7 3 5 8 5 7 7 1 NJ104325 op [= J.H. Halle x NJ41
(=Slappey x Dewey)] SC

P5 Springold USA 5 4 2 4 2 4 9 5 7 7 3 Cross [(Fireglow x Hiley) x
Fireglow] x Springtime SC

P6 Cardinal USA 7 4 4 6 1 5 7 5 7 6 3 Self-fertilization
of the Redhaven variety SC

P7 Antonia RO 4 3 4 7 3 3 8 3 5 8 2 - SC

P8 Southland USA 5 3 6 7 3 4 8 3 5 8 1 Self-fertilization
of the Halehaven variety SC

P9 Redhaven USA 5 5 6 6 1 5 7 6 5 6 1 Cross Halehaven x Kalehaven SC

P10 Superbă de
toamnă RO 5 4 7 7 3 3 9 2 5 8 1 Elberta x Mayflower SC

Apricot cultivars

C1 Rareş RO 3 3 1 6 3 5 5 5 5 7 1 Cross B12/6 x NJA13 SC
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Table 1. Cont.
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C2 Mamaia RO 5 8 7 6 3 6 5 6 5 7 1

Complex hybridization between
Marculesti1 (Ananas x Ananas) x
Marculesti 5 (Targii de Bucuresti

x Ananas)

SC

C3 Comandor RO 6 7 6 8 3 4 5 5 5 7 1 Cross B 17/52 x Mr 43/1 SC

C4
CR-2-63-1

(Cream
Ridge 2–63)

USA American selection SI

C5
CR-2-63-2

(Cream
Ridge 2–63)

USA 6 4 4 7 2 6 3 7 3 7 1 American selection SI

C6 CR-24-12-1 USA 7 2 2 8 1 5 5 7 7 9 1 American selection

C7 CR-24-12-2 USA American selection

C8 Saturn RO 5 6 5 6 2 4 5 7 9 5 2 Hybridization of
Marculesti selection 40 SC

C9 Viorica RO 5 5 3 8 1 6 - 7 7 7 1 Cross B 3/9 (P1) x NJA20 SC

C10 Sirena RO 5 7 8 7 4 5 4 6 6 7 1 Cross Mr 37/1 x Mr 21/50 SC

C11 Carmela RO 5 6 5 8 3 5 7 8 6 7 1 Cross Farmigdale x NJA20 SC

Nectarine cultivars

N1 Crimsongold USA 7 3 4 5 3 6 9 5 5 7 2 Nectarine selection x July Elberta SC

N2 Romamer RO 7 5 2 5 4 6 3 4 5 5 1 Cross 624029148 x RR 48–153 SC

N3 Delta RO 5 5 4 5 3 5 7 5 5 8 2 Romania,
SCDP-Constanta SC

N4 Cora RO 5 5 6 7 3 5 7 5 6 7 2 Romania,
SCDP-Constanta SC

N5 ARK 165 USA 3 1 6 6 6 -

2.2. SSR Analysis

Five different individuals were analyzed for each cultivar. Leaves were collected and
mixed, and genomic DNA was isolated using the CTAB method described by Doyle and
Doyle [40]. Allcultivars were initially screened with 34 SSR primers widely used for the
molecular characterization of Prunus species [18–20,22]. Further analyses were performed
with those SSR primers that generated amplicons in all Prunus species and which did not
amplify unspecific fragments.

The final molecular screening included 24 selected SSR markers (Table 2). Seven mi-
crosatellite markers (BPPCT-001, BPPCT-002, BPPCT-014, BPPCT-025, Pchgms-020, Pchgms-
021 and UDP96-001) were also screened on an Applied Biosystems 3500 Genetic Analyzer
(Thermo Fisher Scientific, Waltham, MA, USA). Each forward primer analyzed on 3500
Genetic Analyzer contained a 5′-M13 (TGTAAAACGACGGCCAGT) tail for universal
dye labelling [41] (Table 2). PCR amplifications were performed for 24 SSRs using PCR
mix containing 12.5 µL 2× DreamTaq Green PCR master mix (Thermo Fisher Scientific,
Waltham, MA, USA), 10.25 µL nuclease-free water (Lonza, Switzerland), 25 pmol of each
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primer (Eurogentec, Belgium) and 25 ng of genomic DNA in a final volume of 25 µL.
DNA amplification was performed according the following program: 1. T = 94 ◦C, 4 min;
2. T = 94 ◦C, 30 s; 3. primer annealing at 50–58 ◦C (variable for different primers), 40 s;
4. elongation T = 72 ◦C, 40 s; steps 2–4 were repeated 35 times; 5. final elongation T = 72 ◦C,
5 min. Amplicons were separated on 1.5% agarose (Cleaver Scientific, Warwickshire, UK)
gel in 1× TBE buffer (Lonza, Switzerland) and stained with 0.5 µg/mL ethidium bromide
(Thermo Fisher Scientific, Waltham, MA, USA). At least 2 independent PCR amplifications
were performed for each primer.

For the SSR markers screened on Applied Biosystems 3500 Genetic Analyzer (Thermo
Fisher Scientific, Waltham, MA, USA) a 12.5 µL PCR reaction mixture was used, containing
about 25 ng of template DNA, 200 nM of M13 5′-labeled with a fluorescent dye (FAM, VIC,
NED, PET), 65 nM of M13-tailed locus-specific primer, 200 nM of untailed locus-specific
primer, 1 U of Taq polymerase (Thermo Fisher Scientific, Waltham, MA, USA), 1× PCR
buffer with 2 mM MgCl2, and 200 µM of each dNTP (Thermo Fisher Scientific, Waltham,
MA, USA). Finally, 1 µL of PCR product from each of the four M13 dyes was pooled with
0.24 µL of LIZ500 standard ladder (Thermo Fisher Scientific, Waltham, MA, USA) and 12 µL
of formamide to create three SSRs multiplexes in total. The pooled mixture was analyzed
on an Applied Biosystems 3500 Genetic Analyzer (Thermo Fisher Scientific, Waltham, MA,
USA), and fragment sizes were scored using GeneMarker V2.7.0 (SoftGenetics LLC, State
College, PA, USA).

The Excel Macro AutoBin v0.9 [42] developed by Franc Salin was used to analyze
the raw data set of amplified microsatellite markers and to determine the ‘bin’ size for
each allele.

GenAlEx v6.5 (Peakall, Smouse, 2012) [43] was used to estimate at each locus, over
all loci and for each Prunus accession, the observed (Na) and effective (Ne) number of
alleles, the Shannon’s information index (I), and the observed (Ho) and expected (He)
heterozygosity, weighted on the number of samples (UHE).

A two-dimensional plot of principal coordinates analysis (PCoA) of the studied Prunus
cultivars was generated by the GenAlEx v6.5 [43].

The unweighted pair group with arithmetic mean (UPGMA) dendrogram was pro-
duced with Poppr v2.8.2 [44]. The polymorphic information content (PIC) was calculated
using the on-line Gene-Calc Tool [45].

A genetic similarity matrix was generated using Jaccard’s similarity coefficient [46] in
the NTSYSpc SIMQUAL module [47].
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Table 2. Number of observed alleles per locus among Prunus cultivars.

Locus Primer Sequence (5′→ 3′) Repeat Motif References Size-Range (bp) Peach Apricot Nectarine No. of Unique
Alleles PIC

BPPCT-001 * AAT TCC CAA AGG ATG TGT ATG AG
CAG GTG AAT GAG CCA AAG C (GA)27 [22] 133–176 4 2 3 6 0.8076

BPPCT-002 * TCG ACA GCT TGA TCT TGA CC
CAA TGC CTA CGG AGA TAA AAG AC (AG)25 196–221 3 9 2 12 0.9102

BPPCT-004 CTG AGT GAT CCA TTT GCA GG
AGG GCA TCT AGA CCT CAT TGT T (CT)22 175–230 1 3 1 4 0.7005

BPPCT-010 AAA GCA CAG CCC ATA ATG C
GTA CTG TTA CTG CTG GGA ATG C AG)4 GG(AG)10 125–150 1 2 1 3 0.5907

BPPCT-014 * TTG TCT GCC TCT CAT CTT AAC C
CAT CGC AGA GAA CTG AGA GC (AG)23 204–233 2 1 1 3 0.5916

BPPCT-025 * TCC TGC GTA GAA GAA GGT AGC
CGA CAT AAA GTC CAA ATG GC (GA)29 168–215 5 4 4 9 0.8769

CPPCT-022 CAATTAGCTAGAGAGAATTATTGGACAAG
AAGCAAGTAGTTTG

(CT)28CAA
(CT)20 [20] 250–800 2 2 1 4 0.6363

CPPCT-029 CCAAATTCCAAATCTCCTAACATGATCAA
CTTTGAGATTTGTTGAA (CT)24 80–200 2 1 1 3 0.5513

CPPCT-030 TGAATATTGTTCCTCAATTCCTCTAGG
CAAGAGATGAGA (CT)30 175–220 2 2 2 3 0.5897

Pchgms-001 GGG TAA ATA TGC CCA TTG TGC AAT C
GGA TCA TTG AAC TAC GTC AAT CCT C (AC)12(AT)6 [18] 160–200 1 2 1 3 0.5898

Pchgms-003 GGA TCA TTG AAC TAC GTC AAT CCT C
CAA CCT GTG ATT GCT CCT ATT AAA C (CT)14 200–220 2 2 1 3 0.592

Pchgms-004 ATC TTC ACA ACC CTA ATG TC
GTT GAG GCA AAA GAC TTC AAT (CT)21 150–200 2 3 2 4 0.7002

Pchgms-010 GGTCACGCATCCTTTCATTT
GACACCTCCATTTGTATCAAAGC T19A10 [48] 180–200 1 2 1 2 0.3743

Pchgms-011

AAGCAATAAAACCAGCAGCAA
TCAATCAATTGGCATGTTCG
TTGAGGCCCACTTATTAGCC
CCCCCATTATTCAAACTTCTG

(TA)11 250–300 1 1 1 3 0.5907

Pchgms-012 CGACACTTAGCTAGAAGTTGCCTTA
TCAAGCTCAAGGTACCAGCA (CT)9(TC)20(CA)9 200–450 2 3 2 7 0.8245
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Table 2. Cont.

Locus Primer Sequence (5′→ 3′) Repeat Motif References Size-Range (bp) Peach Apricot Nectarine No. of Unique
Alleles PIC

Pchgms-020
* AATTGCATCACAGCAAGAGC

GGGGGTTTGGTTAAGATCG
CCCTTACCCCCTTACCACTT

(TA)15(TC)11 265–280 2 4 2 6 0.8101

Pchgms-021 * ACCACCATTTTGGCTCTCTG
ACCACCACAACCAAACCATT (TA)14 289–306 3 1 3 4 0.703

Pchgms-022 ATAATCCGGCAGGGGTCTTA
TTGGGGTTTGTCAGTATTTTACA (GA)14(AT)9 100–500 1 1 1 2 0.2392

Pchgms-023 CTGCCGAAAGCATTTTGAAT
GAGCTCATGGCAACACAGAA (TTC)5 300–500 1 2 1 3 0.5769

UDP96-001 * AGTTTGATTTTCTGATGCATCC
TGCCATAAGGACCGGTATGT (CA)17 [19] 123–146 3 1 3 6 0.8096

UDP97-401 TAAGAGGATCATTTTTGCCTTG
CCCTGGAGGACTGAGGGT (GA)19 100–150 1 2 1 2 0.3648

UDP97-402 TCCCATAACCAAAAAAAACACC
TGGAGAAGGGTGGGTACTTG (AG)17 125–170 1 1 2 3 0.5874

UDP97-403 CTGGCTTACAACTCGCAAGC
CGTCGACCAACTGAGACTCA (AG)22 100–110 1 1 1 2 0.3744

UDP98-405 ACGTGATGAACTGACACCCA
GAGTCTTTGCTCTGCCATCC (AG)9 100–150 2 3 2 4 0.6975

Total 46 55 40 101

Average 1.9 2.3 1.7 4.2

* The forward primer that contained a 5′-M13 (TGTAAAACGACGGCCAGT) tail.
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3. Results

The selected markers amplified a total of 101 alleles in the analysed Prunus cultivars,
with a mean allelic richness of 55 alleles in apricot, 46 alleles in peach and 40 alleles in
nectarine cultivars (Table 2). The percentage of polymorphic loci ranged from 66.67% in
apricot cultivars to 45.85% in nectarines. The mean number of alleles per locus (Na) was
higher in apricot cultivars (2.292), followed by peach (1.917) and nectarine cultivars (1.667).
The most polymorphic loci were BPPCT-002 (12 alleles), BPPCT-025 (9 alleles), Pchgms-
012 (7 alleles), BPPCT-001 (6 alleles), Pchgms-020 (6 alleles), and UDP96-001 (6 alleles)
(Table 2). The electrophoretic patterns of several polymorphic markers are shown in the
supplementary material (Figures S1–S8). Six common alleles were identified among all
taxonomic groups as revealed by six loci (CPPCT-030, Pchgms-003, Pchgms-004, Pchgms-
010, UDP97-401, UDP98-405) (Table S1). The estimated genetic diversity indices are shown
in Table S2. The average value of unbiased heterozygosity (uHe) was highest in apricot
cultivars (uHe = 0.369), followed by peach (uHe = 0.295) and nectarine (uHe = 0.253)
(Table S2). Overall, 26 multilocus genotypes (MLGs) were observed in our data set and
67 private alleles identified. The highest number of private alleles was registered in apricot
cultivars (43 private alleles/22 loci), while the lowest number of private alleles (6 private
alleles/4 loci) was found in nectarine cultivars (Table S3). The analyzed SSR markers were
highly polymorphic with PIC values ranging from 0.24 to 0.91 with an average of 0.63
(Table 2).

The UPGMA clustering analysis revealed two main groups in the analyzed Prunus
germplasm (Figure 1). Cluster I was further divided into two specific clusters: Ia com-
prising peach cultivars and Ib with nectarine cultivars. Cluster II was also subdivided in
two sub-groups comprising apricot cultivars with combined Romanian and North Ameri-
can origin (Figure 1). This clustering is justified by Jaccard’s similarity coefficient, with the
highestvalues present between peach and nectarines, ranging from 0.26 to 0.39. The lowest
genetic similarity was registered between apricot and peach cultivars, varying between
0.015 to 0.086 (Table S4).
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Figure 1. Unweighted pair group method with arithmetic mean (UPGMA) tree based on Nei’genetic
distances calculated from 24SSRs. Generated with Poppr v2.8.2 [44].

This genetic clustering was also confirmed by principal coordinate analysis (PCoA)
(Figure 2). The first and second principal coordinates accounted for 51.75% and 15.35% of
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the total variation, respectively, explaining the total genetic variation across 24 SSR loci in
different Prunus cultivars.
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Figure 2. A two-dimensional plot of the Principal Coordinate Analysis (PCoA) of SSR data showing
the clustering of 26 Prunus cultivars: 10 peach (cluster I, subcluster Ia), 5 nectarine cultivars (cluster I,
subcluster Ib) and 11 apricot cultivars (cluster II with two subclusters: IIa and IIb). Generated with
GENALEX 6.5 program [43].

4. Discussion

The primary aim of this study was to test and select a set of SSR markers suitable
for analyzing genetic diversity among 26 Prunus genotypes pertaining to three different
species (peach, apricot and nectarine) from a local Romanian collection, towards their
conservation and utilization in future breeding programs. In this regard, 24 SSR primer
pairs generating amplicons in all analyzed cultivars were tested, some of the band patterns
being polymorphic.

These markers allowed the discrimination of 26 multilocus genotypes (MLGs) among
analyzed Prunus cultivars. Altogether a total of 101 alleles were identified, of which 67
were private alleles and 34 were shared among the three Prunus species, with only 6 alleles
common to all taxonomic groups.

The allele size in our study ranged from 133 to 176 bp for marker BPPCT-001, 196 to
221 bp for BPPCT-002, and 168 to 215 bp for BPPCT-025 (Tables S1 and S3). Other studies
reported values between 128–168 bp [22], 166–229 bp [49] and 226–238 bp for BPPCT-002,
and 178–202 bp for BPPCT-025 [22].

Our collection exhibited variable levels of overall genetic diversity compared to previ-
ous studies. The mean values for overall expected heterozygosity (He) in our collection
ranged from 0.22 in nectarine to 0.28 in peach and 0.35 in apricot (Table S2). These data
are comparable with those reported by Dettori et al., 2015 [17] (0.31 for peach and 0.27 for
apricot), where 90 Prunus accessions belonging to five species were analyzed with 26 SSRs.
Overall, the expected heterozygosity in Prunus accessions cultivated in Romania is weaker
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compared to that registered in Chilean (0.46 in nectarine and 0.57 in peach) [50] or Chinese
(0.79 in apricot) [51] collections. Moreover, allelic richness is lower (Na = 1.6 to 2.3) than
had earlier been reported (Na = 2.4 to 15.14) [4,51–53]. This might be explained by the
lower number of genotypes, restricted to a smaller geographic area, analyzed in our study.

The most informative primers in our study were those targeting BPPCT-025, BPPCT-
001, BPPCT-002, Pchgms-021, and UDP96-001 loci in peach cultivars, BPPCT-025, BPPCT-
001 and UDP96-001 in nectarines, and BPPCT-002, BPPCT-025, Pchgms-004, Pchgms-020
and BPPCT-004 in apricot cultivars. Some of these primers generated either monomorphic
or polymorphic patterns, as shown in previous studies [18,22,54–56].

Based on these results, we may conclude that the genetic diversity parameters re-
ported here are lower or comparable with those previously described in different Prunus
germplasms, showing a wide range of variation depending on the set of SSR markers used,
the number of analyzed genotypes and the origin of analyzed accessions. These variations
may be also influenced by the method of detection used [17].

Clustering analysis indicated a lower degree of interspecific divergence between peach
and nectarine cultivars than between peach and apricot cultivars, also shown by Jaccard’s
similarity coefficient. However, there was a separation of peach cultivars (subcluster Ia)
from nectarines (subcluster Ib). Similar clustering results were reported by Rojas et al.
(2008) [50]. The UPGMA cluster analysis shows the existence of two subclusters in apricot
cultivars, with mixed Romanian and North American cultivars (Figures 1 and 2). Sub-
cluster IIb is composed mainly of Romanian validated apricot cultivars (Saturn, Sirena,
Comandor and Rares) that were phenotypically selected for fruit quality within the im-
provement program performed during the period 1983–2006 at the Băneasa Research and
Development Station for Fruit Tree Growing [16,57]. Subcluster IIa is composed of Ro-
manian apricot cultivars (Carmela, Viorica) that were selected mainly for resistance to
disease by hybridizing with North American varieties obtained from the Rutgers Fruit
Research and Extension Center, Rutgers University (CR-2-63-1, CR-2-63-2, CR-24-12-1,
CR-24-12-2, NJA13 and NJA20) [37,58]. In recent years, most apricot breeding programs in
Europe used PPV-resistant cultivars from North America to introduce this trait into local
germplasms [59]. While some associations between analyzed Prunus genotypes might be
explained by complex crosses between local cultivars and American germplasm, for several
genotypes this information is unknown.

5. Conclusions

In this study we used a set of 24 previously published SSRs markers for Prunus species
and assessed their versatility in DNA fingerprinting 10 peach, 11 apricot and 5 nectarine
cultivars from Romania. The average number of alleles per locus, and the overall observed
and expected heterozygosity were lower or comparable to those reported in similar studies.
Clustering and genetic similarity analysis showed that all genotypes are clustered in their
respective taxonomic groups, outlining a lower interspecific divergence between peach and
nectarine than between peach and apricot cultivars.

To our knowledge, this is the first study assessing the usefulness of microsatellite
markers in the characterization of local Prunus collections comprising apricot, peach and
nectarine cultivars. The results will support breeding programs to improve the management
practices of local collections.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/horticulturae8040291/s1. Table S1. Multilocus genotype sum-
mary inferred from 24 SSRs in 26 accessions belonging to three different Prunus species (10 peach,
11 apricot and 5 nectarine cultivars). Table S2. The main parameters over 24 SSR loci analyzed in
peach, apricot and nectarine cultivars. Table S3. Summary of private alleles per locus for peach,
apricot and nectarine cultivars. Table S4. Jaccard’s similarity coefficients among Prunus genotypes.
Figure S1. Prunus electropherograms of polymorphic microsatellite marker BPPCT-001). Figure S2.
Prunus electropherograms of polymorphic microsatelite marker BPPCT-002. Figure S3. Prunus
electropherograms of polymorphic microsatelite marker BPPCT-014. Figure S4. Prunus electrophero-
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grams of polymorphic microsatelite marker BPPCT-025. Figure S5. Prunus electropherograms of
polymorphic microsatelite marker Pchgms-020. Figure S6. Prunus electropherograms of polymorphic
microsatelite marker Pchgms-021. Figure S7. Prunus electropherograms of polymorphic microsatelite
marker UDP96-001. Figure S8. SSR markers in peach (a-BPPCT038; b-PMS067), apricot (c-pchcm3, d-
pchcm10) and nectarine cultivars (e-CPPCT022, CPPCT029, CPPCT030; f-pchcm1, pchcm3, pchcm4);
separation on 1.5% agarose gel stained with 0.5 µg/mL ethidium bromide. The order of the samples
is shown in Table 1.
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