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Abstract: Background: Recently, antitranspirant or radiation-reflective products have been stud-
ied in several crops to mitigate the negative effects of global warming in Mediterranean climates.
Nevertheless, to our knowledge, there is a scarce availability of information studying their effects
on blueberries and much less from applications of sunscreens elaborated based on a mixture of
dicarboxylic acids. Methods: Controls and three treatments were performed in ‘Duke’ and ‘Star’
blueberries as follows: (i) control without water stress (T1 = 100% ETc); (ii) foliar application of
sunscreen in plants without water stress (T2 = 100% ETc + sunscreen); (iii) water stress in plants
without foliar application of sunscreen (T3 = 50% ETc); (iv) foliar application of the sunscreen in
plants with water stress (T4 = 50% ETc + sunscreen). Stem water potential (Ψs), stomatal conductance
(gs), yield, berry weight and berry total soluble solids were determined. (3) Results: As expected, the
decrease in irrigation frequency in water stress treatments (T3 and T4) allowed for a decrease in the
water applied at 25% compared to non-stressed plants (T1 and T2). This resulted in an increase in the
Ψs on the days closest to harvest in both varieties, decreasing gs in blueberries plants subjected to
water stress conditions. Sunscreen applications to Duke plants subjected to water stress (T4) induced
higher total berry soluble solids than the treatments performed in non-stressed plants (T1 and T2).
Sunscreen applications to Star plants subjected to water stress (T4) promoted similar gs levels and
did not affect total soluble solids concerning irrigated plants (T1 and T2). (4) Conclusions: The results
suggest that the response to water stress to sunscreen application based on dicarboxylic acid salts
depended on the cultivar. Therefore, despite the novelty of this research, it is necessary to perform
long-term studies to establish accurate conclusions.

Keywords: antitranspirants; global warming; highbush blueberry; Duke; Star

1. Introduction

Blueberry consumption has increased globally over the last years, mainly due to
its high antioxidant potential because of its richness in phenolic compounds [1]. North
America is a traditional market in which more than half of the fresh blueberries produced
is consumed and their demand has considerably increased in new markets, such as Europe
and China [2]. Based on this, traditional and new growth areas across the globe have
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increased blueberry production [3]. The highbush blueberry (Vaccinium corymbosum L.)
presents a high fruit quality for fresh markets and a wide adaptation to subtropical and
tropical production areas. This blueberry species is the most widely planted blueberry
worldwide and is grown in different countries such as the United States, Canada, Perú,
Mexico, Chile, Argentina, South Africa, Australia, New Zealand, Japan, China, and several
European countries [4–6].

Most of the blueberry producing areas are characterized by significantly higher tem-
peratures and solar radiation than the natural habitats in which blueberries grow [7]. Today,
in the Mediterranean zones, there is a need to produce berries earlier in the season, which
has forced growers to produce blueberries under high temperatures and solar radiation [8].
Blueberries are commercially harvested weekly for three to five or more weeks [9], which
coincides with the period of greatest environmental stress in the season. It is important to
highlight that erythemal UV irradiance in the southern hemisphere is up to 40% higher than
in the northern hemisphere in summer [10]. Moreover, the expansion of highbush blueberry
cultivation into warmer regions will be challenged in the future by global warming [5],
making it necessary to adopt short-term adaption strategies to face these unfavourable
productive conditions. Recently, the use of photo-selective color shading nets has been
studied in blueberry production, allowing to mitigate the environmental stress conditions
in open production orchards [7,8]. Shading nets have been shown to affect fruit yield and
quality of blueberries, changing the harvest date towards cooler conditions [7,8,11–13].

Antitranspirants and particle-film sprays have been used in several horticultural
crops to mitigate environmental stress conditions, reducing sunburn, and improve fruit
color [14–16]. However, to our knowledge, there are few studies about this subject in
blueberries and much fewer regarding the application of dicarboxylic acids. Dicarboxylic
acids and their derivatives are known to possess therapeutic properties and have been used
in the treatment of a variety of skin disorders [17]. The application of these compounds in
agriculture has allowed for an increases in their tolerance to biotic and abiotic stress [18,19].
Mono and disubstituted esters of dicarboxylic acids delayed plant growth and chlorophyll
degradation [18]. Similar results have been found by Todorov et al. [19], who showed
that monoesters of carboxylic acids retard plant growth and delay senescence processes
by inhibiting chlorophyllase and peroxidase activities. In addition, these authors showed
that dicarboxylic acids prolonged carbon assimilative activity and enhanced leaf water-
use efficiency in treated plants. In addition, dicarboxylic acid esters and salts have been
used in plant disease prevention, retarding the infection of tomato leaves against different
phytopathogens [20]. Therefore, the aim of this study was to evaluate the foliar application
of a sunscreen elaborated by dicarboxylic acid salts on plant water status, gas exchange,
productivity, and berry soluble solids in blueberries (V. corymbosum L. ‘Duke’, ‘Star’) plants,
growing under Mediterranean conditions.

2. Materials and Methods
2.1. Study Site and Plant Material

An experimental trial was performed during the 2014 growing season in two full
production plots of blueberries (Vaccinium corymbosum L. ‘Duke’ and ‘Star’) located in Bo-
talcura, Pencahue, Maule Region (Chile), belonging to Círculo Agrícola (35◦15′ S, 71◦47′ W,
Datum WGS84, 77 m.a.s.l.). ‘Duke’ was established in 2008 and planted at 3.0 m × 0.5 m
spacing on sandy loam soil, while ‘Star’ was planted in 2010 at 3.0 m × 1.0 m. The plots
were drip irrigated using one irrigation line per row with two emitters per plant spaced
every 0.5 m supplying water at a rate of 2 L h−1. More information about the main
characteristics of both plots is presented in Table 1.
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Table 1. Main characteristic of ‘Duke’ and ‘Star’ orchards under study.

Orchard Main Characteristics Duke Star

Orchard age 6 years old 4 years old
Elevation 76 77

Spacing distance 3.0 × 0.5 3.0 × 1.0
Trellis system Non-trellised Non-trellised
Orientation 330◦ to Norwest 30◦ to Northeast

Irrigation system Drip irrigation Drip irrigation

2.2. Soil and Climate Conditions

The annual average temperature of Botacultura is 14.5 ◦C, with a minimum of −2.5 ◦C
(in July) and a maximum of 36.7 ◦C (in January), and an average annual rainfall of 658.8 mm
(Figure 1). The orchard soil is clay loam, classified as Cunculen series, corresponding to
the Alfisol order [21]. The soil is derived from a compacted sandstone in an intermediate
remaining terrace position, presenting a flat to moderately undulating topography [21].
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and ‘Star’) plot.

2.3. Experimental Design

The experimental design was a randomized complete block divided into four treat-
ments with four replicates, each consisting of sixteen plants per replicate. The irrigation
treatments were based on crop evapotranspiration (ETc), as shown in Table 1. The treat-
ments were managed with and without water stress. Therefore, the treatments were as
follows: (i) control without water stress (T1 = 100% ETc); (ii) foliar application of sun-
screen in plants without water stress (T2 = 100% ETc + sunscreen); (iii) water stress in
plants without foliar application of sunscreen (T3 = 50% ETc); (iv) foliar application of
the sunscreen in plants with water stress (T4 = 50% ETc + sunscreen). The sunscreen was
developed based on a mixture of dicarboxylic acids. The selected plants evidenced good
phytosanitary conditions and homogeneous vegetative growth and productivity. Table 2
shows the amount of water applied in the treatments by cultivar.

Foliar applications were performed using a sunscreen based on a mixture of dicar-
boxylic acids (OASIS ®, Nutriprove, Chile) applied at a dosage of 40 g per hectare of active
ingredient, as recommended by the manufacturer. The product has a chemical formula of
HOOC(CH2)n COOH; a molecular weight of 162.142; a concentration of 12% (w/w), i.e.,
120 g kg−1; and a pH of 3.5. The treatments were performed in four foliar applications,
in which the first was applied on 13 October (berry diameter: 10 mm), the second on
28 October (75% green + 25% pink fruit), the third on 11 November (75% pink + 25% green
fruit) and the last on 9 December (Ripe: 85–100% blue fruit). The blueberry stages were
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based on colour and fruit diameter. The product was sprayed with a manual spray pump
calibrated prior to its use.

Table 2. Irrigation time and quantity of water applied in blueberry orchards under the growing
season study for the 2014 season.

Water Applied According to
ETc and Variety Sunscreen Application Water Applied (m3 ha−1)

100% ETc in Duke without 2667
100% ETc in Star with 1600
50% ETc in Duke without 1334
50% Etc in Star with 800

2.4. Stem Water Potential and Stomatal Conductance Measurements

Stem-water potential (Ψs) was measured using a pressure chamber (PMS Instrument
Co., model 600, Corvallis, OR, USA) according to the protocol outlined by Acevedo-Opazo
et al. [22]. Briefly, two fully expanded and sun-exposed representative shoots per treatment
were wrapped into a transparent plastic film and aluminium foil at least for two hours,
thus achieving an equilibrium between leaf and plant xylem. The Ψs measurements were
made between 12:00 and 14:00 h. During the study season, a total of six determinations
were performed in Duke and eight in Star.

A leaf porometer model SC-1 (Decagon Devices, Pullman, WA, USA) was used to
measure stomatal conductance (gs) in conditions of light saturation (800 µmol m−2 s−1 of
photosynthetically active radiation). The gs determinations were performed between 12:00
and 14:00 h into five fully expanded and sun-exposed leaves per treatment.

2.5. Yield, Berry Weight and Soluble Solids Measurements

Blueberry harvest was performed twice in ‘Duke’ and ‘Star’ according to the proce-
dures mentioned by other authors [7,23,24]. Berries were manually harvested from the
replicates based on the external colour [23]. Immediately after, berries were weighed on
a digital weight scale, recording yield by a plant (kg plant−1) and subsequently, berry
weight was determined, taking randomly 100 berries per replicate. Total soluble solids
from 25 fruits per replicate were measured from squeezed juice of every berry with a digital
thermo-compensated refractometer (BRIX30 model, Leica IFT 40, Fisher Scientific, Waltham,
MA, USA). The fruits were harvested twice from 2 to 11 December (2014).

2.6. Statistical Analysis

The statistical differences for the measured parameters were assessed using analysis of
variance (ANOVA). Tukey test (p ≤ 0.05) was used for mean separation. A statistical analy-
sis was performed using the Statgraphics Centurion XVI.I statistical package (Warrenton,
VA, USA).

3. Results
3.1. Stem Water Potential and Stomatal Conductance in Duke and Star Blueberries

Table 3 shows stem-water potential (Ψs) measured in Duke plants after the application
of the treatments on six different dates. There were no statistical differences among the treat-
ments and control in the first and the second measured dates. However, as expected, the
treatments with water stress reached smaller Ψs than those without irrigation restrictions.

Table 4 shows stem-water potential (Ψs) measured in Star plants after the application
of the treatments on six different dates. There were no statistical differences among the
treatments and control in the first, second, third and sixth measured dates. However, the
treatments with water stress presented smaller Ψs in the fourth, fifth, seventh and eighth
date than those without irrigation restrictions.
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Table 3. Stem water potential (MPa) measured in the performed treatments on ‘Duke’ along the season.

Treatment (% ETc) 10 October 24 October 14 November 21 November 9 December 12 December

100 (T1 control) −0.43 −0.66 −0.61 a −0.66 a −0.68 a −0.59 a
100 (T2 sunscreen) −0.44 −0.61 −0.61 a −0.59 a −0.66 a −0.59 a

50 (T3 control) −0.52 −0.61 −0.78 b −0.92 b −0.85 b −0.94 b
50 (T4 sunscreen) −0.47 −0.62 −0.81 b −0.89 b −0.90 b −1.04 b

Significance N.S N.S ** ** * **

For a given date, different letters within a column represent significant differences (Tukey’s test, p < 0.05) among
the treatments (four replicates). * Significant difference (p < 0.05). ** Significant difference (p < 0.01). N.S:
Not significant.

Table 4. Stem water potential (MPa) measured in the performed treatments on the ‘Star’ along the season.

Treatment (% ETc) 10
October

24
October

10
November

14
November

21
November

28
November

9
December

12
December

100 (T1 control) −0.55 −0.73 −0.78 −0.81 a −0.67 a −0.83 −0.63 ab −0.75 a
100 (T2 sunscreen) −0.54 −0.65 −0.82 −0.85 a −0.67 a −0.81 −0.58 a −0.76 a

50 (T3 control) −0.54 −0.65 −0.83 −0.93 ab −0.83 b −0.91 −0.74 b −0.96 b
50 (T4 sunscreen) −0.53 −0.66 −0.80 −1.06 b −0.83 b −1.01 −0.74 b −0.96 b

Significance N.S N.S N.S ** ** N.S ** *

For a given date, different letters within a column represent significant differences (Tukey’s test, p < 0.05) among
the treatments (four replicates). * Significant difference (p < 0.05). ** Significant difference (p < 0.01). N.S:
Not significant.

Table 5 shows the stomatal conductance (mol H2O m−2 s−1) measured in Duke and
Star plants after applying the treatments. Treatments under water-stress induced lower
stomatal conductance than the treatments without irrigation restriction in Duke plants.
However, sunscreen applications in Star plants under water stress conditions induced
higher stomatal conductance than the plants treated with water stress and did not show
statistical differences compared to the control and sunscreen applications in Star plants
without water stress.

Table 5. Stomatal conductance (mol H2O m−2 s−1) measured on 12 December in the performed
treatments on the Duke and Star cultivars.

Treatment (% ETc) Duke Star

100 (T1 control) 327.3 b 288.4 b
100 (T2 sunscreen) 311.3 b 276.8 b

50 (T3 control) 204.9 a 122.0 a
50 (T4 sunscreen) 188.3 a 293.6 b

Significance * **
For a given variable, different letters within a column represent significant differences (Tukey’s test, p < 0.05)
among the treatments (four replicates). * Significant difference (p < 0.05). ** Significant difference (p < 0.01).

3.2. Yield, Berry Weight and Berry Soluble Solids in Duke and Star Blueberries

Table 6 shows the yield at first harvest and total yield in Duke and Star blueberries
after the application of the treatments. There were no statistical differences among the
treatments in total yield in ‘Star’ and ‘Duke’. The yield at first harvest was not affected by
the treatments in Duke. However, the treatments under water stress induced a higher yield
at first harvest in Star plants than those without stress conditions.

Table 7 shows berry weight (g) at the first harvest in Duke and Star blueberries after
applying the treatments. There were no statistical differences among the treatments in
berry weight in Star and Duke cultivars.
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Table 6. Total yield and yield (g plant−1) measured at the first harvest in the performed treatments
on ‘Duke’ and ‘Star’.

Treatment (% ETc)
Yield at First Harvest Total Yield

Duke Star Duke Star

100 (T1 control) 1512 1580 a 3287 3362
100 (T2 sunscreen) 1631 1642 a 3136 3494

50 (T3 control) 1482 2352 b 3221 3463
50 (T4 sunscreen) 1628 2360 b 2961 3278

Significance N.S ** N.S N.S
For a given variable, different letters within a column represent significant differences (Tukey’s test, p < 0.05)
among the treatments (four replicates). ** Significant difference (p < 0.01). N.S: Not significant.

Table 7. Berry weight (g) measured at the first harvest of blueberry plants in the performed treatments
on the Duke and Star cultivars.

Treatment (% ETc) Duke Star

100 (T1 control) 1.45 1.75
100 (T2 sunscreen) 1.52 1.66

50 (T3 control) 1.41 1.71
50 (T4 sunscreen) 1.54 1.73

Significance N.S N.S
For a given variable, different letters within a column represent significant differences (Tukey’s test, p < 0.05)
among the treatments (four replicates). N.S: Not significant.

Table 8 shows berry soluble solids (◦Brix) at the first and second harvest in Duke and
Star blueberries after applying the treatments. Berry total soluble solids were not affected
by the treatments in the Star cultivar. However, sunscreen applications in Duke plants
managed under water stress-induced higher total soluble solids in berries than the control
and sunscreen applications in plants without water restriction.

Table 8. Total soluble solids (◦Brix) at the first and second harvest of blueberry plants in the performed
treatments on the Duke and Star cultivars.

Treatment (% ETc)
First Harvest Second Harvest

Duke Star Duke Star

100 (T1 control) 12.4 a 12.9 13.1 a 15.5
100 (T2 sunscreen) 12.3 a 12.7 13.5 ab 15.1

50 (T3 control) 12.7 ab 12.9 14.0 bc 15.7
50 (T4 sunscreen) 13.4 b 12.7 14.2 c 15.9

Significance * N.S ** N.S
For a given variable, different letters within a column represent significant differences (Tukey’s test, p < 0.05)
among the treatments (four replicates). * Significant difference (p < 0.05). ** Significant difference (p < 0.01). N.S:
Not significant.

4. Discussion

As expected, the decrease in irrigation frequency in water stress treatments decreased
the water applied by 50% compared to the control. In addition, this allowed for a reduction
in stem-water potential (Ψs) on the days closest to harvest in both varieties and decreased
stomatal conductance (gs) in blueberry plants (Tables 3–5). After the irrigation treatments
had a statistically significant influence, Duke plants without irrigation restriction presented
Ψs values from−0.6 to−0.7 MPa and the stressed plants reached Ψs from−0.8 to−1.0 MPa.
Under these same conditions, Ψs ranged from −0.6 to −0,9 in non-stressed plants and from
−0.7 to −1.1 MPa in stressed plants in the Star cultivar. Different authors have reported
similar results of Ψs after applying regulated deficit irrigation. Lobos et al. [25] reported
−0.70 and −1.20 MPa in Brigitta plants for fully irrigated plants and severe water deficits,
respectively. Keen and Slavich [26] described a range from −0.60 to −1.50 MPa in Star
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plants. Estrada et al. [27] measured −0.64 to −1.29 MPa as a mean for Bluegold, Elliott
and Liberty cultivars. In this regard, some authors suggested that threshold values of
Ψs < 1.0 MPa can be used to avoid water stress, significant reductions in yield and berry
quality in blueberries plants [25,27,28].

Looking at the results, sunscreen based on dicarboxylic acid salts applications to
blueberries (Vaccinium corymbosum L.) plants scarcely affected the Ψs in Duke and Star,
but considerably maintained gs in Star plants managed under water stress conditions at
the same level as irrigated plants (Table 5). Thus, concerning Ψs and gs, there was no
difference in the response of both cultivars. Severe water stress results in a low photosyn-
thesis rate because stomatal conductance limits CO2 diffusion from the atmosphere to the
leaves [25,29]. Regulated deficit irrigation treatments applied to Brigitta plants (50% ETc)
altered stomatal conductance and transpiration, reducing photosynthetic rate, stomatal
conductance, and transpiration by 20 to 80% compared to control (100% ETc) [25]. Midday
stomatal conductance in different highbush blueberry cultivars decreased as the leaf water
potential reached −0.6 to −0.8 MPa [30,31]. Net photosynthesis and stomatal conductance
reduced by 30% due to water stress resulting from no irrigation for three weeks at the
onset of shoot growth compared to daily irrigation in Bluecrop blueberries [32]. In this
fashion, sunscreen based on dicarboxylic acid salts applied to Star stressed plants allows
for a maintenance of stomatal conductance levels such as in the fully irrigated plants.

Thermal and water stresses are increasingly frequent in the Mediterranean production
area during summer, limiting productivity and berry quality [8,33,34]. The exogenous
foliar application of radiation-reflecting products has proven effective in mitigating the
negative impacts of these abiotic stresses in grapevine and other fruit crops [15,34–37].
However, to our knowledge, there is little available information about sunscreen foliar
applications to mitigate thermal and water stress conditions in blueberries. Some authors
have proposed that radiation-reflecting products could be used as additional tools to save
water in several species, such as olives, clementine, tomatoes, and grapefruits [37–41].
However, there is an ongoing debate on its effects on gas exchanges, and mechanisms of
action are not yet completely understood [35]. Some authors reported no effect or even an
increase in net assimilation and stomatal conductance, while other researchers observed
a reduction [42,43]. Based on this, the effectiveness of radiation-reflecting products in
improving leaf resilience when subjected to severe environmental conditions, mainly
through gas-exchange assessment, can be significantly changed according to the variety,
water status, and stress severity [37]. The effects of these products suggest the modulation
of indole-3-acetic acid (IAA), salicylic acid (SA), and abscisic acid (ABA) levels in crops
cultivated in Mediterranean-type climates [37,44,45]. ABA is a growth regulator that
controls stomatal closure, transpiration, and the plant’s response to water stress and has
been foliar-applied on apples with inconclusive results [46,47]. In this fashion, Frioni
et al. [48] showed that leaves covered with kaolin (a radiation-reflecting inert product) had
higher violaxanthin (Vx) + antheraxanthin (Ax) + zeaxanthin (Zx) pool and a significantly
lower neoxanthin (Nx) content (VAZ) when water deficit became severe. Thus, kaolin
allowed for the prevention of the ABA biosynthesis by avoiding the deviation of the VAZ
epoxidation/de-epoxidation cycle into the ABA precursor biosynthetic direction. These
authors suggested that the preservation of the active VAZ cycle and transpiration led to an
improve in the dissipation of exceeding electrons, which explained the higher resilience of
canopy functionality expressed by the application of kaolin.

A sunscreen based on dicarboxylic acid salts applications to Duke plants with managed
under-water stress conditions produced berries with higher total soluble solids than those
from non-stressed plants (Table 8). No different response of the two cultivars to treatments
for yield and fruit weight was observed, and total soluble solids were slightly higher in
plants subjected to water stress and sunscreen applications, probably because the yield was
a little lower for this treatment than in the rest of the applications. To our knowledge, there is
a scarce availability of information about the effects of dicarboxylic acid salts in horticulture.
In general, dicarboxylic acids applications to crops allows for the hindering of plant growth
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and delays senescence processes by inhibiting chlorophyllase and peroxidase activities [19].
However, these results did not coincide those found in this manuscript. Currently, the
study of the applications of radiation-reflecting products, mainly of kaolin, has increased,
especially in viticulture and vegetable production [37,42]. Kaolin foliar applications to
grapevines decreased berry sugar content without affecting malic and tartaric acid levels
and reactive oxygen species accumulation throughout berry ripening [37]. Most of the
authors agreed that kaolin exerts a delaying effect in triggering ripening-related processes
under severe summer stress conditions [33,37,49]. However, the application in tomato
may or may not improve the accumulation of total soluble solids under salinity and water
stress conditions, improving water use efficiency [42,50]. Therefore, under water stress
conditions, sunscreen based on dicarboxylic acid salts applications to Duke increased berry
total soluble solids in comparison to its application to non-stressed plants. Moreover, this
treatment, when applied to Star blueberries, maintained stomatal conductance at the same
level as irrigated plants.

Diurnal changes in gs, Ψs and transpiration have been reported to be closely related
in blueberries [31]. Regardless of cultivar, gs decreases quickly as Ψs reaches close to
−0.6 MPa [51]. Byers et al. [52] showed that the root system of highbush blueberries is
inefficient in water uptake, even if soils water soil levels are adequate. There is a scarce
availability of information in the scientific literature regarding the response to drought or
heat stress by blueberries plants. ‘Duke’ maintained lower Ψs and higher gs than ‘Elliott’
and ‘Bluecrop’ as soil water was depleted [51]. This may indicate that this cultivar has
the highest tolerance for short-term soil water deficits [51]. In this fashion, Bryla and
Strik [31] suggested that ‘Duke’ might require a lower irrigation frequency than the other
cultivars since it develops a deep-root system and extracts more water at depths below
0.6 m. No further evidence was found in the literature about the response of Star to drought
or heat stress.

Based on these preliminary results, it is necessary to perform long-term studies ac-
counting for more factors and variables, such as CO2 assimilation and water use efficiency,
among others, to establish accurate conclusions related to the application of dicarboxylic
acid salts to blueberries.
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