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Abstract: Calafate fruits have a high content of phenolic compounds and an antioxidant activity up
to four times higher than that of blueberries. The establishment of a calafate orchard and irrigation
responses on fruit and soil characteristics have been scarcely studied. Therefore, the objective of this
study was to evaluate the effect of water replenishment rate: 0%, 50%, 100% and 150% of reference
evapotranspiration (ET0), on soil microbiological activity, plant physiological response, fruit yield and
chemical composition in a calafate orchard. The results showed that irrigation at 50% ET0 presented
significant increases in soil urease, dehydrogenase and acid phosphatase activity. Likewise, irrigation
at 50% ET0 significantly increased stomatal conductance and plant chlorophyll index, which led to a
significant increase in fruit yield being 60% higher compared to the other treatments. Despite the
higher fruit yield, 50% ET0 irrigation had a similar level of total anthocyanins and ORAC antioxidant
capacity as the 100% ET0 treatment. In contrast, 0% and 150% ET0 treatments showed a higher degree
of stress and got higher values for total anthocyanins and fruit antioxidant capacity. Irrigation rates
50% ET0 increases fruit yield while maintaining fruit quality and optimizing water resources in
commercial orchards of calafate.

Keywords: berberis; soil enzyme activity; polyphenols; anthocyanins; antioxidant capacity

1. Introduction

Berberis microphylla G. Forst., commonly called calafate, is a very thorny shrub-like
species, with arching branches and blackish-blue berries, which grows under different
agroclimatic conditions in Chile and Argentina [1].

Currently, the calafate has become known for the properties of its blackish blue fruits,
as they have a high content of phenolic compounds and antioxidant activity [2], being
up to ten times higher than oranges, apples and pears, and up to four times more than
blueberries [3]. Despite its functional and nutritional properties, it is only grown in the
wild, without cultural management to improve its phytosanitary status, and longevity of
branches or shoots [4], which leads to a low fruit production per plant, resulting in total
production of calafate fruit in Chile that did not exceed 1 t in 2019 [5]. In this context, to
stimulate its productive development, in 2017, the first commercial orchard was established
in the central-southern zone of Chile, for domestication and development of agronomic
management [6]. Pinto-Morales et al. [6] pointed out that agronomic management is being
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addressed, but the implementation of commercial orchards brings new questions, such as
how the interaction of these agronomic managements is altering soil biological properties.

The calafate is a highly adaptable species, being able to develop and bear fruit in
regions with a Mediterranean climate [7]. However, it has been shown that environmental
factors such as ultraviolet (UV) radiation and temperature can alter phenol and anthocyanin
content of the fruit [8], a relevant factor due to the high impact of environmental changes
resulting from climate change reported in recent times [9] and the current food trend,
which demands healthier foods [10]. Therefore, the evaluation of water replenishment
for the establishment of this species becomes relevant, since this management practice
attenuates soil water losses [11] and defines nutritional status of the plant, which affects
fruits production and chemical characteristics [12]. In this sense, water replacement in
fruit crops is used as a strategy to enhance the accumulation of secondary metabolites in
the fruit [13] and to reduce the consumption and losses of water, which is increasingly
scarce [14]. Accordingly, it has been shown that the use of controlled deficit irrigation (CDI)
benefited ‘Barnea’ and ‘Askal’ olive oil quality, reaching mean polyphenol contents of up
to 372 and 487 mg kg−1, respectively, which represented increases of up to 150% and 385%.
However, it was also shown that this type of controlled water stress produced lower fruit
yields, from 305 to 265 kg/tree−1 in ‘Barnea’ and from 205 to 190 kg/tree−1 in ‘Askal’,
respectively [14]. Consequently, knowing the water requirements of native plants of high
nutritional and pharmacological value [2] would allow for setting up the best establishment
conditions to increase the quality of fruits and efficiency of water resources.

It should be noted that variation in water availability alters soil physical [15], chem-
ical [16] and microbiological properties [17]. The latter is relevant because, according to
several authors, some soil bacterial communities can alter the functional characteristics
of plants [18] and allow greater resistance to pathogen invasion [19]. Likewise, soil fungi
such as arbuscular mycorrhizal fungi (AMF) form symbiotic associations with roots and
improve the hormonal balance of the plant to resist water deficits [20,21]. In accordance
with the above, previous studies have shown that soil water availability through different
doses can determine the size, distribution, and activity of soil microorganisms [22], with
bacterial communities being more sensitive to changes in soil moisture and osmotic stress
than fungi [23], which is consistent with what has been reported in an almond orchard
under different water management strategies [24].

To date, there are no studies that evaluate the interaction of soil microorganisms with
the degree of adaptability and chemical characteristics of the fruit, nor how these would be
influenced by different levels of water replenishment. In fact, as far as fruit-bearing species
are concerned, studies showing the influence of irrigation dose on soil microbiological
properties and plant productive parameters are still incipient and their results are dissimilar.
For example, in a grapefruit orchard irrigated with different water quantities, restricted
water replenishment decreased soil microbial biomass by up to 33%, leading to a decrease
in fruit production from 232 to 184 kg/fruit tree−1 [24]. In contrast, in an almond orchard,
restricted water replenishment significantly increased soil microbial biomass by up to 131%,
as well as the activity of enzymes such as urease by 148% and phosphatase by 102%, but
reduced fruit production by 86% [25].

This is the first study that proposes to evaluate the water replenishment rates of
calafate under a commercial system and its effect on soil microbiological and enzyme
activity, plant physiology, fruit production, and fruit secondary metabolite accumulation.

2. Materials and Methods
2.1. Orchard Establishment and Edaphoclimatic Characteristics of the Study Site

The calafate (Berberis microphylla G. Forst.) orchard was established in 2017 with
two-year-old plants. The orchard was located on the road to Tanilvoro, kilometer 12, from
Chillán (36◦31′ S; 71◦54′ W), Ñuble Region, Chile, with a temperate Mediterranean climate
with mean annual temperatures of 14.5 ◦C and maximum temperatures of 31.1 ◦C in the
hottest months, and accumulated annual precipitation of 521.1 mm concentrated between
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May and October [26]. The Andisol (Melanoxerand) [27] was characterized by chemical
analysis at the soil laboratory of the Instituto de Investigaciones Agropecuarias (INIA
Quilamapu), located in Chillan (Table 1).

Table 1. Soil chemical analysis of the study site in the Ñuble Region of Chile.

Analysis Unit Result

Organic matter % 9.7
pH (water) 6.4
N availability mg kg−1 19.0
Olsen P mg kg−1 15.3
K availability mg kg−1 496.0
S availability mg kg−1 24.0
Exchangeable Ca cmol+ kg−1 8.7
Exchangeable Mg cmol+ kg−1 1.6
Exchangeable K cmol+ kg−1 1.3
Exchangeable Na cmol+ kg−1 0.01
Sum of bases cmol+ kg−1 11.6
Interchangeable Al cmol+ kg−1 0.02
CEC * cmol+ kg−1 11.6
Al saturation % 0.1
B mg kg−1 0.4
Cu mg kg−1 1.6
Zn mg kg−1 0.9
Fe mg kg−1 44.0
Mn mg kg−1 3.0

* CEC: Cation exchange capacity of the soil; samples were obtained in August 2020, at a depth of 0–40 cm.

The total number of plants in the orchard was 352 in an area of 1056 m2, distributed
in 16 plants per row with a total of 22 rows and a planting density of 1 m above row and
3 m between rows (Figure 1a,b). Only at the time of orchard establishment, fertilization
was applied with 150 g urea (45% N), 200 g triple superphosphate (46% P2O5), and 200 g
potassium sulfate (50% K2O) per planting hole [28]. Phytosanitary management consisted of
six alternating applications per year of tebuconazole (Orius 43 SC, Adama Brasil, Londrina
B, Brasil) at a concentration of 25.8 g hL−1 and cuprous oxide (Cuprodul WG, Quimetal
Industrial S.A., Santiago, Chile) at a concentration of 180 g hL−1, during the first year of
orchard establishment.
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Netafim, Hatzerim, Israel) spaced at 50 cm with a flow rate of 2.0 Lh−1. The control 
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started in September 2020, until March 2021 (Figure 2), with a total evapotranspiration of 
828.5 mm. The actual daily irrigation was applied every two days, where the daily 
irrigation time (h day−1) was calculated based on the monthly evapotranspiration (mm) 
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November 65 mm and 4.3 h; December 166 mm and 5.5 h; January 160 mm and 5.3 h; 
February 107 mm and 3.6 h; and March 92 mm and 3 h, respectively. 

Figure 1. (a) Flowering calafate orchard, September 2021. (b) calafate orchard in fruiting, December 2021.
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2.2. Experimental Setup of the Test

Four irrigation treatments were established consisting of 0%, 50%, 100%, and 150%
water replenishment of reference evapotranspiration (ET0). The irrigation treatments were
applied from the establishment of the orchard (year 2017) in the same period indicated
for the evaluation. To determine the actual daily irrigation, ET0 was calculated monthly
using the Pen-man-Monteith method, taking as a reference what was suggested by Romero
et al. [28], with data obtained from the INIA Quilamapu agroclimatic station located near
the study site [29]. Irrigation treatments were applied using one irrigation lateral for the
50% ET0 treatment, two irrigation laterals for the 100% ET0 treatment, and three irrigation
laterals for the 150% ET0 treatment, with self-compensating pressure drippers (UniRam,
Netafim, Hatzerim, Israel) spaced at 50 cm with a flow rate of 2.0 Lh−1. The control
treatment did not consider irrigation laterals. The irrigation period for the evaluation
started in September 2020, until March 2021 (Figure 2), with a total evapotranspiration
of 828.5 mm. The actual daily irrigation was applied every two days, where the daily
irrigation time (h day−1) was calculated based on the monthly evapotranspiration (mm)
divided by the number of ir-rigation days, being the actual monthly evapotranspiration
and daily irrigation time for September were 33 mm and 2.2 h; October 53 mm and 3.5 h;
November 65 mm and 4.3 h; December 166 mm and 5.5 h; January 160 mm and 5.3 h;
February 107 mm and 3.6 h; and March 92 mm and 3 h, respectively.
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Figure 2. Irrigation period for calafate plants: FI: First irrigation; LR: last watering, based on reference
evapotranspiration (ET0) and precipitation, according to information from the agroclimatic station of
the Instituto de Investigaciones Agropecuarias (INIA Quilamapu), Chile.

Soil volumetric water content (%) was monitored every 15 days (Table 2) with a
Diviner 2000 portable soil moisture probe (Sentek, Stepney, Australia) that provides the soil
moisture value in percent, from November 2021 to February 2022. The statistical design was
randomized complete blocks. Soil microbiological, plant physiological and fruit chemical
analyses were determined only once at the end of the harvest period, during the month of
January. Samples were taken from each experimental unit, where the experimental unit
consisted of the average of two subsamples, each subsample being a calafate plant, and
four replicates per treatment (n = 16) were carried out in all blocks.
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Table 2. Soil moisture monitoring with a frequency of 15 days.

Treatments
(ET0 %)

Soil Moisture (%)

15-
November-

2021

30-
November-

2021

15-
December-

2021

30-
December-

2021

15-January-
2022

30-January-
2022

15-
February-

2022

30-
February-

2022

0 6.54 5.53 3.12 2.30 6.18 5.79 2.00 1.93
50 9.68 11.43 7.70 5.43 21.73 28.66 24.43 8.80

100 10.71 13.25 9.25 7.23 24.85 31.77 30.63 9.60
150 15.57 16.55 11.40 8.80 30.02 35.10 34.90 10.65

Treatments: 0%, 50%, 100% and 150% ET0. Measurements on 15 November 2021, 30 November 2021, 15 De-
cember 2021, 30 December 2021, 30 December 2021, and 30 February 2022 were measured 48 h after irrigation.
Measurements on 15 January 2022, 30 January 2022, and 15 February 2022 were measured 24 h after irrigation.

2.3. Microbiological Analysis of Soil and Roots

Soil microbiological activity was determined by fluorescein diacetate (FDA) hydrolysis
using 1.0 g wet soil sample in triplicate including a blank. In glass tubes, 9.9 mL sodium
phosphate buffer (60 mM; pH 7.8) and 0.1 mL FDA were added, while only 10 mL buffer
were added to the blanks, then vortexed and incubated at 20 ◦C for 1 h in a thermostatic
bath. After incubation, the reaction was stopped in an ice water bath and 10 mL acetone
was added to each tube, stirring to homogenize, and then filtered using Whatman No. 40
filter paper. Once each sample was obtained, the absorbance was measured using a
spectrophotometer (Rayleigh-Model UV1601 UV/VIS, Beijing, China) at 490 nm. The
results were expressed as µg FDA g−1 [30].

Soil respiration was determined in duplicate using 25 g soil, which was placed in a flask
together with a centrifuge tube with a volume of 7.5 mL 0.5 M NaOH. Both were placed in
a hermetically sealed system and incubated at 22 ◦C for 7 days. After the incubation time,
1 mL 0.5 M NaOH was taken from the centrifuge tube and mixed with 2 mL 1 M BaCl2;
2 to 3 drops of phenolphthalein were previously added as an indicator. The solution was
titrated with 0.1 M HCl and data were expressed as µg CO2 g−1 h−1 [30].

Urease activity was determined in 0.1 M phosphate buffer at pH 7 using 1 M urea
as substrate. Aliquots of 2 mL buffer and 0.5 mL substrate were added to 0.5 g sample
and incubated at 30 ◦C for 90 min. Urease activity was expressed as NH4

+ released in
the hydrolysis reaction [31], according to the ammonium sulfate standard curve. The
standard curve was prepared with a dilution of 4 mL of ammonium sulfate in 200 mL
of distilled water. Amounts of 0, 2, 4, 6, 6, 8, 10 and 12 mL of the dilution were added
in 25 mL volumetric flasks to which 5 mL of EDTA, 1 mL of phenol nitroprusside, and
4 mL hypochlorite buffer were added. The absorbance was read against reagent blank at
636 nm. Once the data was recorded, it was fitted to a straight line of µg NH4+ versus
absorbance and µmol NH4+ g−1 h−1 = (NH4+ µg/mL)/dry soil weight (g)*Incubation time
(h). Acid phosphatase activity was determined with P-nitrophenyl disodium phosphate
(PNPP 0.115 M) substrate, for which, 2 mL 0.5 M sodium acetate buffer at pH 6 with acetic
acid [32] and 0.5 mL substrate was added to 0.5 g soil sieved at <2 mm and then incubated
at 37 ◦C for 90 min. The reaction was stopped by cooling to 0 ◦C for 10 min in a cuvette of
water with crushed ice. Then, 0.5 mL 0.5 M CaCl2 and 2 mL 0.5 M NaOH were added and
the mixture was centrifuged at 1382 g. The P-nitrophenol (PNP) formed was determined
spectrophotometrically at 398 nm [33]. Los µmol PNF g−1 soil h−1 = ((80.093*absorbance
−0.4026)/peso*weight*incubation time*139).

Dehydrogenase activity was determined with 1 g soil at 60% field capacity exposed
to 0.2 mL 0.4% INT (2-p-iodophenyl-3-p-nitrophenyl-5-phenyltetrazolium chloride) and
carried in darkness for 20 h at 22 ◦C. The iodonitrotetrazoliumformazan (INTF) formed was
extracted with 10 mL methanol by shaking for 1 min with a vortex and filtering through
Whatman No. 5 filter paper. Subsequently, INTF was measured spectrophotometrically at
490 nm and the results were expressed in terms of micrograms of INTF per gram of soil
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concerning an INTF standard curve [34], mg INTF g−1 = ((39.997*absorbance-0.3834)*final
extraction volume/weight).

The colonization of arbuscular mycorrhizal fungi (AMF) in roots was determined by
cutting 1 cm pieces of fine roots which were washed and clarified with KOH (2.5% w/v)
at 120 ◦C for 15 min. Subsequently, roots were covered with HCl (1% w/w) for 1 day
and then washed with abundant water to cover them with trypan blue (0.05% w/v) for
1 day [35]. To determine the percentage of mycorrhizal colonization in the roots, these were
randomly distributed on a grid plate to subsequently visualize structures such as mycelium,
spores, hyphae, arbuscules, and vesicles in the root tissues through a microscope at 40×
(Siedentopf, United Scope, Irvine, CA, USA) and by counting all root intersections with
horizontal lines according to the presence or absence of AMF structures [36,37].

2.4. Plant Physiological Analysis

Maximum chlorophyll fluorescence (Fm) and minimum chlorophyll fluorescence (Fo)
were measured in leaves on a clear day after harvest at four times of the day, at 09:00, 12:00,
15:00, and 18:00 h using a portable fluorimeter model OS-5p (Opti-Sciences, Hudson, NH,
USA). For determination of Fo and Fm, leaves were dark adapted using leaf clips including
a movable shutter plate for 30 min [38]. Maximum photosystem II photochemical efficiency
(Fv/Fm) was quantified using the ratio Fv/Fm = (Fm − Fo)/Fm [39].

Stomatal conductance (gs, mmol m−2 s−1) was measured on leaves on a clear day after
harvest at four times of the day, at 09:00, 12:00, 15:00, and 18:00 h using a portable porometer
model SC-1 (Decagon Devices, Washington, DC, USA). For data representativeness, the
leaf selection criteria were leaves exposed to the sun, in the second third of a branch of the
season as with the data obtained from chlorophyll fluorescence [38].

The SPAD (Soil Plant Analysis Development) index was measured on leaves at mid-
day with the criteria used for chlorophyll fluorescence and gsmeasurements, after harvest.
The data were obtained through a portable chlorophyll meter (MC-100, Apogee Instru-
ments, Logan, UT, USA) equipment that determines a value proportional to the amount of
chlorophyll present in the leaf [40].

Leaf area index (LAI; m2 m−2) was measured on a clear day at midday, after harvest,
when plant growth had already stopped, for which an AccuPAR LP-80 ceptometer (Decagon
Devices Inc., Washington, DC, USA) was used that delivers the average of 80 quantum
sensors that determine direct, diffuse, residual and reflected photosynthetically active
radiation from the soil [41].

2.5. Fruit Yield and Chemical Compounds

Fruit productivity (g plant−1) was measured immediately after hand harvesting at
130 d after full flowering [6]. The period of full flowering took place at the beginning of
September and the manual harvest was carried out at the end of December.

The total polyphenol content was determined using the Folin–Ciocalteu method
following the indications by Romero-Román et al. [8], where first, an extract was obtained
from the harvested sample, using 0.25 g sample, 2.5 mL H2O:MeOH:formic acid solution
(24:25:1) and taken to ultrasound CPX 5800 Branson (Branson Ultrasonics Corp., Danbury,
CT, USA) for 1 h. Then, it was left for the rest of 24 h and taken for an ultrasound for 1 h,
then; the sample was centrifuged for 15 min at 1209 g and filtered. Subsequently, a standard
curve was prepared with gallic acid and then, the samples prepared with Folin–Ciocalteu
reagent, distilled H2O and Na2CO3 20% were mixed and incubated for 2 h in the dark, to
be measured in the spectrophotometer at 760 nm [42]. The standard curve equation used
was 0.0013x + 0.0573 and R2 = 0.99. The results are expressed as mg gallic acid 100 g−1

FW [43].
The DPPH antioxidant capacity was performed after Romero-Román et al. [44] by

diluting the extract and incorporating DPPH solution, which was shaken and kept in the
dark for 1 h, at room temperature, and then spectrophotometer readings were taken at
515 nm. Subsequently, a standard curve of Trolox was carried out [45]. The standard curve
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equation used was 0.0008x + 0.0272 and R2 = 0.99. The results were expressed in µmol
Trolox equivalent (TE) 100 g−1 FW [6].

ORAC antioxidant capacity was performed by Romero-Román et al. [8]. Diluting
100 µL sample in phosphate buffer pH 7.4, fluorescein intensity was measured every 1 min
for 1 h with excitation and emission wavelengths of 485 and 520 nm at 37 ◦C. The results
were expressed as µmol TE 100 g−1 FW [45].

Anthocyanins were identified by high-performance liquid chromatography with a
diode array detector (HPLC-DAD) on a Hitachi primaide apparatus equipped with a
photodiode array detector (Model 1430, Hitachi, Tokyo, Japan). The equipment consisted
of a binary pump with a degasser (Model 1110, Hitachi, Tokyo, Japan) and an autosampler
(Model 1430, Hitachi, Tokyo, Japan). The HPLC system was controlled by ChemStation
software (version 08.03, Agilent Technologies, Palo Alto, CA, USA) [46]. Anthocyanin
quantification was performed with the sample extracts used for the determination of the
mentioned analyses, which were filtered through a 0.22 µm PVDF membrane (Millex V13,
Millipore, Bedford, MA, USA). The results were expressed as mg 100 g−1 FW [45].

2.6. Statistical Analysis

Data were subjected to analysis of variance (ANOVA) with a significance level of
p < 0.05. Comparison of means was performed using Fisher’s least significant difference
(LSD) test with a significance level of 0.05, and in addition, principal component analysis
(PCA) was performed using mean-centered data based on eigenvalues to determine the
correlation and discrimination between soil, plant, and fruit variables under different water
replenishment conditions using R software [47] with FactoMineR and ggplot2 packages [48].

3. Results
3.1. Biological Properties of Soil and Roots

Soil moisture monitoring showed that the treatment of 150% of ET0 > 100% of ET0 >
50% of ET0 > 0% of ET0, both in measurements taken 24 h after irrigation and 48 h after
irrigation (Table 2).

Soil microbiological and enzyme activity showed significant differences among the
different treatments (Table 3). The highest fluorescein diacetate (FDA) activity was reached
with the treatment containing 100% ET0, which presented 41.8 µg FDA g−1, being signifi-
cantly superior to the treatments containing 50% and 150% ET0, which presented average
values of 34.1 and 30.3 µg FDA g−1, respectively, both significantly higher than the treat-
ment without irrigation, which reached a value of 22.8 µg FDA g−1 dry soil. It should
be noted that irrigation treatments significantly influenced soil microbial respiration. The
treatments with the highest irrigation dose, 100% and 150% ET0, presented higher soil
basal respiration with values of 2.2 and 2.1 µg CO2 g−1 h−1, without significant differences
between them, but significantly higher than 50% ET0 treatment with 1.7 µg CO2 g−1 h−1. It
is important to note that in soil basal respiration, all irrigation treatments showed significant
increase in comparison to the non-irrigated treatment.
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Table 3. Soil microbiological properties and enzyme activity in response to water replenishment.

Treatments FDA Activity Soil Basal
Respiration Urease Activity Dehydrogenase

Activity
Acid Phosphatase

Activity

AMF
Colonization in

Roots

(ET0 %) (µg FDA g−1) (µg CO2 g−1 h−1) (µmol NH4+ g −1 h−1) (µg INTF g−1) (µmol PNP g−1 h−1) (%)

0 22.8 ± 1.70 c 1.4 ± 0.10 c 2.5 ± 0.09 b 59.1 ± 0.72 c 12.8 ± 0.48 b 62.5 ± 4.79 a
50 34.1 ± 1.27 b 1.7 ± 0.08 b 2.7 ± 0.06 ab 109.8 ± 3.02 a 14.6 ± 0.32 a 82.5 ± 4.79 a
100 41.8 ± 1.49 a 2.2 ± 0.16 a 2.5 ± 0.04 b 83.9 ± 4.74 b 14.0 ± 0.64 a 65.0 ± 8.66 a
150 30.3 ± 1.19 b 2.1 ± 0.08 a 2.8 ± 0.07 a 76.0 ± 5.34 b 7.7 ± 0.86 c 72.5 ± 4.79 a

Anova
p-Values 0.0001 0.0007 0.047 0.0001 0.0001 0.1413

Treatments: 0%, 50%, 100%, and 150% ET0. Different lowercase letters indicate significant differences between
treatments according to Fischer’s LSD test (p < 0.05). Mean± standard error (n = 4). AMF: Arbuscular mycorrhizal
fungi. Data on arbuscular mycorrhizal fungi (AMF) colonization on roots was analyzed by Kruskal–Wallis
nonparametric analysis.

On the other hand, urease enzymatic activity increased significantly with the replace-
ment treatment of 150% ET0, presenting an increase of 12% with respect to 0% ET0 treatment,
which presented a value of 2.5 µmol NH4

+ g−1 h−1.
As for dehydrogenase activity, the highest value reached was obtained with 50% re-

placement of ET0, being 86% higher than the treatment without irrigation. Meanwhile, 100%
and 150% ET0 replenishment treatments with values of 83.9 and 76.0 µg INTF g−1 presented
increases of 42% and 29%, respectively, with respect to the treatment without irrigation.

Regarding acid phosphatase activity, irrigation of 50% and 100% ET0, had increases
of 14% and 9%, respectively, with respect to 0% ET0. It should be noted that in acid
phosphatase activity, the maximum irrigation rate applied to the crop (150% ET0) was
significantly lower than the rest of the treatments including the treatment without irrigation,
registering a value of 7.7 µmol PNP g−1 h−1.

On the other hand, AMF colonization in roots (Figure 3a,b) did not show significant
differences between treatments (p > 0.05).
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Figure 3. (a) Stained calafate fine root section, viewed microscopically at 10×; hydric replenishment
rate of 50% ET0. (b) AMF vesicles in stained calafate fine roots (structures circled in red), viewed
microscopically at 40×; hydric replenishment rate of 50% ET0. AMF: Arbuscular mycorrhizal fungi.

3.2. Plant Physiological Parameters

The maximum quantum yield of photosystem II (Fv/Fm; Figure 4a), measured at 09:00
and 12:00 h, did not show significant differences among treatments, reaching values close
to 0.80 and 0.77, respectively. At 15:00 h, the 100%, 150% and 50% ET0 replenishment rates
had a 7%, 6% and 3% lower Fv/Fm decrease than the 0% ET0 treatment, which only reached
0.71 (Figure 4a). At 18:00 h, all treatments irrigated at 50%, 100% and 150% ET0, reached a
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mean Fv/Fm value of 0.76, significantly higher than 0% ET0 treatment, which only reached
Fv/Fm 0.72 (Figure 4a). Stomatal conductance (Figure 4b) presented significant statistical
differences among treatments at 09:00 h, with 50% and 100% ET0 irrigation presenting
the greatest increases, 34% and 13%, respectively, with respect to the treatment without
irrigation, which had a value of 128 mmol m−2 s−1. On the other hand, the irrigation
of 150% ET0 presented the lowest value of stomatal conductance measured at 09:00 h
with 114 mmol m−2 s−1 (p < 0.05). In the subsequent measurements, 12:00, 15:00 and
18:00 h, nonsignificant differences were found between treatments, with mean values of
stomatal conductance close to 133, 91 and 101 mmol m−2 s−1, respectively for each of the
aforementioned times (Figure 4b).
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The Leaf area index (LAI) was not influenced by the water replenishment treatments
(p > 0.05), all of them reaching a mean value of LAI close to 2.2 m2 m−2 (Figure 5a). Leaf
chlorophyll index was influenced by irrigation dose (p < 0.05), where 50% ET0 replenish-
ment significantly increased SPAD (Soil Plant Analysis Development) value by 45% with
respect to the 0% ET0 treatment. On the other hand, the treatments with higher irrigation,
replenishment of 100% and 150% ET0, without statistical differences, increased their SPAD
value by 33% with respect to the treatment without irrigation (Figure 5b).

3.3. Fruit Yield and Chemical Parameters

Fruit yield per plant was significantly higher with 50% ET0 irrigation (p < 0.05) com-
pared to the rest of the treatments, reaching a mean value of 359 g plant−1, while the
treatments of 0%, 150% and 100% ET0 replenishment registered mean values of 253, 226
and 193 g plant−1, respectively, with nonsignificant differences among them (Figure 6a). It
should be noted that irrigation treatments had a significant influence on the total polyphe-
nol content of the fruit (p < 0.05). The treatments without irrigation and with an irrigation
of 150% ET0, reached the highest values recorded, being these 920 and 1001 mg gallic acid
100 g−1 fresh weight (FW), respectively. On the other hand, the irrigation treatment of
100% ET0 with 830 mg gallic acid 100 g−1 FW was superior to the treatment with 50% ET0
(p < 0.05), which presented a value of 620 gallic acid 100 g−1 FW (Figure 6b).
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Figure 5. (a) Leaf area index values recorded in calafate plants; (b) leaf chlorophyll index recorded in
calafate leaves subjected to different doses of water replenishment. Treatments: 0%, 50%, 100% and
150% ET0. Different lowercase letters indicate significant differences between treatments according to
Fischer’s LSD test (p < 0.05). Mean ± standard error (n = 4). Bars correspond to experimental error
for each treatment.
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Figure 6. (a) Average yield of fresh fruits of calafate (g plant−1); (b) total polyphenols; (c) DPPH
antioxidant capacity; and (d) ORAC antioxidant capacity in fruits of calafate plants subjected to
different doses of water replenishment. Treatments: 0%, 50%, 100% and 150% ET0. Different lowercase
letters indicate significant differences between treatments according to Fischer’s LSD test (p < 0.05).
Mean ± standard error (n = 4). Bars correspond to experimental error for each treatment.
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Likewise, treatments with irrigation significantly influenced the antioxidant capacity
2,2-diphenyl-picryl-hidrazyl (DPPH) (Figure 6c) and oxygen radical absorbance capacity
(ORAC) (Figure 6d). The treatments without irrigation and with 150% ET0 replenishment
presented the highest DPPH values corresponding to 6236 and 5764 µmol TE 100 g−1 FW,
which were followed by the 100% ET0 hydric replenishment treatment, which reached
an average value of 4592 µmol TE 100 g−1 FW, being significantly higher than 50% ET0,
which presented 2528 µmol TE 100 g−1 FW. Likewise, the ORAC antioxidant capacity was
higher with the 0% and 150% ET0 replenishment treatments, with values of 1757 and 1609
µmol TE 100 g−1 FW, respectively (Figure 6d). On the other hand, 50% and 100% ET0
replenishment did not present significant differences between them (p > 0.05), with ORAC
antioxidant capacity values of 1011 and 1297 µmol TE 100 g−1 FW, respectively. As for the
total anthocyanin content, it presented the same trend as the ORAC antioxidant capacity,
with the 0% and 150% ET0 replenishment treatments presenting the highest mean content
with 610.75 and 484.68 mg 100 g−1 FW, respectively, followed by 50% and 100% ET0 with
286.37 and 468.26 mg 100 g−1 FW, respectively, which did not present significant differences
between them. The total anthocyanin content was represented by 82% to 85% by three
main anthocyanins: delphinidin, petunidin and malvidin 3-glucoside (Table 4).

Table 4. Anthocyanins (mg 100 g−1) of fresh calafate fruit by HPLC according to water replenishment
treatments.

Anthocyanins
Treatments (ET0%) Anova

p-Values0 50 100 150

Petunidin 3,5-dihexoside 13.7 ± 2.4 a 6.6 ± 0.8 b 12.1 ± 0.8 ab 16.5 ± 1.7 a 0.0018
Malvidin 3,5-dihexoside 13.6 ± 1.9 a 5.4 ± 0.9 b 6.8 ± 0.7 b 12.0 ± 1.6 a 0.0013
Delphinidin 3-glucoside 208.7 ± 27.2 a 112.6 ± 21.3 b 201.2 ± 15.1 ab 196.6 ± 30.5 ab 0.0277
Delphinidin 3-rutinoside 6.1 ± 1.0 a 3.9 ± 0.8 a 3.8 ± 1.0 a 4.2 ± 1.0 a 0.1741

Cyanidin 3-glucoside 37.9 ± 6.7 a 12.0 ± 2.1 b 23.8 ± 3.3 ab 36.1 ± 6.8 a 0.004
Petunidin 3-glucoside 154.3 ± 16.9 a 77.3 ± 14.7 b 126.3 ± 8.7 ab 125.9 ± 13.3 ab 0.0048
Petunidin 3-rutinoside 8.5 ± 1.6 a 4.5 ± 1.0 b 5.1 ± 0.7 b 5.2 ± 0.9 b 0.0297
Peonidin 3-glucoside 29.5 ± 4.15 a 6.1 ± 0.96 b 12.1 ± 1.62 b 11.8 ± 2.00 b 0.0001
Malvidin 3-glucoside 138.4 ± 10.1 a 54.3 ± 6.7 b 66.5 ± 8.6 b 79.7 ± 8.5 b 0.0001

Total anthocyanins 610.8 ± 61.1 a 286.4 ± 46.3 b 468.3 ± 24.4 ab 484.7 ± 55.3 a 0.0016

Treatments: 0%, 50%, 100% and 150% ET0. Different lowercase letters indicate significant differences between
treatments according to Fischer’s LSD test (p < 0.05). Mean ± standard error (n = 4).

3.4. Correlations

The correlation matrix (Figure 7) indicates that soil FDA was negatively correlated
with fruit DPPH antioxidant activity; the higher the FDA, the lower the DPPH antioxidant
activity. Likewise, dehydrogenase activity was negatively related to total polyphenol con-
tent, total anthocyanins, and fruit DPPH and ORAC antioxidant capacity. On the other
hand, acid phosphatase activity was negatively correlated with fruit total polyphenol
content. Among the soil parameters measured, FDA was positively correlated with soil
respiration and urease activity was negatively correlated with acid phosphatase activity.
Dehydrogenase activity was positively correlated with soil respiration and acid phos-
phatase activity was positively correlated with AMF colonization. On the other hand, the
leaf area index (LAI) of the plant was positively correlated with total polyphenol content,
total anthocyanins and antioxidant activity ORAC of fruits. The correlation between fruit
parameters was positive for antioxidant capacity DPPH and ORAC, with total polyphenol
content. In addition, fruit total anthocyanin content was positively correlated with total
polyphenol content and antioxidant activity DPPH and ORAC. In contrast, fruit yield was
negatively correlated with fruit total polyphenol and total anthocyanin content (Figure 7).

Principal component analysis (PCA) (Figure 8a) was performed for 13 parameters:
arbuscular mycorrhizal fungi, soil microbiological activity, soil microbial respiration, urease
activity, dehydrogenase activity, acid phosphatase activity, LAI, chlorophyll index, fruit
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yield, total polyphenols, DPPH antioxidant capacity, ORAC antioxidant capacity and
total anthocyanins. The principal components PC1 and PC2 retained 44.5% and 18.7%,
respectively. This represents all parameters as vectors in the biplot, while the vector length
shows how well-represented the variables are in this plot. The treatments in the PCA
(Figure 8b) are represented by the numbers 1–4 for the 0% ET0; 5–8 for the treatment with
50% ET0; 9–12 for the treatment with 100% ET0; and 13–16 for the treatment with 150% ET0.
These results confirm what was previously indicated in the correlation matrix.
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LAI: leaf area index; SPAD: chlorophyll index; FRU: fruit yield; POL: total polyphenols; DPPH: DPPH
antioxidant capacity; ORAC: ORAC antioxidant capacity; and ANT: total anthocyanins.
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Figure 8. Principal component analysis (PCA) of arbuscular mycorrhizal fungi (AMF); soil microbio-
logical activity (FDA); soil microbial respiration (SR); urease activity (UA); dehydrogenase activity
(DA); acid phosphatase activity (APA); leaf area index (LAI); chlorophyll index (SPAD); fruit yield
(FRU); total polyphenols (POL); DPPH antioxidant capacity (DPPH); ORAC antioxidant capacity
(ORAC); and total anthocyanins (ANT). (a) PCA of variables; (b) PCA of individuals.
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4. Discussion
4.1. Microbiological Parameters of Soil and Roots

Soil microbial communities and their activity define soil quality, as they carry out
fundamental processes related to nutrient cycling and biodegradation of soil organic com-
pounds [49]. In the present investigation, soil microbial activity, measured as FDA and soil
microbial respiration, was influenced by irrigation dose, with significant increases (p < 0.05)
in treatments irrigated with 50%, 100% and 150% ET0. In agreement with the present
results, previous studies have shown that water deficit through frequent or intermittent
drought reduces soil microbial activity and modifies community composition, as microbes
focus on synthesizing osmolytes and intracellular maintenance strategies [50]. On the
other hand, irrigation increases the availability of organic matter due to release by physical
disruption of soil aggregates and/or cell lysis, thus increasing microbial growth and activ-
ity [51]. Therefore, we can infer that the irrigation doses that had the greatest effect on soil
microbial activity (50% and 100% ET0) increased soil water potential, which produced a
decrease in the compensatory intracellular solute concentrations of soil microorganisms,
accelerating biochemical functions and preventing cytoplasmic desiccation [52]. This is
also consistent with what was demonstrated in a grapefruit orchard, where irrigation dose
produced changes in the relative abundance of soil microbial populations at the phylum
level, where irrigation at 100% ET0 increased the relative abundance of Firmicutes, while
an irrigation corresponding to 50% ET0 increased the abundance of Proteobacteria [24]. The
lower increases in FDA by irrigation at 150% ET0 indicate that this irrigation dose probably
reduces soil aeration [53], since it was shown that soil moisture (%) of the treatment with
150% of ET0 (Table 2) in the months of maximum demand was up to 35% after 24 h past one
irrigation, which, corresponded to half the soil porosity of the study site, which was 0.67%
(data not shown). However, the high percentage of organic matter present in the study site
soil (9.7%), led to better structural conditions for air circulation and water drainage, reach-
ing soil microbial respiration values up to 50% higher than the non-irrigated treatment [53].
Although our finding has not been previously described in cultivated and wild calafate,
we believe it is necessary to evaluate the effects of irrigation dose by analyzing the relative
abundance of soil microorganism communities in future research.

Soil microorganisms synthesize and secrete extracellular enzymes, which play an
important role in soil nutrient cycling [54]. In our study, the irrigation rates evaluated
affected differentially the activity of the quantified enzymes. The observed increase in
urease activity with water replenishment of 50% ET0 could be attributed to a higher soil
microbial mass produced under this treatment capable of hydrolyzing soil organic matter
(SOM) (9.7%) containing N [55], with the site soil having ideal conditions by presenting
high SOM content with 9.7% and low available N content (19 mg kg−1). These results
agree with those reported in a Mediterranean forest of Quercus ilex L., where increasing
the intermediate soil moisture by 10% and 21%, also increased the activity of this enzyme
up to 10% and 42%, respectively [56]. We can also infer that the irrigation dose with
150% ET0 probably led to reduced high soil temperatures during the time of irrigation
application, since it has been shown that urease activity not only depends on soil fertility
and water availability, but climatic factors such as soil temperature determine the phenology
of enzymes such as urease [57]. Dehydrogenase is an extracellular enzyme that plays an
important role in the oxidation of organic matter and the incorporation of soil organic C [58].
In our study, dehydrogenase activity was 86% higher with respect to the non-irrigated
treatment under 50% ET0 irrigation. In agreement with the present results, previous studies
have shown that soil drought significantly decreases the action of this enzyme [59], resulting
in a slowing down of SOM decomposition [60]. In contrast, adequate soil moisture through
irrigation significantly increases its activity [60]. Irrigations with higher doses (100 and
150% ET0), followed a pattern similar to that of FDA and soil microbial respiration, which
is explained by the fact that this enzyme only exists in viable microbial cells and is a good
indicator of the global metabolic activity of the soil [59]. Acid phosphatase can hydrolyze
organic P to inorganic P compounds [61]. The results obtained show that acid phosphatase
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activity was slightly higher (14% and 9%) with irrigations of 50% and 100% ET0 with respect
to the treatment without irrigation. It has been shown that a drought condition decreases
the activity of this enzyme due to factors such as, lower secretion by soil microbes, lower
stabilization efficiency by the smaller SOM, and even, high temperature conditions can
denature this enzyme [59]. Strangely, the 150% ET0 decreased and inhibited the activity of
this enzyme. Recently, it has been shown that high-dose irrigation was able to decrease
the activity of this enzyme in an almond orchard [25]. However, further work is needed to
clarify the dynamics of this enzyme by irrigation dose effect in fruit orchards, especially in
recently established species such as calafate.

Associations between roots of dicotyledonous plants and AMF are more common
than in the roots of non-mycorrhizal plants. This association has already been reported
in some species of the family Berberidaceae, for example, in the species Berberis vulgaris
L. [62]. This association has also been reported in Berberis species from southern Chile,
being the percentage of colonization similar to that reported in our study [63]. Although
there were nonsignificant differences between irrigation treatments, a higher colonization
percentage (20%) was determined for the irrigation treatment with 50% ET0 compared
to the non-irrigation treatment. It has been shown that AMF colonization in Mediter-
ranean climates is influenced by soil nutrient fertility such as P [64]. Therefore, we believe
that the 50% ET0 irrigation dose, would increase somewhat the colonization capacity of
these microorganisms by presenting a soil with better structural conditions [53] and P
fertility mediated by acid phosphatase [61], leading to competitive exclusion of other soil
microorganisms [64]. However, we recognize that our results may be somewhat limited by
measuring only a single parameter corresponding to AMF colonization. Further work is
needed to taxonomically characterize AMF using molecular techniques to identify their
diversity and population structure in order to better understand the ecological impacts of
irrigation dose on the calafate crop.

4.2. Plant Physiological Parameters

Irrigation dose influenced the indirect physiological parameters measured in this
study. The maximum quantum yield of photosystem II had a decreasing trend as the day
progressed. This is consistent with that reported in a calafate orchard in south-central Chile
under the same radiation conditions, which reached maximum direct photosynthetically
active radiation values close to 2000 µmol m−2 s−1. Research has also shown that the
irrigation treatment with 50% ET0 recovers earlier and with higher values of Fv/Fm its
photosynthetic apparatus with respect to the treatment without irrigation. This increase
could be attributed to better physiological and nutritional conditions of the plant to cope
with abiotic stress factors such as high levels of radiation and temperature that can generate
photooxidative damage to the leaves [65]. These results also corroborate the findings of
Retamal-Salgado et al. [38], who demonstrated that high ambient radiation and temper-
ature can negatively affect the efficiency of the photosynthetic apparatus in blueberries.
Another important finding in the present investigation is that 50% and 100% ET0 treatments
positively influenced leaf stomatal conductance, presenting higher values at the beginning
of the day. Plant irrigation has been shown to drastically influence growth, development,
and physiological characteristics of photosynthesis [66]. Unlike these treatments, the 150%
ET0 treatment did not respond in the same way, which may be due to oxygen depletion
in the root zone affecting physiological functions of the plants, since, as shown in Table 2,
this treatment after 24 and 48 h of irrigation showed higher soil moisture than the other
treatments. In blueberries of the cultivars highbush and rabbiteye, it was shown that
irrigation doses above 100% of ET0 are capable of producing oxygen depletion in the root
zone, leading to a decrease in stomatal conductance and photosynthesis, in addition, they
determined, for both processes to recover to optimal conditions reached prior to irrigation,
long periods of up to 18 days or more were required [67] which does not occur in our study,
being the period between irrigations of two days. Therefore, we believe that in responses to
stress conditions (Treatments 0% and 150% ET0) gas exchange may decrease and even close
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their stomata to avoid water loss [68]. This is consistent with that reported in a rabbit’s eye
blueberry orchard [68].

Irrigation rate affected leaf chlorophyll content (p < 0.05). Irrigation treatments in-
creased chlorophyll levels in leaves compared to the non-irrigation treatment. Irrigation
of 50% ET0, had greater increases in leaf chlorophyll. Soil moisture has been shown to
alter plant physiological response by improving soil physicochemical conditions for plant
nutrient transport and utilization and increasing chlorophyll content to promote photosyn-
thesis and respiration [68]. We can also infer that stressed plants with lower chlorophyll
values have less photosynthesis and respiration, which is corroborated by the previously
discussed data of photosystem II maximum quantum yield and stomatal conductance.
The leaf area index is an indirect indicator of the physiological state of the plant; which
in our case did not respond to the irrigation dose. These results corroborate, but extend,
the findings of much of the previous work on wild calafate [65,69,70] that demonstrate the
hardiness of the plant and its high degree of phenotypic adaptation. Consequently, this is
the first time that this approach has been proposed to determine the influence of irrigation
dose on the canopy of domesticated calafate. This can be considered a significant advance
in its level of adaptation to drought conditions and excessive soil moisture.

4.3. Fruit Yield and Chemical Parameters

The effect of irrigation dose has been studied in different fruit species because of its
importance in plant productivity [14]. Irrigation at 50% ET0 produced the highest fruit
yield compared to the other treatments (p < 0.05). This is consistent with the literature,
which reported similar yields under the same temperature conditions, mean 14.5 ◦C and
maximum 31 ◦C, and Andisol origin, as well as the same harvest date defined at 130 days
after full flowering [6]. In blueberries, when evaluating different irrigation doses, it was
shown that an intermediate irrigation dose of 100% ET0 produced significant increases
in different productive parameters such as fruit weight, number of fruits per plant and
fruit yield, because the plants presented less stress [67], a situation similar to that of the
50% ET0 treatment in our research. In our study, the yield of plants irrigated with a dose
of 0%, 100% and 150% ET0 was lower than the treatment of 50% ET0 with nonsignificant
differences between them (Figure 6a). Consistent with the present results, previous studies
have shown that there are significant reductions in fruit yield in some berries due to
severe drought conditions [71] and excessive irrigation [72] that cause stress on the plant
by inducing stomatal closure, decreased CO2 assimilation, decreased root activity and
increased prevalence to fungal diseases [70]. However, our results show that calafate
plants under different degrees of water stress with doses of 0% and 150% ET0, are able
to fruit similarly, which corroborates its high hardiness described for different climatic
conditions with contrasting rainfall levels [7]. According to our results (Figure 6a), it was
shown that the irrigation treatment with 0% of ET0 did not present significant statistical
differences with the treatments 100% and 150% of ET0, which demonstrates that the
water requirements of calafate to generate its physiological functions and fruiting are low.
Our results are corroborated by Radice et al. [7] who demonstrated that non-irrigated
cauliflower in the region of Moreno, Argentina, with warm temperate climates similar
to those of our study were able to fruit, however, the lower water regimes of Moreno
compared to Ushuaia, Argentina, produced smaller fruit size. Therefore, we emphasize the
importance of evaluating physical parameters of the fruit in future research. Furthermore,
to our knowledge, this is the first study published to date that demonstrates the effects of
irrigation dose on the productivity of cultivated calafate. However, we recognize that our
results may be somewhat limited by seasonality, because only one season was evaluated
and a single productivity parameter was determined.

Phenolic compounds confer the particular characteristics of color and aroma in calafate
and other berries such as blueberries, raspberries, and strawberries [67], with anthocyanins
being responsible for defining color during the veraison stage until harvest [8]. Higher
concentrations of polyphenols and anthocyanins were observed in the most stressed treat-
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ments of the present study, both due to water deficiency and excess water replenishment.
Previous studies have shown a high accumulation of anthocyanins influenced by abiotic
factors such as water stress [73], which is part of the protective mechanism of plants to
cope with oxidative stress through the uptake of reactive oxygen species [74]. For their
part, Bryla et al. [72] demonstrated similar stress effects in blueberry plants by high doses
of water replenishment. The decrease in the concentrations of polyphenolic compounds
observed in the 50% ET0 treatment could be attributed to the higher fruit yield, which may
result in larger caliber and delayed physiological maturity of the fruit [71], which could
have diluted the content of bioactive compounds in the fruit due to increased water content.
In this sense, a study on Vitis vinifera L. showed that the irrigation dose increased fruit yield
but decreased the content of polyphenolic compounds [75].

Research has also shown that the predominant anthocyanins were delphinidin, petuni-
din and malvidin and their derivatives, similar to that reported by Romero-Román et al. [8]
in wild calafate from southern Chile. This is also consistent with that reported in grapes,
where the three glycoside-conjugated anthocyanins are the majority due to the temperature
and pH of the berry extract [76]. Delphinidin represented between 35% and 41% of the total
anthocyanins, being lower with the treatment without water replenishment. This decrease
could be attributed to the low stability of anthocyanins to external factors such as light and
temperature, which were probably more intense when there was no irrigation, a situation
similar to that reported by Torres et al. [77], who demonstrated in grapes that water stress
decreased pH of the fruit and, as a result, the fruit turned reddish instead of purple. The
results of total delphinidins and anthocyanins reported in this study are lower than those
previously reported in wild calafate [8]. This could be explained by differences in the qual-
ity of solar radiation in both agroclimatic regions [78], since in the study region it reaches a
value of photosynthetically active radiation 26% higher in southern Chile [6]. Samkumar
et al. [79] found that red light produced a higher induction of specific anthocyanin and
delphinidin biosynthesis genes. We can also infer that the time of harvest is a determin-
ing factor in the accumulation of anthocyanins by fruit ripening [80] being in our case at
130 days after full flowering during December. Our delphinidin results are lower than
those (80%) reported in maqui (Aristotelia chilensis (Mol.) Stuntz), which is another Chilean
native berry species with high anthocyanin content in fruit [80] but which are similar to the
delphinidin accumulation of 40% reported in blueberries [81]. Another important finding
in the present investigation is that total antioxidant activity was influenced by irrigation
dose, being higher in treatments of 0% and 150% ET0. These values are similar to those
reported in previous research under wild conditions [8,82]. However, irrigation doses with
50% and 100% ET0 showed lower values of fruit antioxidant capacity but similar to those
reported in cultivated calafate from central-southern Chile [6]. The anthocyanin content
may explain the total antioxidant activity observed in the fruit (r = 0.89), a situation similar
to that previously reported in maqui from central-southern Chile [80]. We can highlight
that the irrigation treatment of 50% ET0, although it presented a fruit yield 86% higher than
the irrigation treatment of 100% ET0, it maintained its quality, by presenting a significantly
similar value of total anthocyanins and ORAC antioxidant capacity. To our knowledge, this
is the first report on the effects of irrigation on anthocyanins and their antioxidant capacity
in cultivated calafate fruit.

4.4. Influence of Variables

The correlation matrix reaffirmed the importance of evaluating water replenishment
management in a soil-plant system and chemical compound content of calafate fruit. Al-
though moderate correlations were found between soil microbiological parameters and
two plant physiological parameters measured in the correlation matrix, a more significant
positive correlation (r = 0.78) was found between dehydrogenase and plant chlorophyll
index (Figure 7). It has been previously reported that dehydrogenase plays an important
role in the incorporation of soil organic C under soil water replenishment treatments that
directly affects the physiological state of the plant through its nutrition [58]. Likewise,
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dehydrogenase was one of the most sensitive enzymes to irrigation on fruit chemical
composition, demonstrated by its high negative correlation with parameters such as to-
tal anthocyanins (r = −0.79), total polyphenols (r = −0.69), antioxidant capacity DPPH
(r = −0.78) and ORAC (r = −0.71). On the other hand, FDA and AMF colonization were
directly and negatively correlated with the evaluated fruit chemical parameters (Figure 7).
Recently, a study in almond trees showed that the higher soil microbial activity produced
by an optimal irrigation dose negatively affects fruit chemical compounds [24], which could
be explained by the higher yield and fruit size resulting from higher values of measured
soil microbial activity and plant physiological parameters. Another important finding is the
fact that irrigation directly influences the content of bioactive compounds in the fruit. The
high relationship between the bioactive compounds of the fruit corroborate the above, for
example, there was a high positive correlation between total polyphenols and antioxidant
capacity measured through different modes of action, DPPH (r = 0.89) and ORAC (r = 0.83),
which agrees with what has been previously reported in maqui from central-southern
Chile [80]. The principal component analysis of the variables (Figure 8a) corroborates the
above, since there is a greater closeness in distance and colors between the soil, plant and
fruit variables mentioned above.

Through the principal component analysis of the variables (Figure 8a,b), the research
shows that the most stressed treatments (0% and 150% ET0) are the ones that presented a
positive correlation with the bioactive compounds of the fruit, but not the treatments of
50% and 100% ET0, which presented a positive correlation with the microbiological and
enzymatic activities of the soil and physiological and productive activities of the plant.
These results can be considered a significant advance in the domestication of calafate
through the irrigation dose, capable of influencing the soil microbiological communities,
which are closely related to the plant physiology and its productivity of fruits and/or
bioactive compounds. Furthermore, to our knowledge, this is the first study published to
date that demonstrates the influence of irrigation on soil microbiology, the calafate plant,
and its productivity.

5. Conclusions

Our study was able to demonstrate that irrigation of 50% ET0 significantly increased
urease, dehydrogenase and soil acid phosphatase, which led to greater physiological
response of the plant with higher values of stomatal conductance and chlorophyll index.
This also led to a significant increase in fruit production, which maintained an adequate
level of total anthocyanins and ORAC antioxidant capacity, being similar to the 100% ET0
irrigation. On the contrary, 0% and 150% ET0 treatments showed the lowest values in the
mentioned parameters, but higher values on total anthocyanins and antioxidant capacity
of the fruit. Based on these results, we can conclude that although the calafate plant has
a high adaptability to extreme conditions of water replenishment such as drought and
over-watering, it shows better results at soil-plant and fruit level with an irrigation of 50%
ET0, allowing the optimization of water resources and thus contributing efficiently to food
security. On the other hand, as calafate is a very rustic species, we propose to evaluate in
future research suboptimal irrigation doses between 0% and 50% ET0, to further improve
water efficiency and evaluate the chemical composition of the fruit. We emphasize soil
microbiological evaluations should not be neglected, to better understand their contribution
to the adaptability of this species under commercial orchards.
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