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Abstract: Non‑invasive techniques for the detection of apple fruit damages are central to the correct
operation of sorting lines ensuring storability of the collected fruit batches. The choice of optimal
method of fruit imaging and efficient image processing method is still a subject of debate. Here, we
have dissected the information content of hyperspectral images focusing on either spectral compo‑
nent, spatial component, or both. We have employed random forest (RF) classifiers using different
parameters as inputs: reflectance spectra, vegetation indices (VIs), and spatial texture descriptors (lo‑
cal binary patterns, or LBP), comparing their performance in the task of damage detection in apple
fruit. The amount of information in raw hypercubes was found to be over an order of magnitude
excessive for the end‑to‑end problem of classification. Converting spectra to vegetation indices has
resulted in a 60‑fold compression with no significant loss of information relevant for phenotyping
andmore robust performancewith respect to varying illumination conditions. We concluded that the
advanced machine learning approaches could be more efficient if complemented by spectral infor‑
mation about the objects in question. We discuss the potential advantages and pitfalls of the different
approaches to the machine learning‑based processing of hyperspectral data for fruit grading.

Keywords: fruit grading; machine learning; image processing; hyperspectral imaging; object classi‑
fication

1. Introduction
Non‑invasive plant phenotyping is a blooming area of research with broad appli‑

cations in the agriculture, including horticulture. It is the basis of cultivar performance
monitoring in the field and, more specifically, a proxy of fruit yield, ripeness, soundness,
and storability [1–4]. Since “wet” biochemical analyses of fruits are laborious, expensive,
and in some cases hardly feasible, non‑invasive approaches to retrieval ripening‑related
changes in the pigment composition, presence of mechanical damages, physiological dis‑
orders, and lesions by phytopathogens on the analysis of reflected light spectra have been
suggested [5,6]. Many of the underlying parameters were initially monitored by visual
observations and scoring [7,8], but these approaches are rapidly replaced by automated
image analysis based on computer vision [9–13], especially in sorting line equipment.

Rapid advances in computer vision over the past decade have resulted in unprece‑
dented increase in precision and overall performance of machine learning (ML) models,
now rivaling that of human experts for certain problems [14]. This has proven to be a
mixed blessing, however, as most of this progress was achieved by using inherently poorly
interpretable, black‑box approaches, which are limited in their applicability in fully auto‑
mated control scenarios and further give rise to ethical problems [15–17]. Furthermore,
while promising spectacular results, these techniques introduce an issue of knowledge
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retention—most of the time, every new generation of deep learning models marks a new
beginning for their employment in specific domains, meaning large portions of earlier
work end up being discarded.

On the other end of the scale reside “classic” methods. They are grounded in funda‑
mental biophysical properties of plants and aimed at uncovering relationships between the
physiological state and its manifestations through non‑invasively observable variables. Of
particular note is spectroscopy, the approach spanning at least several decades of plant re‑
search [18,19]. During that time, a wealth of knowledge about pigments, plant interactions
with light, and non‑destructive phenology assessment has been accumulated. Specific ex‑
amples include reflectance‑based monitoring changes in pigment composition induced by
ripening, environmental stresses, and phytopathogen attacks [20–24]. One of themost sim‑
ple, yet powerful techniques emerging from this development is vegetation indices (VI),
transforming quantification of incident radiation into highly biologically relevant parame‑
ters such as nitrogen and water content, pigment pools, and overall biomass [25].

Initially starting with point measurements, plant spectroscopy has since expanded
into imaging technologies, which are especially relevant to horticulture as opposed to field
crops management [1], as the heterogeneity of plant organs and tissues makes bulk as‑
sessments unfeasible [22,26]. With the advent of accessible imaging spectrometers, and in
the context of a long‑standing issue of impracticality in obtaining and processing hyper‑
spectral images as compared to multispectral ones, there are ongoing debates about both
approaches to spectral image processing and designing spectral imagers for purposes of
remote sensing of plants. In particular, high dimensionality of hyperspectral data imposes
significant restrictions on deep learning architectures stemming from the computational
complexity. Learning spectral features comes at a cost of a reduced efficiency in process‑
ing spatial information, and knowledge‑based dimensionality reduction could increase
phenotyping throughput, simplify hardware operations, and allow for larger and more
complex deep learning architectures to be used.

In this work, we aimed at dissecting the information content of hyperspectral images
for non‑invasive assessment of fruit health focusing either on spectral component, spa‑
tial component, or both. To this end, we have employed popular “classic” machine learn‑
ing approaches: random forest (RF) and support vector classifiers (SVC) and compared
their end‑to‑end performance on a relatively large hyperspectral image dataset as a mea‑
sure of the information retention after dimensionality reduction was performed. These
approaches were chosen in large part owing to their interpretability: while current and fu‑
ture deep learning architectures are likely to boast higher absolute performance, they also
imminently link it with a choice of architecture and awide range of hyperparameters, com‑
plicating comparative analysis. Additionally, we strived to find an approach potentially
usable in real‑life fruit sorters, which have to process many dozens of fruits per second.
In effect, this means working in real‑time, so the lightweight approach is of utter impor‑
tance. For line scanning cameras, pixel‑based classification techniques have the benefit of
avoiding computationally expensive preprocessing related to geometric correction of the
images. Although RF classifiers were notably utilized in a recent work [27] concerning
early bruise detection in apples, we have extended this approach by simulating different
spectral resolutions of the image sensor and comparatively investigated the performance
of vegetation indices (VI) and spatial texture descriptors (local binary patterns, LBP [28])
as our main goals.

2. Materials and Methods
2.1. Plant Material

Fruit of apple (Malus× domestica Borkh.) (n = 100) variety “Gala” (red–green‑colored)
were grown in a commercial orchard of “Zorinsky Sad” fruit growing company (Oboyan,
Kursk region, Russia). The fruit were hand‑picked from the tree and stored in a conven‑
tional atmosphere until measured. The fruit were imaged within one week from picking
from the tree. The fruit lacking visually discernible symptoms of damage were selected to‑
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gether with those bearing the symptoms of various damages, including sunburn, sunscald,
fungal lesions, and mechanical damages and bruises (see Figures S1 and S2).

2.2. Setup for Hyperspectral Measurements
The hyperspectral reflectance images of the apple fruits were taken with an in‑house‑

made measurement setup mimicking a conveyor sorting device (Figure 1) fitted with a
scanning (push‑broom) imaging hyperspectrometer BaySpecOCI‑F (Bayspec Inc., San Jose,
CA, USA). For each pixel of a hyperspectral image, a reflectance spectrum (spectral range
400–1000 nm; spectral resolution 5–7 nm; 512 pixels/line)was recorded against a reflectivity
standardmade of Spectralon. The camerawas externally controlled, and the rawdatawere
pre‑processed by the companion software SpecGrabber and CubeCreator. Four tungsten‑
halogen lamps (Camelion GU10 35W) assembled in a mount were used as a light source
for the apple fruit imaging.
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Figure 1. The setup for the hyperspectral imaging of apple fruits. Designations: chassis (1); the
hyperspectral camera (2), a table with rubber rollers (3) camera suspension (4), stepper motors (5, 6)
and the transmission (7), light source (8).

2.3. Hyperspectral Data Treatment
2.3.1. Expert Annotation (Ground Truth)

Hyperspectral images were converted to corresponding color representations using
an approximation of CIE 1964 observer spectral response curves and with D65 standard
illuminant [29,30]. Two human experts performed annotation with bit masks using the
Supervisely online labeling tool [31], assigning classes “Fruit” for intact tissues and “Dam‑
age” for visibly damaged regions of the apple surface. Unlabeled parts of the image were
considered as background. Per‑pixel Cohen’s kappa [32] between human expert annota‑
tions for every imagewas 0.93± 0.05, establishing themodel performance baseline. Unless
otherwise stated, the results are presented for one of the annotations used for both training
and validation; the other annotation was used to test the classifier stability with respect to
the training labels used.

2.3.2. Per‑Pixel Classification
Per‑pixel classification was performed by Random Forest and Support Vector classi‑

fiers using scikit‑learn Python package [33]. The entire dataset was then split in an 80:20
ratio between training and test image sets. In each set, every pixel was first represented
by a feature vector, consisting of either spectral reflectances or VIs and, if applicable, LBP
values, and ground truth feature vectors were extracted from each image. Classifiers were
trained on a small subset (up to 3000 pixels per image, less than 1% of the overall pixel
count) of the resulting feature vectors. Then, with the same transformations applied to the
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entire dataset, inferences were drawn for all pixels, and the results were compared to the
ground truth (expert annotation).

Decision trees are known for being sensitive to the class balance; thus, two strategies
were used: extraction of an equivalent number of pixels for every class present in the im‑
age (oversampling of the minority class) or proportionally to the relative abundance of a
given class on that image. Corresponding features were drawn randomly without replace‑
ment from pixels of their respective classes. Since the number of samples used for training
was low, classifier performance was evaluated for the entire dataset, with separate figures
reported for the test set performance only. The first six spectral channels were excluded
from the subsequent analysis due to their high noise. Shannon entropy was used as a cri‑
terion for node‑splitting, and a default maximum number of features under consideration
equal to the square root of the total number of input features was used. A preliminary
search for the optimal number of estimators and tree depth limit was performed for non‑
downsampled features and transformed features, with the number of estimators ranging
from 100 to 500 in steps of 100, and the maximum tree depth assuming values from the
list (5, 6, 7, 8, 9, 10, 12, 14,1 16, 18, 20, 25, 30). The value of n = 300 trees in the forest was
set for each classifier. For non‑transformed input features, the maximum tree depth was
set at 10, as higher values indicated overfitting on the test set (not shown), and for trans‑
formed features, it was increased to 20. For the proportional sampling, an application of
class weights was also tested.

Support Vector classifiers were trained using the LinearSVC implementation with
hinge loss, one‑vs‑rest multi‑class optimization strategy, and default regularization.

For classifiers operating directly on spectral reflectances, coarser spectral resolution
was modeled by linear downsampling of input hypercubes along the spectral axis by fac‑
tors of 1 (non‑modified), 1/2, 1/4, 1/8, 1/16, and 1/32.

2.3.3. Vegetation Indices as Feature Transformations
For this analysis, we have selected vegetation indices representing the main pigment

groups in fruits: a sensitive indicator of chlorophyll (Chl) content, CI700 (commonly also
called Simple Ratio, SR700) [20,25,34], mARI [35], an index tightly relatedwith anthocyanin
(AnC) content of fruit [19,36], and mBRI, recently introduced by us as an indicator of
carotenoid content weakly affected by AnC [22]. Another extremely important addition
to this list was the measurement of relative brightness using spectral reflectance in a near‑
infrared (NIR) band unaffected by pigment absorption of light (e.g., R800). This parame‑
ter often gets overlooked, however; while spectral indices are specifically designed to be
minimally affected by changes in illumination conditions, spatial distribution of apparent
brightness contains information about the object geometry. Definitions of the indices used
are presented in Table 1.

Table 1. Vegetation indices used as feature transforms.

Index Name Formula Explanation

NIR band R800
Highly invariable in heathy plant tissues and

affected by damages, it also contains information
about the viewing geometry and illumination

CI700 CI700 = R800
R700

R800 is unaffected by the pigment absorption of
light, whereas R700 corresponds to the Red Edge

region of the red Chl absorption maximum

mARI mARI = R800
R550

− R800
R700

R550 is affected by both AnC and Chl, and R700 is
the reflectance in the band of the red Chl

absorption maximum.

mBRI mBRI = 1
R640

+ 1
R800

− 1
R678

R800 and R640 are used as the terms sensitive to
the accumulation of the damage‑related pigments
and reflectance R678 is employed for correction of
the index for the interference from Chl absorption
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2.3.4. Combined Spectral–Spatial Classification
Multi‑scale local binary patterns (LBP) were used for the embedding of spatial fea‑

tures. They were calculated by means of scikit‑image [37] Python package. For non‑
transformed features, the average of all spectral channel reflectance was used as the in‑
put graylevel image; for transformed features, the NIR reflectance band was used. In all
cases, eight points were used for quantization of the angular space, rotation invariant im‑
plementation was chosen, and six different spatial resolutions of the operator were used:
4, 8, 16, 32, 64, and 128 pixels, respectively. The overall resulting pipeline is shown on
Figure 2.
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Figure 2. An overview of the classification pipeline. After preprocessing and image registration,
both spatial dimensions of spectral images vary; one‑hot label encoding is, in effect, used internally
during training and inference.

2.4. Performance Evaluation
Per‑pixel classification results were taken as an intermediary output and compared to

ground truth masks. Accuracy, Cohen’s kappa (see above) and F‑score for damaged fruit
tissuewith beta = 2 (placing a greater emphasis on recall than precision) were calculated on
a per‑image basis, and their averages and standard deviations reported. For F‑score, the
zero‑division case (no pixels assigned to the “Damages” class in ground truth nor resul‑
tant classification) were ignored during averaging. Per‑image ratios of the total number
of pixels classified as damage to the total number of pixels classified as fruit (including
damages) were used as a metric to perform the final “damaged‑intact” fruit classification.
Receiver operating characteristics (ROCs) and precision‑recall curves were calculated for
each classifier, with the minority class being damaged fruits; optimal detection thresholds
were determined using the F2‑score.

3. Results
The overall per‑pixel classification accuracy for most models varied between 94.6%

and 98.3% (Table 2). In some cases, it exceeded the inter‑expert agreement value of 97.7%,
making higher accuracy values not necessarily indicative of a better performance. These
results, however, were stable with respect to label noise: using alternative ground truth
labels for validation has resulted in a reduction of overall accuracy by approximately 1%
across the board, but the relative performances of classifiers did not change significantly
(Table S2). Similarly, using a different annotation for training resulted in high average
pairwise inter‑classifier kappa agreement of 0.99 ± 0.01.
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Table 2. Per‑pixel classification results.

Feature Set Used Accuracy, % Cohen’s
Kappa F2 Score

Baseline (agreement
between human

experts)
97.7 ± 2.4 0.931 ± 0.053 0.445 ± 0.309

Random Forest classifiers

Reflectances
with spectral
downsampling

1 1 98.2 ± 2.2 0.944 ± 0.056 0.160 ± 0.286
1/2 98.1 ± 2.2 0.943 ± 0.057 0.154 ± 0.280
1/4 98.1 ± 2.2 0.942 ± 0.058 0.149 ± 0.275
1/8 98.1 ± 2.3 0.941 ± 0.059 0.135 ± 0.262
1/16 97.8 ± 2.5 0.932 ± 0.065 0.095 ± 0.212
1/32 97.8 ± 2.5 0.931 ± 0.064 0.127 ± 0.233

Reflectances with no
downsampling + LBP 98.1 ± 2.3 0.941 ± 0.058 0.173 ± 0.290

Reflectances + LBP +
weighting 96.1 ± 3.6 0.888 ± 0.073 0.181 ± 0.241

LBP only 90.1 ± 4.7 0.651 ± 0.101 0.000 ± 0.000 2

VI only 98.0 ± 2.1 0.940 ± 0.053 0.149 ± 0.266

VI + LBP 98.3± 2.1 0.948 ± 0.054 0.192 ± 0.295

VI + LBP + weighting 98.2 ± 2.0 0.947 ± 0.052 0.196± 0.294

Support Vector classifiers

Reflectances
with spectral
downsampling

1 97.9± 2.5 0.935 ± 0.063 0.142 ± 0.260
1/2 97.8 ± 2.6 0.933 ± 0.066 0.110 ± 0.228
1/4 97.8 ± 2.6 0.931 ± 0.067 0.096 ± 0.213
1/8 97.7 ± 2.6 0.930 ± 0.068 0.086 ± 0.204
1/16 97.5 ± 2.7 0.920 ± 0.070 0.035 ± 0.131
1/32 97.4 ± 2.7 0.919 ± 0.071 0.018 ± 0.083

Reflectances with no
downsampling + LBP 97.9± 2.5 0.936± 0.063 0.140 ± 0.256

Reflectances + LBP +
weighting 95.7 ± 2.1 0.864 ± 0.050 0.200± 0.273

LBP only 39.1 ± 4.0 −0.105± 0.027 0.011 ± 0.019

VI only 97.5 ± 2.7 0.922 ± 0.071 0.006 ± 0.039

VI + LBP 96.8 ± 3.1 0.902 ± 0.075 0.029 ± 0.052

VI + LBP + weighting 94.6 ± 3.1 0.832 ± 0.061 0.079 ± 0.128
1 Spectral downsampling factors, 1 corresponds to no downsampling applied. 2 LBP‑only RF classifier has not
produced any “Damaged” labels.

Random forest classifier using VI + LBP was found to be the most sensitive and ac‑
curate, followed closely by the one using raw reflectance values with no spectral down‑
sampling. The performance of SVC and RF classifiers was close, but SVC ones remarkably
produced better results using non‑transformed features compared to using VIs as inputs
and were substantially more sensitive to spectral downsampling, with F2 scores steadily
dropping as spectral resolution decreased, which was not observed for RF classifiers. The
effect of the reduction of the spectral resolution by the downsampling of RF classifiers was
found to be insignificant until the simulated spectral channel became 36 nmwide. Weight‑
ing has improved F‑scores at the cost of accuracy and kappa, and RF classifiers’ accuracy
was less affected by it than SVC.

An example visualization of features used for vegetation indices and texture classifi‑
cation is shown on Figure 3.
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Representative classification results for different fruit classes and damage types are
demonstrated in Figures 4 and 5.
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Figure 5. Classification results for an apple with fungal lesions.

The texture‑only classifier usingmultiscale LBP turned out to be unusable for damage
detection in apple fruit, as it has not classified any pixels as damaged tissues in the entire
dataset. The inclusion of spectral features was found to be beneficial. Between the spectral
classifiers, the difference in results is small, which is particularly remarkable with respect
to the spectral downsampling performed. A vegetation indices‑based classifier can be seen
to be more resilient to non‑uniform illumination conditions (Figures 5 and 6) as compared
to the spectral reflectance‑based one, but it was less efficient in detection of small damages.
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Low average F2 scores for the “damaged” class and high variance thereof were indica‑
tive of a commonly observed pattern of classifiers either detecting corresponding regions
with high confidence ormissing them entirely. Images featuringmechanical damageswith
no prominent tissue degradation were the main contributor to these low scores, with an‑
other major factor being detections assuming salt‑and‑pepper noise‑like appearance, thus
reducing the recall.

For the end‑to‑end task of binary fruit classification based on the detected fraction of
the damaged surface of the fruit, we have utilizedRF classifiers. AUC (area under curve, an
efficiencymeasure commonly used inML) for the classifierswith no feature transformation
was between 0.69 and 0.72, improved to 0.8 for spectral reflectanceswith no downsampling
+ LBP + class weighting. VI‑only classifier has shown AUC of 0.74, while the addition of
LBP and both LBP and classweighting has improved this result to 0.78 and 0.8, respectively.
Finally, we have analyzed precision‑recall curves and calculated precision and recall at a
damage fraction threshold corresponding to the maximum of F2 score (Figure 7). This
maximum corresponded to high recall values in all cases, but precision varied between 0.6
and 0.7, with VI‑based classifiers having better performance overall. Classifiers operating
on spectral reflectances, however, benefitted more from the addition of LBP features and
class weighting; however, as can be seen from Figures 5 and 6, this was achieved by overly
aggressive damage detection.
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4. Discussion
In our study, we have tested different approaches to the processing of hyperspectral

reflectance data for the detection of damaged regions of apple fruit using an ML‑based
approach. Features of a different nature (purely spectral such as VIs, purely spatial such
as LBPor their combinations)were assessed in terms of RF and SVC classification efficiency.
In addition to this, the effect of coarser spectral resolutions on the classification efficiency
was estimated.

It is evident from per‑pixel classification results (Table 2) that the non‑invasive detec‑
tion of fruit damages using hyperspectral imagery is possible with accuracy comparable
to that of human experts. However, both visual inspection and F‑score illustrate imper‑
fect alignment of ML results with human annotations, which is one of the major issues
impeding progress in automatization [16]. Class weighting and sampling were seen to
have an enormous impact on the per‑pixel classification performance, and in computer vi‑
sion applications for plant phenotyping, including assessment of fruit quality, it is crucial
to control for the class balance and sampling strategy when evaluating the model. Ulti‑
mately, the assessment of the classification performance should be brought into a broader
context of potential industrial applications, and the inherent asymmetry in the cost of mis‑
classification addressed (see e.g., [38]). It is important that the best‑performing classifier
based on the commonly reported accuracy or Cohen’s kappa scoresmight not have the best
performance once the full scope of a binary classification problem is considered. Tasks of
anomaly detection are associated with highly imbalanced labels, and fruit health assess‑
ment is no exception; this consideration makes accuracy a potentially misleading metric.
For example, a texture‑only RF classifier we have tested in this work produced no labels
corresponding to damaged tissues, yet reported an accuracy exceeding 90%, which might
be considered high in a broader context with more balanced labels.

All classifiers considered in this work invariably struggled with identifying mechan‑
ical damages. Spectral signatures of these areas suggest that, in most cases, no pigment
degradation takes place, at least for several days, and the apparent darker coloration is
the result of a change in lighting geometry. These depressed regions are indistinguish‑
able from the areas otherwise being in shadow in our imaging setup. Diffuse illumination
which is normally desirable to avoid specular reflectance of fruit would also make these
damages less apparent. On the whole, this class of damages should be treated separately
from more severe damage types such as sunscald, sunburn, or fungal lesions. It is unclear
whether such mechanically damages damaged fruits pose a serious risk of spoiling in stor‑
age, or whether the suitability of such fruit for long‑term storage is more relevant to the
quality standards as contracted by the grower and/or the packinghouse. Still, secondary
infection, which is unobservable at first for several days but can proliferate and show up
at a later stage, is quite possible in the bruised fruit.

It could be seen from Figures 5 and 6 that LBPs and CI700 can highlight small lesions;
however, they also pick up irregularities in the background, and the final classification
better aligns with mBRI rather than with CI. Still, one can expect this given that the small
damages do not always trigger a rapid Chl degradation.

Proportional sampling of pixels has resulted in a significantly higher classification ac‑
curacy compared to sampling from each class equally. This effect can be attributed to clas‑
sifiers using the latter very aggressively, shifting the overall balance towards the minority
classes. Correspondingly, the sampling proportion could be used to control this behavior,
and a more desirable balance could be achieved. This is an important consideration given
the imperfect inter‑subjective alignment between human experts: one of the significant
problems in machine learning is the extraction of latent knowledge driving human deci‑
sions in low confidence scenarios. The problem of noisy labels is often being overlooked
in machine learning. A clearer delineation of shortcomings of an approach tested from
common disagreements between human experts requires multiple annotations, which are
rarely conducted, but would pave the way for more efficient employment of techniques
such as residual learning.
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Apart from the assessment of the potential of the ML‑augmented hyperspectral tech‑
nique suggested here for damage detection, our findings are relevant for another problem
which is still very topical. Namely, does hyperspectral imaging have real advantages over
conventional RGB imaging for the detection of visual symptoms of damages to plants (ap‑
ple fruit in our case)? On the one hand, hyperspectral images are extremely rich in infor‑
mation, and always allow an RGB representation of an object to be reconstructed. On the
other hand, the incredible level of detail provided by hyperspectral imagers is a trade‑off
for lower throughput, spatial and/or radiometric resolution as compared to conventional
and even multispectral imaging (for an analysis of this tradeoff, see [39]).

The information content of spectral images is closely related to the notion of degrees
of freedom (DoF), and it is generally understood that the number of independent variables
determining reflectance spectra of vegetation is notably lower than the number of spectral
bands. Therefore, a significant reduction of dimensionality is achievable by careful selec‑
tion of bands; and this is precisely the problem that vegetation indices are designed to
solve [40].

Spectral reflectance coefficients at densely positionedwavelengths contain redundant
information and relatively few important (from the standpoint of the goal of the analysis)
features, and embedding is required prior to feeding them to a deep convolutional net‑
work [41–43]. In other words, dimensionality reduction has to be performed either as a
part of a neural network architecture (learned features) or in a supervised manner. The
latter has distinct advantages of robustness and knowledge transfer between different gen‑
erations of deep learning architectures. Usage of vegetation indices as feature transforms
has been proposed by researchers before, but, to our knowledge, no systematic study of
their usage in proximal sensing of vegetation exists.

All this makes hyperspectral imaging somewhat impractical in the industrial applica‑
tions. However, it remains a perfect research tool for knowledge‑based design of spectro‑
scopic techniques for plant phenotyping, allowing for robust opticalmonitoring of changes
in pigment and nutrient content and offering considerations for industrial imager design
suitable for high‑throughput fruit sorting lines.

5. Conclusions
In this research, we have outlined an end‑to‑end approach to the fruit classification

problem by means of computer vision and identified a number of potential issues and
pitfalls. We have considered computer vision and ML applications for the problem of
postharvest fruit sorting, and have found a pronounced alignment problem: namely, high
per‑pixel classification accuracies can be achieved, but these results do not translate well
into the problem of fruit grading.

Remarkably, the amount of information in rawhypercubeswas found to be hugely (by
over an order of magnitude) excessive for the end‑to‑end problem of classification. Con‑
verting spectra to vegetation indices has resulted in a 60‑fold compression with no sig‑
nificant loss of information relevant for phenotyping and more robust performance with
respect to varying illumination conditions.

At the same time, it became obvious that even the advanced machine learning ap‑
proaches could be more efficient if they are complemented by spectral information about
the objects in question. As a result, a balanced approach to obtaining the image data for
computer vision‑based fruit grading seems to be most productive and cost‑effective. For
the implementation of such an approach, capturing images at a few carefully selected spec‑
tral channels would be sufficient, although one should be aware of the limitations outlined
above. A knowledge‑based dimensionality reduction would drastically shorten the adop‑
tion time for the newest “mainstream” deep learning architectures to spectral proximal
sensing, removing the need to compromise on the learning of spatial features. Powerful
but costly and relatively slow hyperspectral sensors will occupy the R&D niche for the de‑
velopment of novel and improved non‑invasive methods of the assessment of fruit quality.
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test set only; Table S2: Per‑pixel classification results using annotations from human expert #2.
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