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Abstract: For tree crops, shortening the juvenile phase is a vital strategy to advance fruit bearing
and enhance the breeding efficiency. Walnut (Juglans regia L.) seedlings usually take at least eight
to 10 years to flower, but early-flowering (EF) types can flower one or two years after planting. In
this study, RNA sequencing (RNA-Seq) and microRNA sequencing (miRNA-Seq) were used for a
transcriptome-wide analysis of gene and miRNA expression in hybrids of the Xinjiang EF walnut
variety ‘Xinwen 81’ and later-flowering (LF) walnut. Based on a high-quality chromosome-scale
reference genome, a total of 3009 differentially expressed genes (DEGs) were identified, of which
933 were upregulated (accounting for 31%) and 2076 were downregulated (accounting for 69%).
DEGs were functionally annotated, and the flowering-related genes FLOWERING LOCUS T (FT),
SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), and LEAFY (LFY) showed remarkable
upregulation in EF compared with in the LF walnut. In addition, miRNAs associated with floral
transition were screened as candidates for flowering time regulation in the walnut. This work
provides new insights into walnut floral transition, which may ultimately contribute to genetic
improvement of the walnut.

Keywords: Walnut; Juglans regia; Flowering time; RNA-Seq; MicroRNA-Seq; Floral transition

1. Introduction

In flowering plants, the floral transition from the juvenile to the adult phase is con-
trolled by several exogenous and endogenous developmental signals to ensure an appropri-
ate flowering time [1,2]. In the model plant Arabidopsis thaliana, this transition is regulated
by the photoperiodic, vernalization, autonomous, and gibberellin pathways [1,3]. Crosstalk
between those pathways in this critical reproductive stage is regulated by a network of
flowering-related genes [1,4–6]. For example, FLOWERING LOCUS C (FLC) functions as
a flowering repressor in Arabidopsis; in contrast, FLOWERING LOCUS T (FT), or florigen,
promotes flower initiation and is directly repressed by FLC under long-day photoperiod
(LD) conditions [7–10]. In addition to the four major pathways described above, floral
transition is influenced by the miR156-dependent aging pathway [11,12]. Recent studies
have revealed that miR156 and miR172 play key roles in the regulation of the floral transi-
tion. The expression level of miR156 is high in the juvenile stage and gradually decreases
during the adult stage, whereas miR172 exhibits the opposite expression pattern [12,13]. It
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is crucial to understand how these pathways function in response to diverse developmental
and environmental signals in model and crop plants. However, few flowering time genes
have been identified in perennial woody plants.

Perennial woody plants require longer time periods to complete the transition from
the juvenile to the adult phase. After the floral transition, they can generate both flowering
and vegetative buds each year. In perennial plants, FLC-like genes are expressed at different
levels that correspond with evolutionary relationships between plants [14–17]. It has been
shown that, in biennial-to-perennial wavy bittercress (Cardamine flexuosa), integrated age
and vernalization pathways generally regulate flowering with CfFLC and miR156-SPL-
miR172 modules [18]. Most woody fruit trees have long juvenile vegetative phases, which is
the major limitation to early economic benefits for fruit production. Despite the differences
in lifespan between annual and perennial plants, similar genetic and epigenetic processes
seem to underlie flower transition from the vegetative to reproductive stage.

Persian walnut (Juglans regia L.) is a well-known nut fruit with high nutritive value [19].
It originated in the mountain valleys of Central Asia and is now grown worldwide in coun-
tries such as the USA, Iran, and China [20]. This species takes approximately eight to
10 years to bloom for fruit setting after seedlings are planted; the relatively long juvenile
phase delays economic income for several years after planting, making early-flowering
(EF; short juvenile phase) walnut germplasm resources more desirable for walnut breeders
and farmers. Compared with other plants, the mechanism of floral transition in walnut
remains less studied. Using RNA sequencing (RNA-Seq) analyses, recent studies have pro-
posed several candidate genes associated with the juvenile–adult phase change in walnut
trees [21,22], but the critical genes regulating the precocious characteristic of EF walnut
germplasm are still unknown. A high-quality chromosome-scale reference genome was
recently released for the walnut [23]. The combination of RNA-Seq data with this reference
genome will provide more informative profiles for understanding the floral transition.

In the present study, we created hybrid offspring between the EF cultivar ‘Xinwen 81’
and the late-flowering (LF; or long juvenile phase) type, the Xinjiang local walnut. RNA-Seq
and microRNA-Seq (miRNA-Seq) analyses were used to identify differentially expressed
genes (DEGs) and differentially expressed miRNAs associated with the floral transition in
walnut varieties. Together, these results not only lay the foundation for further studies on
juvenile–adult phase change regulation in walnut varieties but, ultimately, may contribute
to the development of walnut breeding programs for the selection of EF germplasm.

2. Materials and Methods
2.1. Plant Materials and Sample Collection

In this study, all walnut materials were planted and collected in a field in Alar city,
Xinjiang province, China (40◦32′27.74239” N, 81◦18′3.40166” E, altitude 957.37 m). Briefly,
all walnut materials used in this study were obtained following the procedure. Firstly,
we hybridized a bred EF variety (‘Xinwen 81’) and a local LF walnut variety by manual
pollination to obtain the F1 offspring in 2013. Then, seeds from the F1 offspring were
harvested and sown. We observed whether the F1 seedling plants were able to complete
the floral transition with visible floral buds in 2014 and 2015. The F1 seedling walnuts
that flowered for one or two years were marked as EF offspring, while LF F1 seedling
walnuts were marked as those that flowered beyond 2 years. For RNA-Seq and miRNA-Seq
analyses, EF and LF bud samples were separately mixed with three repeats from the F1
hybrid population. The mixed samples of EF and LF walnut offspring buds were harvested,
flash-frozen in liquid nitrogen, and then stored at −80 ◦C for further analyses.

2.2. RNA Extraction, Library Preparation, RNA Sequencing, and microRNA Sequencing

Total RNA was extracted from the flower buds of EF and LF walnut plants using the
RNA Easy Fast Plant Tissue Kit (TIANGEN, Beijing), and cDNA was generated with the
FastKing RT Kit (TIANGEN, Beijing), both according to the manufacturer’s instructions.
The Agilent Bioanalyzer 2100 was used to measure the RNA quality, and only high-integrity
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RNA was used for further analyses. For RNA-Seq, the library was prepared using a TruSeq
RNA kit (Illumina, San Diego, CA, USA) following the manufacturer’s recommendations.
For miRNA-Seq, the library was prepared using the MicroRNA Sample Pre Kit as instructed
by the manufacturer. High-throughput sequencing was performed using the Illumina
HiSeq2500 platform.

2.3. RNA-Seq and miRNA-Seq Data Analysis

RNA-Seq libraries were evaluated for quality using FastQC. Low-quality reads, and
adapter sequences were filtered using Trim-galore v0.6.2 (https://github.com/FelixKrueger/
TrimGalore, accessed on 4 March 2021). Cleaned reads were aligned to the high-quality
chromosome-scale assembly of the walnut reference genome [23] (http://dendrome.ucdavis.
edu/ftp/Genome_Data/genome/Reju/, accessed on 15 March 2021) using HISAT2 v2.2.1
(http://daehwankimlab.github.io/hisat2/, accessed on 15 March 2021) with default parame-
ters. Gene expression levels were quantified using FeatureCounts v1.22.2 (http://subread.
sourceforge.net/featureCounts.html) with default parameters. Differentially expressed genes
(DEGs) were identified using the DEseq2 [24] package in R with cutoff values of Fold Change
(FC) > 2 and adjusted p-value < 0.05.

miRNA-Seq data were evaluated for quality, and low-quality reads and adapter se-
quences were removed. Reads that were 18 to 30 nt long were included in subsequent
analyses. Cleaned reads mapped to ribosomal RNA (rRNA), transfer RNA (tRNA), small
nucleolar RNA (snoRNA), and small nuclear RNA (snRNA) sequences were filtered us-
ing Bowtie2, and then the remaining reads were aligned to the walnut genome using
miRDeep2 [25]. TPM values were calculated for each miRNA, and then the miRNA abun-
dance was compared between EF and LF samples using the DEseq2 package in R, as
described above.

2.4. Functional Enrichment Analysis

DEGs were annotated using Gene Ontology (GO) terms from the agriGO v2.0 database [26],
and functional enrichment was determined using Fisher’s test and Yekutieli‘s multi-test ad-
justment method. GO terms with false detection rate (FDR) values <0.05 were defined as
significantly enriched. The Kyoto Encyclopedia of Genes and Genomes (KEGG) [27] was used
for biochemical pathway annotation and enrichment analysis, with significantly enriched terms
also being defined as those with FDR < 0.05.

2.5. miRNA Target Prediction

miRNA target genes were predicted using TargetFinder [28] with default parameters.

2.6. Quantitative Real-Time PCR Validation

Total RNA was extracted and first-strand cDNA was synthesized as described above.
Diluted cDNA was used as a template for quantitative real-time (qRT)-PCR, which was
performed using a SYBR Premix ExTaq II Kit on an ABI 7500 qPCR instrument (Applied
Biosystems, Waltham, MA, USA). The 2−∆∆Ct method was used to evaluate the relative
expression levels of target genes in each sample [5]. All primers used in this study are
shown in Table S1.

3. Results
3.1. RNA Sequencing and Transcription Analysis

RNA was extracted from six samples (LF and EF walnut flower buds, each with
three biological replicates: EF1-3 and LF1-3, respectively). Illumina sequencing yielded a
total of 33.71 million paired-end reads in a total of 42.47 Gb sequencing data. These raw
data sequences have been submitted to the Gene Expression Omnibus (GEO) database of
the National Center for Biotechnology Information (NCBI) under the accession number
GSE193061. After quality checking and cleaning, the remaining reads (those with bases
of Q ≥ 20) constituted over 93% of the samples, comprising between 4.63 and 6.55 million
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reads per sample. The percentage of uniquely mapped reads ranged from 96.61 to 96.78%
(Table S2), and only the uniquely mapped reads were further used to calculate the nor-
malized gene expression level as fragments per kilobase of transcript per million mapped
reads (FPKM).

To gain insight into transcriptomic differences between EF and LF varieties, we per-
formed a principal component analysis (PCA) (Figure 1A), correlation analysis (Figure 1B),
protein-coding read annotation (Figure 1C), expression level analysis (Figure 1D), and
expression level density analysis (Figure 1E). The PCA yielded two principal components
(PCs) that explained 87% and 5% of the variance for all six samples. Using the PCA and
correlation analysis, we found that the three biological replicates of EF and LF walnut
varieties had very high levels of replicability (Figure 1A,B). The average number of reads
annotated as protein coding genes in the LF walnut samples was higher than in the EF
walnut samples (Figure 1C). To minimize transcriptional noise, we defined expressed genes
as those with FPKM ≥ 1. Using this cutoff, the number of expressed genes in the LF walnut
samples was lower than in the EF walnut samples (Figure 1D,E).
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Figure 1. RNA-Seq data analyses. (A) Principal component analysis (PCA) of the six samples;
(B) Heatmap of the Pearson correlation coefficient between samples; (C) The number of protein
coding genes in each RNA-Seq sample; (D) The number of genes in each sample expressed at
different levels; (E) Density plot showing overall gene expression levels for each sample.

3.2. Identification and Enrichment Analysis of DEGs between EF and LF Walnut Varieties

A total of 3009 genes were identified as significant DEGs between the EF and LF
samples, 933 of which were upregulated (accounting for 31%) and 2076 of which were
downregulated (accounting for 69%) (Figure 2A–E). We visualized the locations of these
DEGs among all chromosomes using a circos plot (Figure 2A) and directly show gene
expression levels with a volcano plot (Figure 2C) and a heatmap (Figure 2D).
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To determine the functions of the identified DEGs, we performed a GO analysis. Sig-
nificant GO terms were categorized into three main groups: biological processes, cellular 
components, and molecular functions (Figure 3A). In the biological process category, ‘mi-
crotubule cytoskeleton’ was the most highly enriched term. In the molecular function cat-
egory, ‘microtubule motor activity’ and ‘oxidoreductase activity’ were the two most 
highly enriched terms. In the cellular component category, there were five enriched terms, 
of which ‘microtubule-based process’ was the most significantly enriched, followed by 
‘cell cycle process’, ‘movement of cell or subcellular component’, and ‘microtubule-based 
movement’. We further selected the top 20 terms with the smallest FDR values, and most 
of the terms were found to be highly relevant to the microtubule and cytoskeleton. Four 
DNA replication-associated terms and two cell cycle-associated terms were shown to be 

Figure 2. Differentially expressed gene (DEG) identification. (A) The distribution of DEGs across
the whole genome at the chromosome scale; (B) DEGs categorized as up- or downregulated genes;
(C) The volcano plot displays genes classified as upregulated (red dots), downregulated (blue dots), or
having no difference in expression (grey dots) between the two sample types. Dotted lines represent
the cutoff value for fold change (FC) > 2 and p < 0.05; (D) Heatmap, where each row represents one
DEG and each column represents one sample. Gene expression levels were normalized by Z-scores;
(E) Gene expression trend analysis. Genes were divided into four groups using the general trends of
gene expression in different samples.

To determine the functions of the identified DEGs, we performed a GO analysis.
Significant GO terms were categorized into three main groups: biological processes, cellular
components, and molecular functions (Figure 3A). In the biological process category,
‘microtubule cytoskeleton’ was the most highly enriched term. In the molecular function
category, ‘microtubule motor activity’ and ‘oxidoreductase activity’ were the two most
highly enriched terms. In the cellular component category, there were five enriched terms,
of which ‘microtubule-based process’ was the most significantly enriched, followed by
‘cell cycle process’, ‘movement of cell or subcellular component’, and ‘microtubule-based
movement’. We further selected the top 20 terms with the smallest FDR values, and most of
the terms were found to be highly relevant to the microtubule and cytoskeleton. Four DNA
replication-associated terms and two cell cycle-associated terms were shown to be also
enriched. These results indicate that the DEGs identified are associated with growth and
development, likely reflecting the differing regulation of plant development and flowering
time between the EF and LF offspring walnuts.
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Figure 3. The functional enrichment of differentially expressed genes using GO and KEGG classifica-
tion. (A) A histogram (left) and bubble diagram (right) showing the significantly enriched GO terms,
which were divided into biological processes (BP), molecular functions (MF), and cellular components
(CC); (B) A histogram (left) and bubble diagram (right) showing the significantly enriched KEGG
terms, which were divided into four groups: environmental information processing, human diseases,
genetic information processing, and metabolism.
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We next used the KEGG biochemical pathway analysis [27] to further investigate DEG
functions. All DEGs were mapped to terms in the KEGG database and then filtered with a
cutoff of p < 0.05 to identify significantly enriched terms. DEGs annotated as being involved
in ‘Plant hormone signal transduction’, ‘DNA replication’, ‘Anthocyanin biosynthesis’, and
‘Phenylpropanoid biosynthesis’ were the most significantly enriched (Figure 3B), suggesting
that these genes may function in walnut plant development.

3.3. miRNA Sequencing and Data Analysis

miRNA was extracted from six samples (EF and LF walnut flower buds, each with
three biological replicates) and sequenced, yielding a total of 91.98 Mb of sequenced data
points. These raw data sequences have been submitted to the GEO under the accession
number GSE193061. Only reads that were 18 to 30 bp in length were used in subsequent
analyses (Figure 4A). Two PCs explained 71.0% of the total sample variance, and the three
biological replicates of each variety had very high levels of replicability (Figure 4B). Clean
reads were mapped to ribosomal RNA (rRNA), transfer RNA (tRNA), small nucleolar RNA
(snoRNA), and small nuclear RNA (snRNA) sequences (Figure 4C), and then the remaining
reads were aligned to the walnut genome. miRNAs from 18–23 bp had a first nucleotide
bias towards U, whereas the bias was for A and G in 24 and 25 bp miRNAs, respectively
(Figure 4D). TPM values were calculated for each miRNA, and a density analysis was also
performed (Figure 5A). The heatmap (Figure 5B) directly shows the Pearson correlation
coefficients between samples and again indicates a high level of repeatability among the
biological replicates of each sample, consistent with the PCA results.
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Figure 4. Overview of the miRNA-Seq data. (A) Comparison of unique sequences between early-
flowering and late-flowering walnut varieties; (B) PCA of miRNA for the six samples; (C) miRNA
category annotations; (D) First nucleotide bias analysis for miRNAs of different lengths.
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Figure 5. Identification and functional enrichment analyses of differentially expressed miRNAs.
(A) Density plot showing overall miRNA expression levels in each sample; (B) Heatmap showing
Pearson correlation coefficients between samples; (C) Total number of up- and downregulated
miRNAs between the EF and LF varieties; (D) The volcano plot displays miRNAs classified as
upregulated (red dots), downregulated (blue dots), or having no difference in expression (grey dots)
between the two sample types. Dotted lines represent the cutoff value for fold change (FC) > 2
and p < 0.05; (D) Heatmap, where each row represents one miRNA and each column represents
one sample. miRNA expression levels were normalized by Z-scores; (E) Heatmap of differentially
expressed miRNAs, where each row represents one miRNA and each column represents one sample.
miRNA expression levels were normalized by Z-score; (F) Histogram showing significantly enriched
GO terms, which were divided into biological processes (BP), molecular functions (MF), and cellular
components (CC); (G) Histogram showing significantly enriched KEGG terms, which were divided
into two categories: genetic information processing and metabolism.



Horticulturae 2022, 8, 136 9 of 12

Using FC > 2 and adjusted p-value < 0.05 as cutoff values, 27 miRNAs were classified
as upregulated and 18 miRNAs were classified as downregulated (Figure 5C–E; Table
S3). miRNA expression cluster analysis (Figure S1) and GO and KEGG function analyses
were also performed (Figure S2). The top 10 most highly enriched GO terms in each
category are shown in Figures 5F and S2A, and the most enriched KEGG terms are shown
in Figures 5G and S2B.

3.4. Identification of Genes and miRNAs Associated with Flowering Time

To demonstrate the regulatory network between miRNAs and mRNAs, miRNA target
genes were predicted. We constructed an interaction network between differentially ex-
pressed miRNAs and DEGs (Figure 6A) based on the predicted results, and the miRNAs
in the jre-MIR156 family were verified using qRT-PCR (Figure 6B). We collected the gene
list including the flowering genes and homologous genes of flowering genes in Arabidopsis
thaliana, visualized it with a heatmap (Figure 6C), and validated gene expression levels by
comparing results from qRT-PCR and RNA-Seq (Figure S3). A GO enrichment analysis was
also performed (Figure S4).
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Figure 6. Regulation network construction and validation of candidate genes/miRNAs associated
with the flowering time. (A) Regulation network of key genes and miRNAs associated with the
flowering time; (B) Validation of candidate miRNA expression with qRT-PCR; (C) Heatmap of
candidate genes. Gene expression levels were normalized with Z-score. Genes (on the right) shown
in red were used for further validation; (D) qRT-PCR validation of expression for key candidate genes
that positively regulate the flowering time.
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In Arabidopsis, the regulation of the flowering time involves a comprehensive network,
in which FT [9,29] is a key hub gene that promotes flowering. LFY (floral meristem
identity control protein LEAFY) [30] is a transcriptional regulator that plays a regulatory
role in flowering. SOC1 (AGAMOUS-like 20) [31] acts downstream of FT and controls
flowering. We validated the expression of SOC1 (Jr1DG00265800), LFY (Jr6SG00015000),
and FT (Jr4DG00095200) with qRT-PCR, and found that the three genes were more highly
expressed in the EF than in the LF walnut variety (Figure 6D). These results suggest that
these candidate genes play vital roles in the regulation and promotion of flowering in the
EF walnut variety.

4. Discussion

In woody horticultural plants (fruit trees), the early-flowering/precocious trait is
desirable because it permits early fruit setting and timely harvest. The selection of early-
flowering walnut cultivars may increase or stabilize production, and some walnut geno-
types originating from central Asia (including Xinjiang province) display an early flowering
phenotype [32]. In vitro propagation of these EF walnut varieties and observations of flower
bud formation has confirmed the EF phenotype [33–35]. The identification of genetic mech-
anisms underlying the modulation of flowering time can contribute to walnut breeding
goals by promoting fruit production [20] and aids in the selection of lines to study the
genetic cues controlling flowering in woody perennials more broadly.

Currently, in walnut varieties, very little is known about the signals that underlie
the transition between the juvenile and adult phases. Recent studies have identified
flowering-related genes associated with this transition in walnut trees [21,22]. Remarkably,
transcriptome profiling (RNA-seq) has revealed thirty-one DEGs associated with this floral
transition in J. regia [22]. However, that study performed a RNA-seq analysis that lacked a
high-quality walnut reference genome. Thanks to technology advances, a walnut reference
genome has been released with the new version [23], which allowed us to easily and
conveniently identify profiles of DEGs and differentially expressed miRNAs associated
with the floral transition. For example, with a high-quality walnut reference genome, it was
possible to mark all DEGs and differentially expressed miRNAs as special location IDs in
our study (Tables S2 and S3). Moreover, our study performed RNA-seq and microRNA-seq
followed by a bulk segregant analysis (BSA) of the F1 offspring population obtained from a
bred EF walnut ‘Xingwen81’ and a local LF walnut cultivar [22].

Recently, epigenetic factors have been a major driver for understanding the mech-
anisms associated with floral transition [1]. For example, various histone modifications
have been revealed as being associated with the regulation of the flowering time in model
plants [5,36,37]. In woody plants, it has been shown that the complex regulatory networks
associated with floral transition are controlled by epigenetic mechanisms [38,39], implying
that specific genes and epigenetic mechanisms have essential roles in Xinjiang precocious
walnuts. Thus, future research will focus on identifying the functional impacts of these
DEGs and miRNAs and investigating the chromatin states of the candidate genes.

In conclusion, we profiled differentially expressed genes and miRNAs associated with
the floral transition in the Xinjiang EF walnut. Using RNA-Seq and validating the data with
qRT-PCR analyses, we found that FT, SOC1, and LFY are highly expressed in the EF walnut
variety. We additionally identified a set of miRNAs associated with the floral transition.
Together, these results not only lay the foundation for further studies into the regulation of
the juvenile–adult phase change but could also contribute to the development of walnut
breeding programs for selecting EF germplasm.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/horticulturae8020136/s1. Figure S1: miRNA expression trend analysis. Figure S2: Bubble
diagram of the miRNA enrichment analysis using GO (A) and KEGG (B). Figure S3: Validation of
candidate genes with qRT-PCR. Figure S4: GO enrichment analysis of candidate genes. Table S1: List
of primers used in this study. Table S2: DEGs between the EF and LF walnut varieties by RNA-seq.
Table S3: Differentially expressed miRNAs between the EF and LF walnut varieties by microRNA-seq.
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