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Abstract: Environmental pollution with organic pollutants has increased drastically in recent decades.
Despite the importance of minimizing organic pollutant content such as pesticide residue in ed-
ible crops, our understanding of induced xenobiotic metabolism in plants is poor. Melatonin is
a potent stress-relieving biomolecule, which exerts beneficial effects on xenobiotic metabolism in
plants. Exogenous melatonin treatment not only improves photosynthesis, antioxidant defense,
and plant growth but also reduces pollutant residue and xenobiotic uptake. The overexpression
of melatonin biosynthetic genes enhances organic pollutant metabolism, while the suppression of
endogenous melatonin biosynthesis increases organic pollutant residue in horticultural products.
Studies have revealed that the glutathione-dependent detoxification pathway plays a critical role in
the melatonin-induced enhanced detoxification of xenobiotics. Moreover, a role for RESPIRATORY
BURST HOMOLOG (RBOH)-derived reactive oxygen species signaling has been revealed which
potentially acts upstream of glutathione-dependent xenobiotic metabolism. Based on the literature,
here, we reviewed the effects of organic pollutants on plants and how melatonin aids plants in
enduring the effects of organic pollutant-induced stress. We also discussed the potential melatonin
signaling mechanism in enhanced pesticide metabolism. Our assessment suggests that melatonin
has positive impacts on plant tolerance to organic pollution, which can be used to improve the food
safety of edible horticultural crops.
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1. Introduction

Thousands of organic synthetic compounds are extensively exploited in a range of
industries, including agrochemicals, pharmaceuticals, food processing, toiletries, printing,
textiles, petrochemicals, steel manufacturing, and so on [1]. Additionally, new synthetic
chemicals are being introduced nearly every day around the world. As a result of extensive
production, usage, and frequent release, environmental pollution with organic pollutants
has become a serious environmental concern [2]. Organic pollutants can extensively
disperse, and many organic pollutants have a long half-life, and thus they continue to
pollute the environment [3]. Because of the acute and chronic impacts of toxic organic
pollutants on all living organisms, the bioaccumulation of such substances has considerably
increased the burden and potential threats to the environment and human health [3,4].
Alarmingly, certain organic pollutants are known to cause cancer, genetic mutations, and
birth defects [4,5]. In addition, consuming organic pollutant-contaminated crops for a long
time may result in serious illnesses [6]. Nonetheless, individual susceptibility, the duration
and mode of exposure, and the kind of organic pollutants play a role in determining the
health effects.

Due to the scarcity of freshwater resources, reclaimed water is widely used in agricul-
ture, despite it possibly being a significant contributor of organic contaminants to edible
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crops [7]. When plants are grown in contaminated soils or irrigated with polluted water,
organic pollutants are accumulated in the leaves, fruits, and stems of many crops that are
often consumed by humans [6,8]. Nonetheless, the accumulation of organic pollutants in
the above-ground sections of plants may vary greatly depending on factors including the
hydrophobicity, lipophilicity, and chemical structure of the pollutants as well as the plant
species/genotype and absorption mechanism [6,9]. In particular, Cucurbitaceae family
members including cucumber, melon, pumpkin, squash, and zucchini have been shown
to have elevated levels of organic pollutants in their above-ground sections [6]. Moreover,
pesticide residues have been found in a wide variety of ready-to-eat foods and drinks
such as vegetables, fruits, and fruit juices, and they are notoriously difficult to remove
using normal preparation methods such as washing and peeling [10,11]. If residue levels in
crops are too high, farmers have to abandon everything they grow on that polluted land,
causing a total financial loss. Therefore, it is imperative to reduce the residue of organic
pollutants by establishing growing strategies for safer crop production [12]. Plants can
degrade or detoxify organic pollutants [13]. Thus, taking advantage of the in planta detoxi-
fication of organic pollutants is critical for ensuring their absence in the human diet [14].
However, the capacity of plants to detoxify organic pollutants is often limited by the high
phytotoxicity of the xenobiotic substance at high concentrations [15]. Therefore, cultivating
safer horticultural crops requires an in-depth knowledge of how plants efficiently detoxify
organic pollutants.

Melatonin, also known as N-acetyl-5-methoxytryptamine, is an endogenous signaling
molecule found in eukaryotic organisms [16]. It plays a significant role in a variety of bio-
logical processes in plants [17]. Since the discovery of phytomelatonin in 1995, numerous
studies have investigated its effects on plants over the years. Phytomelatonin is gaining
recognition as the plant hormone upon the recently identified first melatonin receptor
PMTR1 [18]. Melatonin promotes seed germination, increases the production of lateral
roots, delays leaf senescence, and modulates the blooming time in plants grown in unfavor-
able conditions [16,19–21]. Melatonin is a key antioxidant that removes reactive oxygen
species (ROS) and reactive nitrogen species (RNS) [17]. Additionally, it regulates gene ex-
pression indirectly by activating or inhibiting stress-responsive transcription factors [22,23].
Exogenous melatonin application improves plant tolerance to a variety of stresses such as
drought, salt, heat, cold, waterlogging, heavy metals, and organic pollutants via regulating
endogenous melatonin production and the activities of antioxidant enzymes [24–29]. Since
climate change and environmental pollution are increasingly threatening agricultural pro-
duction, crop yields, and food security, melatonin has been the subject of increased study
due to its stress ameliorative properties.

Recent literature has focused on the remarkable benefits of melatonin in enhancing
plant adaptation to unfavorable conditions as well as the unique tolerance mechanisms
and the network of regulation in plant defense via melatonin [30–36]. The tremendous
potential of melatonin in modulating plant tolerance to organic pollutant-induced stress
has been revealed in specific research [7,10,37,38]. Phytomelatonin not only plays a crucial
role in alleviating phytotoxicity induced by organic pollutants such as different types of
pesticides, polycyclic aromatic hydrocarbons (PAHs), and endocrine disruptor bisphenol-A
(BPA) [7,37,39], but it also reduces pollutant concentrations in plant tissue, possibly by
decreasing their uptake and/or promoting in vivo degradation [7,10,37,40]. This article
reviews the current state of knowledge regarding the role of melatonin in plant tolerance to
organic pollutants and associated food safety, with the goal of serving as a reference for
future studies of phytomelatonin and pointing researchers in novel directions regarding its
applications, particularly with regards to enhancing food safety.

2. Organic Pollutants and Phytotoxicity

Organic pollutants are carbon (C)-based anthropogenic compounds that cause adverse
effects on the environment and human health [3]. As a special group of chemical pollutants,
organic pollutants are different from inorganic (mostly metals) pollutants. In recent decades,
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many different types of organic pollutants have been released in large quantities into the
environment as a consequence of massive anthropogenic activities [1]. Organic pollutants
can be classified in several ways. Based on the degradability of organic pollutants, the
pollutants can be divided into two categories: labile organic pollutants and recalcitrant
organic pollutants [3]. Again, according to the boiling point, organic pollutants can also be
divided into two categories: volatile organic compounds (240 ◦C~260 ◦C) and semivolatile
organic compounds (250 ◦C~400 ◦C) [41]. Despite this classification, the margin between
volatile organic compounds and semivolatile organic compounds is to a certain extent
unclear, and many pollutants fall into both classes. Many industrial chemicals, pesticides,
phenols, ethers, ketones, phthalate esters, pyridines, and anilines belong to semivolatile or-
ganic compounds and they are typically more resistant to environmental degradation than
volatile organic compounds [3,41]. Organic pollutants such as persistent organic pollutants
(POPs), polyaromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) have a
long half-life [39,42,43]. In contaminated soils, organic pollutants are absorbed by the roots
and then transported to the shoots, where they exert a devastating effect on photosynthesis
and other crucial physiological processes [6,15].

Additionally, the shoot can also accumulate lipophilic organic pollutants directly
from the atmosphere [43]. Moreover, many pesticides are applied to the foliage, causing
their accumulation in the shoot [37,38]. Many hazardous chemicals, including organic
pollutants, exert their toxicity primarily via inhibiting photosynthetic processes (Figure 1).
Chloroplasts are particularly vulnerable to organic pollutants [44]. Organic pollutants
accumulated in chloroplast thylakoids and microsomal compartments interfere with fun-
damental photosynthetic processes [45]. Both the intact and photo-modified forms of
organic pollutants stifle photosynthesis by affecting primary photochemical processes [15].
Organic pollutants block electron transport by obstructing either photosystem II (PSII) or
the connection between PSII and PSI at the cytochrome b/f [46]. Moreover, variations in
the amounts of photosynthetic pigments (Chl a, Chl b, and carotenoids) due to organic
pollutant-induced stress eventually alter the photosynthesis process [47].

Horticulturae 2022, 8, x FOR PEER REVIEW 4 of 15 
 

 

compartments [57]. However, antioxidant-based ROS scavenging is largely rate-limiting. 
Chlorophyll degradation, decreased photosynthesis, and reduced protein and RNA levels 
are commonly the results of excessive ROS accumulation in plant cells [35,58,59]. 

 
Figure 1. Deleterious effects of organic pollutants on plants and associated phytotoxicity. 

3. Mechanisms of Pollutant Detoxification 
To counteract the harmful effects of organic pollutants, plants use several detoxifica-

tion methods [8]. In the classical detoxification mechanism (Figure 2), the three main steps 
in xenobiotic metabolism in higher plants are: phase I: conversion or transformation; 
phase II: conjugation; and phase III: compartmentalization (transport and sequestration) 
[13]. Typically, organic pollutants are initially hydroxylated by cytochrome P450 family 
enzymes, and then the modified organic pollutants are conjugated with glutathione 
(GSH), followed by transportation and sequestration in the vacuole [14]. Glutathione, 
which is synthesized from cysteine, is an important thiol in plant xenobiotic detoxifica-
tion. The processes of GSH production in cells are enzyme-catalyzed and ATP-dependent 
[60,61]. The initial synthesis of γ-glutamylcysteine from γ-glutamate and ἀ-cysteine oc-
curs through the rate-limiting enzymatic action of the γ-glutamylcysteine synthetase en-
zyme (γ-ECS) encoded by GSH1 [7]. Afterward, the GSH2-encoded glutathione synthetase 
enzyme (GS) adds glycine to the dipeptide (γ-glutamyl-ἀ-cysteine). In plants, glutathione 
is found in both its reduced and oxidized forms. The enzyme glutathione reductase (GR), 
which is encoded by the GR1 gene, catalyzes the conversion of oxidized glutathione di-
sulfide (GSSG) back into reduced glutathione (GSH) [61,62]. Notably, the detoxification of 
xenobiotics in plants often involves glutathione S-transferases (GSTs), a well-known de-
toxifying enzyme, catalyzing the conjugation process between organic pollutants and 
GSH [7,50]. To neutralize the electronegative sites of xenobiotics, GSTs promote the nu-
cleophilic conjugation of GSH (at the thiol group). Finally, transformed organic pollutants 
are contained inside vacuoles or the cellular walls [13] When key detoxification genes such 
as GSH1, GR1, and GST1 are silenced in tomato plants, silenced plants show impaired 

Figure 1. Deleterious effects of organic pollutants on plants and associated phytotoxicity.



Horticulturae 2022, 8, 1142 4 of 14

Plants exposed to organic pollutants, such as pesticides and PAHs showed visible
symptoms including white spots on leaves, trichome and leaf deformations, chlorosis, and
necrosis as well as a decrease in biomass accumulation [15,48]. Moreover, oxidative stress,
ultrastructural abnormalities, cell death, modifications to antioxidant systems, and reduced
plant growth are critical signs of organic pollutant-induced negative consequences [44,49].
Bisphenol A is a xenoestrogen that can cause serious health problems in humans. BPA has
been shown to be hazardous to plants as well [50]. Reduced seed germination, decreased
photosynthesis, stunted growth, and delayed reproductive development are common
effects of BPA on plants [51,52]. BPA treatment also reduced the quantum yield of photosys-
tem II (Fv/Fm) and increased ROS accumulation, lipid peroxidation, and BPA accumula-
tion [7]. Likewise, synthetic pesticides are also phytotoxic [8,15]. Most pesticides suppress
PSII activity, cause photoinhibition, inhibit the electron transport chain in the thylakoid,
degrade chlorophylls, inhibit photosynthesis, and reduce plant growth [15,38,40].

Organic pollutants cause phytotoxicity by triggering excessive ROS production, which
eventually induces oxidative stress [49]. In particular, the oxidation of certain organic pol-
lutants such as phenanthrene leads to ROS production within cellular compartments [53].
Despite being one of the most critical signaling molecules in plant biology, excessive ROS
produced under stress as byproducts of aerobic metabolism can be seriously harmful [54,55].
The peroxidation of cell membranes caused by ROS is a critical sign of oxidative stress,
and highly bioactive ROS can damage lipids, nucleic acids, and proteins [56]. Plants
have evolved a robust antioxidative defense mechanism, comprising both enzymatic and
non-enzymatic antioxidants, to remove ROS from different cellular compartments [57].
However, antioxidant-based ROS scavenging is largely rate-limiting. Chlorophyll degrada-
tion, decreased photosynthesis, and reduced protein and RNA levels are commonly the
results of excessive ROS accumulation in plant cells [35,58,59].

3. Mechanisms of Pollutant Detoxification

To counteract the harmful effects of organic pollutants, plants use several detoxification
methods [8]. In the classical detoxification mechanism (Figure 2), the three main steps in
xenobiotic metabolism in higher plants are: phase I: conversion or transformation; phase
II: conjugation; and phase III: compartmentalization (transport and sequestration) [13].
Typically, organic pollutants are initially hydroxylated by cytochrome P450 family enzymes,
and then the modified organic pollutants are conjugated with glutathione (GSH), followed
by transportation and sequestration in the vacuole [14]. Glutathione, which is synthesized
from cysteine, is an important thiol in plant xenobiotic detoxification. The processes of
GSH production in cells are enzyme-catalyzed and ATP-dependent [60,61]. The initial
synthesis of γ-glutamylcysteine from γ-glutamate and
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-cysteine). In plants, glutathione is found in both its
reduced and oxidized forms. The enzyme glutathione reductase (GR), which is encoded by
the GR1 gene, catalyzes the conversion of oxidized glutathione disulfide (GSSG) back into
reduced glutathione (GSH) [61,62]. Notably, the detoxification of xenobiotics in plants often
involves glutathione S-transferases (GSTs), a well-known detoxifying enzyme, catalyzing
the conjugation process between organic pollutants and GSH [7,50]. To neutralize the
electronegative sites of xenobiotics, GSTs promote the nucleophilic conjugation of GSH (at
the thiol group). Finally, transformed organic pollutants are contained inside vacuoles or the
cellular walls [13] When key detoxification genes such as GSH1, GR1, and GST1 are silenced
in tomato plants, silenced plants show impaired detoxification potential characterized by
increased ROS accumulation, lipid peroxidation, and organic pollutant accumulation as
well as decreased GST activity [7]. Even while plants have their inherent detoxifying
systems, they are not particularly efficient at breaking down stubborn xenobiotics [6,8]. As
various plant growth regulators can promote xenobiotic metabolism in plants, the use of



Horticulturae 2022, 8, 1142 5 of 14

growth regulators is considered a useful strategy for increasing plant tolerance to organic
pollutants and xenobiotic degradation in vivo [14,40,63].
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4. Melatonin: A Master Growth Regulator of Plant Stress Tolerance
4.1. Melatonin Synthesis and Sources

Researchers have uncovered the essential steps of melatonin synthesis in plants [64].
Although melatonin is synthesized in both chloroplasts and mitochondria, the chloro-
plastic pathway is thought to be the major route of melatonin synthesis [23]. Typically,
melatonin is synthesized from tryptophan through the enzymes tryptophan decarboxylase
(TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acetyltransferase (SNAT), and N-
acetylserotonin O-methyltransferase (ASMT) [59]. To be more specific, TDC converts trypto-
phan into tryptamine, and T5H hydroxylates tryptamine to generate 5-hydroxytryptamine
(serotonin) (Figure 3). Afterward, serotonin is transformed to N-acetyl serotonin by SNAT,
and melatonin is produced from N-acetyl serotonin by ASMT [65]. However, plants also
use a catalytic enzyme called caffeic acid O-methyltransferase (COMT, involved in phenyl-
propane metabolism) to convert serotonin to melatonin [66,67]. COMT can substitute for
ASMT to catalyze the production of melatonin from N-acetyl serotonin, and it can catalyze
the transformation of serotonin to 5-methoxytryptamine as well [16]. The recruitment of
COMT makes plant melatonin synthesis more versatile than animal synthesis [65]. Al-
though tryptophan is required for the production of melatonin in all organisms, animals
can not synthesize tryptophan and thus have to obtain it from plant-derived food [64].

There are essentially two sources of natural melatonin: ‘melatonin’ from animal
origin and melatonin from plant origin, with the latter also being known as ‘phytome-
latonin’ [68]. As for animal sources, melatonin was previously isolated from the pineal
glands of cows; however, the risks of viral infection have led to synthetic melatonin pro-
duction being the preferred option [68,69]. Despite the high yield of synthetic melatonin,
the occurrence of unwanted compounds with chemically synthesized melatonin results
potential health risks [68]. Notably, significant progress has been achieved in synthetic
melatonin production through the use of greener protocols, resulting in the production
of new melatonin derivatives with lower cytotoxicity and higher water solubility, such
as sodium 4-(3-(2-acetamidoethyl)-5-methoxy-1H-indol-1-yl) butane-1-sulfonate [69,70].
As opposed to chemically synthesized melatonin, phytomelatonin derived from different
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plant parts such as fruit usually does not contain contaminants that are commonly found
in chemical synthesis [71]. Rather, compounds associated with phytomelatonin extracts
such as flavonoids, vitamins, phenols, tocopherols, and carotenoids have beneficial health
effects on humans [68]. Phytomelatonin is abundant in several families of plants such as
Rosaceae, Poaceae, Vitaceae, Apiaceae, and Brassicaceae [72]. In particular, fruits includ-
ing cherries, grapes, apples, tomatoes, bananas, and pineapples have been reported as
important sources of phytomelatonin [33]. Concentrations of phytomelatonin in different
plant parts in a range of plant species were listed in our recent review [16]. However, the
efficient isolation of phytomelatonin and the development of phytomelatonin-rich extracts
still remain challenging tasks, which warrant further intensive studies [68,71].
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4.2. Melatonin in Plant Physiology, Metabolism, and Abiotic Stress Tolerance

Due to the widespread effect of melatonin on gene transcription in plants, melatonin
likely has a pleiotropic function in a wide variety of cellular processes [16,18,73]. Exogenous
melatonin application or endogenous melatonin over-production has been shown to pro-
mote plant growth, development, and a variety of metabolic and physiological processes,
including photosynthesis, carbohydrate metabolism, and nitrogen assimilation, hormone
homeostasis, and so on [19,25,35,36,74]. Melatonin presumably delays postharvest fruit
senescence [75–77]. The principal function of melatonin against stresses is attributed to
efficient ROS scavenging [28,35]. Melatonin not only plays a role in direct ROS scavenging
but also significantly improves the antioxidant defense, which includes both enzymatic
and nonenzymatic antioxidants [56]. Melatonin protects plant cells and tissues from ox-
idative stress by increasing antioxidant gene expression and encoded enzyme activity,
thus allowing plants to efficiently scavenge a wide range of ROS and RNS [17]. Recent
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research has shown that melatonin not only promotes primary metabolism but also stimu-
lates secondary metabolism in plants, leading to the increased synthesis of a wide range
of secondary metabolites such as polyphenols, glucosinolate, terpenoids, and alkaloid
contents [23,24]. Notably, polyphenols such as flavonoids play an important role in ROS
scavenging [78]. Melatonin improves the cellular redox state by maintaining the stability of
GSH levels [10,40,79].

In recent years, numerous studies have revealed that melatonin can increase plant
tolerance to a wide variety of biotic and abiotic stresses, including drought, salinity, heat,
cold, water logging, heavy metal toxicity, and organic pollutant stress [7,80–82]. It is
now well-established that melatonin has a critical role in regulating responses to abiotic
stress (Figure 4). Melatonin interacts/crosstalk with hormones and signaling molecules to
systematically regulate plant resistance [17,31,83,84]. Notably, increased resistance to photo-
oxidative stress is mediated by melatonin-induced GSH homeostasis in cucumber [85].
Moreover, melatonin participates in xenobiotic detoxification by modulating the ascorbate
(ASA)-GSH cycle and GST activity [10,38,40]. There are several lines of evidence to infer
that the use of melatonin to reduce organic pollutant phytotoxicity and pollutant residue
could be feasible for edible horticultural crop production.
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5. Melatonin-Induced Detoxification and Alleviation of Phytotoxicity
5.1. Exogenous Melatonin Alleviates Organic Pollutant-Induced Stress

Melatonin regulates a variety of physiological and biochemical processes in plants
under stress [25,35]. It has been proposed as a possible natural safener that can protect
plants from organic pollutants such as pesticide- and herbicide-induced phytotoxicity [86].
Previous studies have shown that residues of pesticides such as carbendazim, chlorothalonil,
and imidacloprid in tomato and cucumber plants can be significantly decreased with the
administration of exogenous melatonin [37,38,40]. However, not much is known about
the detoxification mechanism triggered by melatonin in response to organic pollutants.
Current knowledge of melatonin-induced detoxification is largely based on the exogenous
application of melatonin and/or endogenous suppression of melatonin accumulation by
using melatonin biosynthetic inhibitor p-chlorophenylalanine (CPA) [10,37]. The effects of
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exogenous melatonin on the detoxification of xenobiotics and alleviation of phytotoxicity
are listed in Table 1. Additionally, there are a small number of pieces of genetic evidence
that further strengthen the proposition that melatonin is involved in plant responses to
organic pollutant-induced stress [7,38].

Table 1. Effects of exogenous melatonin on xenobiotic detoxification and alleviation of phytotoxicity.

Plant Species Melatonin
Concentrations * Treatment Methods Organic Pollutants Melatonin Effects References

Tomato (Solanum
lycopersicum L.) 20 µM Foliar application Bisphenol A (BPA,

10 mg L−1)-root treatment

• Increased transcripts of TDC, T5H, SNAT,
GSH1, GST1 and GR1

• Decreased ROS accumulation and
lipid peroxidation

• Increased Fv/Fm, GSH biosynthesis
and regeneration

• Increased BPA glutathionylation by GSH
• Decreased BPA uptake

[7]

Tomato (S.
lycopersicum L.) 100 µM Foliar application Chlorothalonil,

11.2 mM-foliar treatment

• Increased photosynthesis and Fv/Fm
• Increased detoxification enzyme activity

and gene expression
• Decreased pesticide residue via H2O2

signaling

[37]

Tomato (S.
lycopersicum L.) 0.5 µM Foliar application Carbendazim (MBC,

1 mM)-foliar treatment

• Increased chlorophyll content, Fv/Fm,
photosynthesis

• Decreased MDA content, decreased MBC
residues in leaves (48–73%)

[38]

Lettuce (Lactuca
sativa L.) 0.5 µM Foliar application Carbendazim (MBC,

1 mM)-foliar treatment
• Significantly decreased MBC residues

in leaves [38]

Chinese cabbage
(Brassica campestris
L.)

0.5 µM Foliar application Carbendazim (MBC,
1 mM)-foliar treatment

• Significantly decreased MBC residues
in leaves [38]

Spinach (Spinacia
oleracea L.), 0.5 µM Foliar application Carbendazim (MBC,

1 mM)-foliar treatment
• Significantly decreased MBC residues

in leaves [38]

Celery (Apium
graveolens L.) 0.5 µM Foliar application Carbendazim (MBC,

1 mM)-foliar treatment
• Significantly decreased MBC residues

in leaves [38]

Cucumber
(Cucumis sativus L.) 0.5 µM Foliar application Carbendazim (MBC,

1 mM)-foliar treatment
• Significantly decreased MBC residues

in leaves [38]

Cucumber (C.
sativus L.) 50 µM Root pretreatment Imidacloprid (IMD,

2.75 mM)-foliar treatment

• Increased Fv/Fm, chlorophyll contents,
photosynthesis, improved redox state,
increased antioxidant enzyme activity,
GST activity, and its transcripts

• Decreased H2O2, O2·−, and MDA
content, decreased IMD residues
in leaves

[40]

Jujube (Ziziphus
jujuba Mill. cv.
Dongzao)

0.1 mM
Mature jujube fruits
(post-harvest
spraying)

Fruits treated (immersed)
with chlorothalonil (CHT,
10 mM), glyphosate (Gly,
2 mM), and malathion
(Mal, 3 mM) solution for 2 h

• Improved firmness, reduced fruit weight
loss, and decay index

• Increased GSH content
• Enhanced activity of GR and GST,

increased antioxidants and phenolics,
promoted pesticide degradation

[10]

* Only the most effective concentrations of exogenous melatonin which alleviated organic pollutant-induced
phytotoxicity and/or improved the degradation of organic pollutants are presented.

5.2. Potential Mechanisms of Melatonin-Induced Xenobiotic Detoxification

Various modes of application with respect to melatonin can stimulate plant detoxifica-
tion potential. The foliar spraying of melatonin is a common and practically feasible mode
of application that was found to be effective for the detoxification of both shoot-sourced
pesticides and root-absorbed organic pollutants such as BPA. The negative effects of BPA as
manifested by decreased photochemical efficiency and increased lipid peroxidation, ROS
generation, and BPA uptake were mitigated by the addition of exogenous melatonin [7].
Melatonin is a redox network modulator that promotes the detoxification of xenobiotics
via the modulation of the AsA-GSH cycle, GST activity, and vacuolar sequestration [10,40].
The expression levels of melatonin biosynthesis genes such as COMT, T5H, and SNAT were
upregulated in response to the imposition of BPA stress [7]. These transcriptional changes
were accompanied by the elevated expression of GSH1, GR1, and GST1 and the activity of
GST and GR upon melatonin treatment in BPA-treated plants. Functional genetics research
highlights the cooperation between melatonin and GSH in xenobiotic detoxification in
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plants [38]. The manipulation of GSH metabolism and the expression of associated genes,
such as GSH1, GR1, and GST1, by virus-induced gene silencing impairs the melatonin-
controlled uptake, transport, and degradation of BPA in tomato plants, indicating the
mechanistic involvement of melatonin in BPA detoxification [7].

Moreover, the overexpression of COMT1 in tomato plants promotes pesticide metabolism,
which was associated with increased endogenous melatonin levels in tomato plants [38].
COMT1 overexpression enhances antioxidant capacity and the detoxification process, lead-
ing to the alleviation of oxidative stress and a reduction in carbendazim residue in tomato
leaves. Similarly, melatonin can significantly decrease chlorothalonil residue in tomato
leaves along with increasing photosynthetic efficiency and antioxidant capacity [37]. No-
tably, the RESPIRATORY BURST HOMOLOG (RBOH)-dependent H2O2 signaling-mediated
differential expression of detoxification-related genes, GSH production and/or regenera-
tion, and GST activity, appear to play a significant role in the reduction of pesticide residue
in tomato plants [87]. Similarly, endogenous H2O2 signaling is crucial for facilitating the
melatonin-mediated detoxifying response to pesticides (Figure 5). When endogenous H2O2
signaling was suppressed, either by limiting NADPH oxidase-dependent H2O2 generation
or H2O2 elimination by ROS scavengers, the potential of exogenous melatonin to confer
a detoxifying response to pesticides was reduced, further confirming the involvement of
H2O2 signaling in melatonin-induced xenobiotic metabolism in plants [37].
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5.3. Melatonin-Induced Reduction in Pesticide Residue in Postharvest Horticultural Management

The malpractice of treating harvested fruit with pesticides to prevent fungal diseases
is common in postharvest horticultural management. Although this practice can increase
the shelf life of fruit, pesticide residue can harm human health [10]. Interestingly, pesticides
in postharvest fruit can be degraded by melatonin treatment [75]. For instance, exoge-
nous melatonin application can accelerate the degradation of chlorothalonil, malathion,
and glyphosate in postharvest jujube fruit; however, the efficacy of melatonin-promoted
pesticide degradation was significantly blunted by the administration of CPA and GSH
biosynthesis inhibitor L-buthionine-sulfoximine [10]. This implies that melatonin enhances
GSH-dependent detoxification, hence promoting xenobiotic metabolism in plant organs [37].
Melatonin also prolonged pesticide-delayed fruit senescence, as evidenced by increased
fruit firmness and decreased weight loss and decay incidence [10].

Similar to foliar treatment, root-sourced melatonin promotes pesticide detoxification
in leaves [38]. Melatonin administration increased the activity of the enzyme GST and
transcripts of GST1, GST2, and GST3, leading to the accelerated degradation of imidaclo-
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prid [40]. Moreover, melatonin treatment improved the AsA/DHA and GSH/GSSG ratios,
as well as the activity of AsA-GSH cycle enzymes, showing that melatonin might reduce
imidacloprid-induced oxidative stress in cucumber via modulating the AsA-GSH cycle. In
addition to in vivo detoxification, melatonin promotes soil bacterial population and the
activity of dehydrogenase and peroxidase in soil polluted with PAHs, which potentially
resulted in the maximum PAH removal rate, suggesting that melatonin played a beneficial
role in increasing plant biomass and elevating the soil bacterial population that favored the
degradation of the selected PAHs (phenanthrene and pyrene) [39].

6. Conclusions and Future Perspectives

Despite the innate ability of plants to take in and detoxify organic pollutants from
environments, the accumulation of organic pollutants in plant tissue has been shown to
affect plant growth and development. Most mechanistic investigations supporting organic
pollutant degradation have been conducted in vitro in a chemical rather than physiological
context, thus limiting our ability to comprehend the mechanisms by which plants actually
degrade organic pollutants in vivo. Previous research revealed that melatonin acts as a
superb biostimulator, helping in the degradation of different types of organic pollutants
such as pesticides, herbicides, and BPA. Moreover, there is a close relationship between
endogenous melatonin levels and organic pollutant metabolism in plants. Melatonin
triggers apoplastic ROS signaling, which eventually activates antioxidant and detoxification
systems to mitigate oxidative stress and pollutant metabolism in plants (Figure 5). Among
different kinds of stress, organic pollutant categories are the least investigated with regard
to the melatonin effect, and thus additional research into melatonin function in the stimulant
category is warranted for future consideration. As melatonin has great potential for the
detoxification of a broad variety of organic pollutants, future remediation technology is
expected to benefit from the ongoing effort to maximize the effectiveness of melatonin in
xenobiotic metabolism.

Most studies concerning organic pollutant stress have primarily investigated organic
pollutant accumulation in plant tissue and subsequent phytotoxicity, wherein less attention
has been paid to the molecular mechanism underlying plant tolerance to organic pollutant
stress. To comprehend plant uptake, storage, and transport of organic pollutants, however,
relevant knowledge is necessary. Moreover, studies revealing the melatonin effects on
plant tolerance to organic pollutants have been based on exogenous application or the
chemical genetic approach. To elucidate the metabolism of organic pollutants in plants and
ensure food safety, functional genomic approaches have to be used. The safe cultivation
of horticultural plants in areas polluted by organic pollutants is an issue that calls for
researchers from the disciplines of plant physiology, molecular biology, and environmental
science to work together.

The degradation of organic pollutants is closely associated with the environmental fac-
tors and activity of living organisms including plants and microbes. Moreover, endogenous
melatonin biosynthesis and exogenous melatonin actions are affected by abiotic factors
such as temperature and light conditions. Thus, environmental factors should be taken
into consideration when exploring the role of melatonin in organic pollutant detoxification.
The putative ability of melatonin to increase plant resistance to organic pollutants and
decrease organic pollutant residue might provide a novel strategy to secure horticultural
production. However, further research employing cutting-edge molecular techniques and
mutant plants is necessary to fully comprehend the mechanisms of melatonin-induced
resistance to organic pollutants.
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