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and Branka Vinterhalter

Received: 12 October 2022

Accepted: 31 October 2022

Published: 3 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

horticulturae

Article

Early Performance of Recently Released Rootstocks with
Grapefruit, Navel Orange, and Mandarin Scions under Endemic
Huanglongbing Conditions in Florida
J. Martin Zapien-Macias 1, Rhuanito Soranz Ferrarezi 2 , Peter D. Spyke 3, William S. Castle 4,
Frederick G. Gmitter, Jr. 4 , Jude W. Grosser 4 and Lorenzo Rossi 1,*

1 Indian River Research and Education Center, Horticultural Sciences Department, Institute of Food and
Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA

2 Department of Horticulture, University of Georgia, 1111 Plant Sciences Building, Athens, GA 30602, USA
3 Arapaho Citrus Management, Inc., Fort Pierce, FL 34945, USA
4 Citrus Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural

Sciences, University of Florida, Lake Alfred, FL 33850, USA
* Correspondence: l.rossi@ufl.edu

Abstract: Huanglongbing (HLB), which is believed to be caused by the phloem-restricted bacterium
Candidatus Liberibacter asiaticus (CLas), has decimated Florida’s citrus production. Grapefruit pro-
duction has declined 75%, mandarin 78%, and sweet orange 52% due to the high sensitivity of
commercial scions and rootstocks to the disease. New combinations of scions and hybrid rootstocks
may provide better performance than current commercial selections for Florida’s fresh citrus produc-
tion, particularly in the Indian River District. The objective of this study was to evaluate and compare
University of Florida rootstocks and other recently released rootstocks grafted with grapefruit, navel
orange, and mandarin scions by measuring tree growth and HLB tolerance. Three independent
large-scale field trials were established in September 2019 in Fort Pierce, FL, USA. Trial 1 (T1) included
36 rootstocks with ‘Ray Ruby’ grapefruit as the scion; Trials 2 and 3 (T2 and T3, respectively) included
30 rootstocks with ‘Glenn’ navel orange F-56-11 and ‘UF-950’ mandarin as the scion, respectively.
Tree canopy volume, trunk diameter, CLas titer, HLB severity index, and leaf nutrient concentrations
were evaluated during 2020 and 2021. Significant differences among rootstock-scion combinations
were found in each trial for most of the assessed traits. In T2, UFR-15 consistently developed the
largest ‘Ray Ruby’ grapefruit trees during both years. In T3, ‘Glenn’ navel orange F-56-11 trees were
larger on C-22, and US-802. Similarly, US-802 and US-942 generated the largest ‘UF-950’ mandarin
trees. Overall, trees had optimum levels of macro- and micronutrients except for calcium. CLas
infection and HLB visual index varied among scion-rootstock combinations, especially during the
first year of growth when intensive flushing was produced. Generally, trees grew vigorously with
WGFT+50-7 and Willits inducing the lowest HLB symptoms in all evaluations. Production and fruit
quality need to be evaluated to determine the suitability of potential scion-rootstock combinations
that can confer consistent economical and biological advantages under the current HLB scenario in
the Indian River District.

Keywords: citrus greening; flatwoods; Indian River District

1. Introduction

Since HLB was reported in Florida in 2005, citrus production has dramatically down-
sized by approximately 67% due to the high disease sensitivity of commercial scions and
rootstocks [1,2]. HLB is believed to be caused by the phloem-restricted bacterium Can-
didatus Liberibacter asiaticus (CLas) and vector-transmitted by the Asian citrus psyllid
(Diaphorina citri Kuwayama) [3,4]. The disease affects more than 90% of Florida’s citrus
trees, resulting in rapid tree decline [5] and substantial economic losses [6–8]. To date, no
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known cure exists for HLB. The Indian River District (IRD), a renowned grapefruit (Citrus
paradisi Macf.) production area, accounts for nearly 80% of Florida’s total grapefruit [2].
With the drastic HLB impacts on citrus production, citrus species diversification with navel
oranges (C. sinensis [L.] Osb.) or mandarins (C. reticulata Blanco) for the fresh market and
the use of superior rootstocks are potential strategies to minimize risks, strengthen profits,
and secure the success of the modern citrus industry.

The Florida fresh-fruit citrus industry only represents 10% of the total citrus market
in the state (excluding limes and lemons), with a calculated value of ~114 million dollars.
The fresh citrus market is economically attractive as it represents roughly 4.4× greater
price than the processed fruit per box in Florida [9]. In Florida, ‘Star Ruby’, ‘Ray Ruby’
and ‘Ruby Red’ scions are the most popular propagated grapefruit cultivars due to their
exceptional fruit quality attributes (red pigmented-fleshed, attractive pink blush in the rind,
and sweet flavor) for the fresh market [10–12]. Navel and ‘Valencia’ oranges are popular
as fresh fruit worldwide [13]. Recently, more than 46,000 navel trees were propagated in
Florida, of which about 34% were ‘Glenn’ navel orange F-56-11 [12]. This nucellar selection
and ‘Cara Cara’ red navel were the most propagated navel orange cultivars in Florida in
2020/21 [12]. Mandarins have gained attention as recent studies have suggested that a few
commercial cultivars such as ‘LB8-9’ Sugar Belle® and ‘Temple’ showed HLB tolerance
under natural HLB conditions in the IRD [14,15].

The use of rootstocks with superior horticultural (i.e., tolerance to biotic and abiotic
factors) and economic (e.g., yield, fruit quality, and production window) attributes has
played a key role in the evolution of citrus industries worldwide [16]. In citrus, HLB
tolerance is defined as the ability of a CLas-infected tree to produce profitable quantities of
fruit of acceptable quality [17].

Rootstocks have individual characteristics that contribute in positive or negative ways
to the performance of a citrus tree [16,18]. Rootstock hybrids among Poncirus trifoliata
(L.) Raf. and Citrus spp. have exhibited superior field performance under severe HLB
conditions [19]. New breeding technologies such as somatic hybridization and molecular
marker-assisted selection are broadening the possibilities for genetic manipulation, leading
toward a new era of superior rootstocks that provide improved horticultural and economi-
cal attributes [16,20,21]. Some commercial materials, such as Kuharske citrange and x-639
are commercially propagated and used as parents in crosses to produce new rootstock
candidates [22]. The effects of these and other HLB-tolerant rootstocks have not been fully
explored, especially under flatwoods conditions (typically found in the IRD) and for fresh
citrus market. In addition, the first years of tree development are critical to protecting citrus
groves from HLB, as young trees flush more frequently which attracts the vector [3,4]. Thus,
growing healthy trees during their early years of development can be crucial to securing
the long-term productivity of a citrus grove. The objective of this study was to compare the
early performance of trees consisting of University of Florida rootstocks (UFR), commercial
and other recently generated rootstocks grafted with ‘Ray Ruby’ grapefruit, ‘Glenn’ navel
orange F-56-11, and ‘UF 950’ mandarin by measuring tree growth and HLB tolerance.

2. Materials and Methods
2.1. Plant Material

Certified budwood and rootstock liners grown from seeds were provided by the Divi-
sion of Plant Industry through the Florida Citrus Budwood Registration Bureau program.
Trees of ‘Ray Ruby’ grapefruit, ‘Glenn’ navel orange F-56-11, and ‘UF 950’ mandarin were
independently evaluated on UFR and recently released rootstocks that contained sexual
and somatic hybrids from a wide range of different germplasms (Table 1). Trees were grown
for approximately 8 months in 1-L pots with peat moss substrate media and maintained in
a certified disease-free commercial nursery (Brite Leaf, Lake Panasoffkee, FL, USA).
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Table 1. Rootstock cultivars employed in each field trial.

Rootstock Trial 1 Trial 2 Trial 3 Origin Parentage

UFR-1 • • • UF C. reticulata ‘Nova’ + C. maxima ‘Hirado Buntan’ × C.
reticulata ‘Cleopatra’ + P. trifoliata ‘Argentine’

UFR-2 • • UF C. reticulata ‘Nova’ + C. maxima ‘Hirado Buntan’ × C.
reticulata ‘Cleopatra’ + P. trifoliata ‘Argentine’

UFR-4 • • • UF C. reticulata ‘Nova’ + C. maxima ‘Hirado Buntan’ × C.
reticulata ‘Cleopatra’ + P. trifoliata ‘Argentine’

UFR-5 • • • UF C. reticulata ‘Nova’ + C. maxima ‘Hirado Buntan’ × C.
sinensis ‘Succari’ + P. trifoliata

UFR-15 • • • UF C. maxima ‘Hirado Buntan’ × C. reticulata ‘Cleopatra’
UFR-16 • • • UF C. maxima ‘Hirado Buntan’ × C. reticulata ‘Shekwasha’

UFR-17 • • • UF C. reticulata ‘Nova’ + C. maxima ‘Hirado Buntan’ × C.
aurantium + ‘Carrizo’ citrange

WGFT+50-7 • • UF C. paradisi ‘White’ + P. trifoliata ’50-7’

2247×2075-02-26 • • • UF C. reticulata ‘Nova’ + C. maxima ‘Hirado Buntan’ × C.
reticulata ‘Cleopatra’ + ‘Swingle’ citrumelo

A+Volk×Orange
19-11-8 • • • UF

C. amblycarpa + C. volkameriana × Orange 19 (C.
reticulata ‘Nova’ + C máxima ‘Hirado Buntan’ × P.
trifoliata ‘Argentine’)

46×20-04-6 • • • UF C. maxima ‘Hirado Buntan’ × C. reticulata ‘Cleopatra’

2247×6070-02-2 • • • UF C. reticulata ‘Nova’ + C. máxima ‘Hirado Buntan’ × C.
aurantium + P. trifoliata ‘Flying Dragon’

46×20-04-42 • UF C. maxima ‘Hirado Buntan’ × C. reticulata ‘Cleopatra’

Orange 14 • UF C. reticulata ‘Nova’ + C. maxima ‘Hirado Buntan’ × C.
reticulata ‘Cleopatra’ + P. trifoliata ‘Argentine’

Orange 16 • UF C. reticulata ‘Nova’ + C. maxima ‘Hirado Buntan’ × C.
reticulata ‘Cleopatra’ + P. trifoliata ‘Argentine’

Sour orange • • NH C. aurantium
Willits citrange • • USDA P. trifoliata × C. sinensis ‘Ruby’
Kuharske citrange • • • USDA Natural seedling variant of Carrizo
US-802 • • • USDA C. grandis Osbeck ‘Siamese’ × P. trifoliata
US-812 • • • USDA C. reticulata ‘Sunki’ × P. trifoliata ‘Benecke’
US-897 • • • USDA C. reticulata ‘Cleopatra’ × P. trifoliata ‘Flying Dragon’
US-942 • • • USDA C. reticulata ‘Sunki’ × P. trifoliata ‘Flying Dragon’
Cunningham
citrange • • • USDA P. trifoliata × C. sinensis

x-639 • • • ARC-ITSC C. reticulata ‘Cleopatra’ × P. trifoliata ‘Rubidoux’
C-22 (‘Bitters’) • • • UCR C. reticulata ‘Sunki’ × P. trifoliata ‘Swingle’
C-54 (‘Carpenter’) • • • UCR C. reticulata ‘Sunki’ × P. trifoliata ‘Swingle’

+ indicates somatic hybridization (allotetraploid). × indicates sexual hybridization (diploid or tetraploid). ARC-
ITSC = Agricultural Research Council—Institute for Tropical and Subtropical Crops; NH = Natural Hybrid;
UCR = University of California Riverside; UF = University of Florida; USDA = U.S. Department of Agriculture;
• = rootstock was used in the trial.

2.2. Site Description

Trees were planted in September 2019 at the University of Florida, Institute of Food
and Agricultural Sciences (UF/IFAS) Indian River Research and Education Center in Fort
Pierce, Florida in the Millennium Block experimental grove in double-row raised beds. The
presence of HLB was determined to be endemic in Florida since 2013, thus, experimental
trees were naturally infected in the field by the CLas-carrier vector. The Millennium Block
grove was used in 1974 as the site of the Florida Soil-Water-Atmosphere-Plant (SWAP)
project to investigate the effect of soil profile modifications and drain lines [23]. Upon the
completion of the SWAP project, the area remained uncultivated until the first Millennium
Block variety trials started in the early 2000s. For the current Millennium Block experiment,
three independent field trials were conducted, with each in a separate location within the
area. ‘Ray Ruby’ grapefruit (1) consisted of approximately 1.3 ha on a poorly drained
Oldsmar sandy soil (Spodosols), classified as sandy, siliceous, hyperthermic Alfic Arenic
Alaquods [24]. The landscape consists of natural slopes ranging from 0% to 2% and has
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a non-Fe-cemented spodic horizon within 76–127 cm of the surface [25]. In T2, 1.1 ha of
‘Glenn’ navel orange F-56-11 trees were established in an area having mostly Ankona and
Farmton soil series (spodosols), and Chobee soils (Mollisols). The latter are classified as
fine-loamy, siliceous, hyperthermic Typic Argiaquolls. Chobee soils are poorly drained and
have a mollic epipedon (black soil with high organic carbon). Also, they are characterized
by the sandy-clay loam argillic horizon within ≈50 cm of the surface [24,25]. Lastly, nearly
1 ha of ‘UF 950’ (T3) mandarin trees was planted in Trial 4 on Ankona and Farmton soils
from the Spodosols order.

Trees were microsprinkler-irrigated and fertilized with Wedgworth 10N-2P-7K (Wedg-
worth’s, Belle Glade, FL, USA). This fertilizer mix is 4-month controlled-release polymer-
coated sulfate of potash and polymer-coated urea at annual rates of 1.34 and 2.72 kg per tree
during 2020 and 2021, respectively. Weed management and insect control were performed
according to UF/IFAS Extension recommendations for citrus production [26,27]. Weather
data were monitored by the Florida Automated Weather Network (FAWN) system utilizing
the St. Lucie West weather station to collect total rainfall, and air temperature (Figure S1).

2.3. Experimental Design

Each experiment per trial was arranged in a completely randomized design consisting
of linear 5-tree plots and 6 replicates per treatment (30 trees total) for the grapefruit and
navel orange trials, whereas for the mandarins only 5 replications were planted because of
limited material availability.

2.4. Data Collection and Analysis

Trunk diameter, canopy volume, disease resilience (CLas titer and HLB severity index),
and leaf nutrient concentrations were assessed using the three central trees of each plot. The
following variables were measured annually during the fall to determine tree size: trunk
diameter at 5 cm above the bud union (perpendicular to the tree row) using an electronic
digital caliper H-7352 (Uline, Pleasant Prairie, WI, USA); tree height, and canopy width
along and across the row to estimate canopy volume [28]. CLas titer in leaf tissue and HLB
severity index were assessed in September in 2020 and 2021. As for CLas titer, 12–18 leaves
per plot were randomly collected, placed in zip-lock plastic bags, and sent to Southern
Gardens Diagnostic Laboratory in Clewiston, FL for detection of HLB. Samples with a cycle
threshold (Ct) value of less than 38 were considered as CLas positive. An HLB severity
index rating system was created to quantify the intensity of disease symptoms based on
the scale developed by Slinski [29] to score each quadrant (Figure 1). Then, an average
tree disease score per canopy was produced as follows: 0 = No foliar HLB symptoms
visible; 1 = Foliar disease symptoms on <20% of the quadrant. A dense quadrant with
no twig dieback and minimal blotchy mottle; 2 = Foliar disease symptoms on 20 to 40%
of the quadrant. Dense quadrant, some twig dieback, some blotchy mottle and possibly
some tufted growth on the canopy; 3 = Foliar disease symptoms on 40 to 60% of the
quadrant. Thinning quadrant with noticeable twig dieback and a few areas of the open
canopy. Blotchy mottle of leaves is common, and some tufted growth is apparent; 4 = Foliar
disease symptoms on 60 to 80% of the quadrant. Abundantly thin quadrant with obvious
twig dieback. Most branches have blotchy mottle and/or tufted growth; 5 = Foliar disease
symptoms on >80% of the quadrant. The decline has resulted in dieback of large branches
and the remaining leaves are small, have blotchy mottle and may be deformed. Leaf nutrient
concentrations were evaluated before the fall fertilization. After field collection, sampled
leaves were rinsed with deionized water and then dried at 80 ◦C overnight. After drying,
samples were ground using a Thomas Wiley mill (Thomas Scientific, Swedesboro, NJ, USA)
and collected in a 20 mL vial. Nutrient concentrations were determined using an inductively
coupled argon plasma emission (ICP-MS) spectrophotometer (Spectro Ciros CCD, Fitzburg,
MA, USA). The analysis were performed at the Waters Agricultural Laboratory located in
Camilla, GA (USA).
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Data were analyzed annually for two consecutive growing seasons (2019–2020 and
2020–2021) using the software Rstudio version 1.3.1073 [30]. A one-way analysis of variance
(function ea2 in the easyanova package) was conducted for tree size and leaf nutrient
concentration, with rootstock entered as the main effect. The residuals were checked for
normality and homogeneity of variance. Square root transformations were executed as
needed. CLas DNA concentration and HLB visual rating did not meet normality and
linearity assumptions, thus, Kruskal-Wallis test was used to evaluate the main effect. When
differences between treatments were significant (p ≤ 0.05), a Tukey HSD test was used.
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Figure 1. (A) Huanglongbing (HLB) severity rating method. Four equal quadrants were assessed for
HLB severity on the east and west side of each tree. The ratings started from the top left quadrant
following clockwise: 1, 2, 4, and 3. (B) Vegetative branch showing characteristic HLB blotchy mottling,
chlorosis on leaves. (Pictures were taken at the UF/IFAS Indian River Research and Education Center,
located in Fort Pierce, FL, USA).

3. Results and Discussions
3.1. Tree Size

Tree size increased over time in all treatments and was significantly influenced by the
rootstock (p < 0.001) in both years. Trunk diameter was significantly correlated (p < 0.001)
with canopy volume in all trials (Figure 2).
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Figure 2. Linear regression of canopy volume (y axis) vs. trunk diameter (x axis) in ‘Ray Ruby’
grapefruit (A), ‘Glenn’ navel orange F−56−11 (B), and ‘UF 950’ mandarin (C) trial. Red line represents
the trend of the linear regression.

UFR-15 induced the largest ‘Ray Ruby’ trees during both years of evaluation. Al-
ternatively, Orange 16 and UFR-17 were among the rootstocks producing the smallest
trees (1.2–1.4 m3) in 2020, whereas 46×20-04-6 and UFR-17 developed the smallest trees
(3.4–3.5 m3) in 2021. Trunk diameters of ‘Ray Ruby’ trees were the largest (39.9–42.1 mm)
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on 46×20-04-42, x-639 and A+Volk×Orange-19-11-8 in 2020. The following year, trunk
diameters were the greatest (64.2–66.3 mm) in trees on UFR-15, US-812 and Cunningham
citrange (Figure 3). Previous studies have shown trees on UFR-15 that grew quickly and
vigorously, producing medium-large size trees [31]. Limited performance data are avail-
able for grapefruit trees on Orange 16 and 46×20-04-6. As for UFR-17, field evaluations
in flatwoods conditions showed that scion cultivars grow quickly, but trees remained
medium-sized, making them suitable for high-density plantings [31].
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Figure 3. Canopy volume of ‘Ray Ruby’ grapefruit on each rootstock evaluated in 2020 (golden bars)
and 2021 (blue bars). Mean standard errors followed by at least one common letter (centered within
bars) are not significantly different by Tukey’s test at p < 0.05. Values are back-transformed from the
square root and Tukey ladder of powers.

On the other hand, the largest ‘Glenn’ navel orange F-56-11 trees grew on C-22 and
US-802 in the years 2020 and 2021, respectively (Figure 4). Kunwar et al. [32] observed
C-22 inducing medium size sweet orange trees; however, other studies have indicated that
C-22 is a small size-inducing rootstock [33]. Willits citrange produced the smallest canopy
volume (0.9–2.9 m3) and was among the rootstocks having the thinnest trunk diameters
(23.1–41.7 mm) throughout the evaluation (Figure 4). Similarly, Castle and Phillips [34]
observed semi-dwarfing potential of Willits citrange when grafted with ‘Valencia’ sweet
orange in Florida flatwoods. The largest trunk diameters were found in C-22 (34.4 mm)
trees and Kuharske citrange (54.2 mm) in the years 2020 and 2021, respectively.

US-942 and US-812 produced the largest ‘UF 950’ mandarin trees (2.0 m3) in 2020.
The subsequent year, US-942 remained among the largest size-inducing rootstocks along
with US-802 for ‘UF 950’ mandarin trees (Figure 5). Bowman et al. [35] found that trees on
US-812 normally produced medium size canopies, whereas US-802 and US-942 rootstocks
generated vigorous and large trees. Other studies that included US-802, US-812, and US-
942 showed similar results [7,19]. WGFT+50-7 and 46×20-04-6 rootstocks generated the
smallest canopy volumes (0.9–1.0 m3) in 2020. Trees on UFR-1 and WGFT+50-7 had small
trunk diameters (24.0–24.5 mm) in 2020, and on 46×20-04-6 rootstock in the following year
(Figure 5). In another field trial, WGFT+50-7 produced small-sized trees of ‘Hamlin’ sweet
orange [32].
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3.2. CLas Titer in Plant Leaf Tissue and HLB Severity Index

The cycle threshold of CLas DNA was not affected by the rootstock in any trial except
for trial 3 (Tables 2–4). ‘UF 950’ mandarin trees on UFR-1 and UFR-2 produced significantly
greater Ct values (39.4 and 38.3, respectively) than those growing on UFR-4 (32.4) when
evaluated in September 2020 (Table 4).

Although trees in each trial showed low Ct values (indicating bacterial infection),
they did not present HLB symptoms during the first year of growth. Nonetheless, nearly
half of the ‘UF 950’-rootstock combinations showed HLB symptoms during the rating in
September 2020 through the end of the evaluation (Table 4).

During September 2021, Ct values and HLB severity index did not differ significantly
among treatments in each trial (Tables 2–4). Overall, trees in each trial grew relatively well
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during the first two years of evaluation despite Clas infection. In September 2021, HLB
symptoms were observed on all ‘Ray Ruby’ trees evaluated with those on WGFT+50-7
rootstock showing the lowest disease index (0.4). Alternatively, trees on C-22 showed
the most evident HLB symptoms (1.8) according to the scale used. WGFT+50-7 is a
tetraploid somatic hybrid citrumelo that contains trifoliate orange parentage, which is
widely considered highly tolerant to HLB [36].

In the navel orange trial, the disease severity index ranged from 0.2–0.5 and 0.2–1.2
during the ratings performed in March 2021 and September 2021, respectively (Table 3).
Overall, the HLB severity index of ‘Glenn’ navel orange F-56-11 increased over time, except
for those trees on Willits citrange, which HLB symptoms rated greater in Mar. 2021 than in
September 2020. Willits citrange has a parentage composition (trifoliate orange) that may
impart the growing scions enhanced HLB tolerance.

The mandarin trees showed the lowest HLB severity index (0.12–0.26) during the
evaluation. Stover et al. [14] observed markedly greater growth and cropping of several
mandarin hybrids in the IRD despite CLas infection. Trees on 46×20-04-6 rated the highest
HLB index in March 2021 and September 2021 (0.8 and 0.7, respectively). Similarly, trees on
US-942 had the most evident HLB symptoms when visually assessed in September 2020
(Table 4). US-942 is considered an HLB-tolerant rootstock. Previous studies showed sweet
orange trees on US-942 with mild foliar HLB symptoms, which has not affected early tree
growth after CLas infection [19].

Trees flushed and built vigorous canopies, especially in the ‘Ray Ruby’ grapefruit trial.
Although experiments were independently studied, we observed that initial development
of HLB in grapefruit was much slower (higher Ct values) than in other scions.

CLas-infected trees do not always show symptoms and become a source of inoculum
simultaneously [37,38]. After infection, it may take up to 6 months or longer for a plant
to show the very first symptoms (blotchy mottle), complicating the evaluation of HLB
severity [4,6,38].

Table 2. Ct value of CLas DNA and HLB severity index on different ‘Ray Ruby’-rootstock combina-
tions assessed in 2020 and 2021.

Rootstock

September 2020 September 2021

Ct Value of
CLas DNA

HLB Severity
Index y

Ct Value of
CLas DNA

HLB Severity
Index y

2247×2075-02-26 38.0 ± 1.3 z 0.0 ± 0.0 36.7 ± 0.9 1.2 ± 0.3
2247×6070-02-2 39.3 ± 0.3 0.0 ± 0.0 38.9 ± 0.7 0.5 ± 0.2

46×20-04-42 37.0 ± 1.5 0.0 ± 0.0 38.2 ± 0.8 1.4 ± 0.4
46×20-04-6 38.3 ± 1.5 0.0 ± 0.0 39.8 ± 0.1 0.6 ± 0.2

A+Volk×Orange-19-11-8 37.3 ± 1.3 0.0 ± 0.0 37.6 ± 0.9 1.5 ± 0.4
C-22 36.1 ± 1.3 0.0 ± 0.0 35.9 ± 0.9 1.8 ± 0.4
C-54 39.7 ± 0.3 0.0 ± 0.0 37.6 ± 0.9 1.0 ± 0.5

Cunningham citrange 35.4 ± 1.3 0.0 ± 0.0 39.5 ± 0.4 0.9 ± 0.1
Kuharske citrange 36.7 ± 0.8 0.0 ± 0.0 38.9 ± 0.5 0.9 ± 0.3

Orange 16 37.1 ± 0.8 0.0 ± 0.0 36.6 ± 1.1 0.6 ± 0.2
Sour orange 39.1 ± 0.4 0.0 ± 0.0 36.7 ± 0.9 1.3 ± 0.4

UFR-1 36.5 ± 0.7 0.0 ± 0.0 37.2 ± 1.0 0.8 ± 0.2
UFR-15 35.8 ± 1.7 0.0 ± 0.0 36.8 ± 1.3 0.7 ± 0.2
UFR-16 36.9 ± 2.0 0.0 ± 0.0 35.8 ± 0.9 1.7 ± 0.4
UFR-17 36.9 ± 1.2 0.0 ± 0.0 37.5 ± 0.8 0.7 ± 0.2
UFR-4 36.6 ± 1.9 0.0 ± 0.0 36.0 ± 1.0 0.8 ± 0.3
UFR-5 35.9 ± 1.5 0.0 ± 0.0 38.2 ± 0.7 0.9 ± 0.2
US-802 37.4 ± 1.5 0.0 ± 0.0 37.3 ± 1.2 1.1 ± 0.2
US-812 36.8 ± 1.8 0.0 ± 0.0 38.4 ± 0.7 1.5 ± 0.3
US-897 35.8 ± 1.3 0.0 ± 0.0 36.8 ± 0.9 1.3 ± 0.2
US-942 37.3 ± 0.7 0.0 ± 0.0 37.7 ± 1.1 1.4 ± 0.4

WGFT+50-7 38.0 ± 1.1 0.0 ± 0.0 39.7 ± 0.3 0.4 ± 0.2
x-639 35.8 ± 1.5 0.0 ± 0.0 39.9 ± 0.1 1.4 ± 0.1

F value 1.11 ns - 1.96 ns 1.81 ns

z Means ± standard error (n = 6). y Foliar disease symptoms were visually rated on a scale of 0 to 5, with 0
representing a healthy canopy and 5 representing the most disease symptoms. ns = nonsignificant at p < 0.05.
- Blank space. Ct values < 38 indicate Clas-infection.
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Table 3. Ct value of CLas DNA and HLB severity index on different ‘Glenn’ navel orange F-56-11-
rootstock combinations assessed in 2020 and 2021.

Rootstock

September 2020 September 2021

Ct Value of
CLas DNA

HLB Severity
Index y

Ct Value of
CLas DNA

HLB Severity
Index y

2247×2075-02-26 36.3 ± 2.2 z 0.0 ± 0.0 35.0 ± 1.3 0.9 ± 0.3
Cunningham citrange 39.1 ± 0.1 0.0 ± 0.0 36.7 ± 1.3 0.3 ± 0.3

Orange 14 38.1 ± 1.0 0.0 ± 0.0 34.1 ± 0.8 0.8 ± 0.3
UFR-1 38.5 ± 0.2 0.0 ± 0.0 36.1 ± 1.1 0.7 ± 0.2

UFR-15 36.9 ± 1.1 0.0 ± 0.0 33.7 ± 0.8 1.0 ± 0.3
UFR-4 34.8 ± 1.4 0.0 ± 0.0 37.0 ± 1.1 0.8 ± 0.4
UFR-5 38.5 ± 0.1 0.0 ± 0.0 39.4 ± 0.6 0.8 ± 0.2
US-812 38.9 ± 0.3 0.0 ± 0.0 35.9 ± 0.9 0.9 ± 0.2

Willits citrange 37.4 ± 1.6 0.0 ± 0.0 36.3 ± 1.0 0.2 ± 0.1
x-639 35.3 ± 1.0 0.0 ± 0.0 34.4 ± 0.6 1.2 ± 0.3

US-897 36.6 ± 2.1 0.0 ± 0.0 36.0 ± 1.1 1.1 ± 0.2
US-942 38.7 ± 0.2 0.0 ± 0.0 34.6 ± 0.7 0.6 ± 0.2
UFR-17 38.3 ± 1.2 0.0 ± 0.0 37.1 ± 1.2 0.8 ± 0.2

C-54 39.2 ± 0.3 0.0 ± 0.0 37.7 ± 0.9 1.2 ± 0.2
Kuharske citrange 37.3 ± 1.4 0.0 ± 0.0 37.6 ± 0.9 0.8 ± 0.3

46×20-04-6 35.7 ± 1.7 0.0 ± 0.0 35.8 ± 1.5 1.1 ± 0.1
A+Volk×Orange-19-11-8 37.4 ± 1.0 0.0 ± 0.0 33.7 ± 0.6 1.0 ± 0.3

US-802 36.9 ± 1.2 0.0 ± 0.0 33.4 ± 0.8 0.9 ± 0.3
C-22 35.2 ± 1.8 0.0 ± 0.0 33.2 ± 0.6 1.3 ± 0.3

UFR-2 38.3 ± 0.5 0.0 ± 0.0 34.1 ± 0.8 1.0 ± 0.2
2247×6070-02-2 37.7 ± 1.3 0.0 ± 0.0 37.7 ± 1.1 0.5 ± 0.2

UFR-16 36.5 ± 1.2 0.0 ± 0.0 35.1 ± 1.2 1.1 ± 0.4
F value 1.01 ns - 2.43 ns 0.99 ns

z Means ± standard error (n = 6) followed by at. y Foliar disease symptoms were visually rated on a scale of 0 to
5, with 0 representing a healthy canopy and 5 representing the most disease symptoms. ns = nonsignificant at
p < 0.05. - Blank space. Ct values < 38 indicate Clas-infection.

Table 4. Ct value of CLas DNA and HLB severity index on different ‘UF 950’-rootstock combinations
assessed in 2020 and 2021.

Rootstock

September 2020 September 2021

Ct Value of
CLas DNA

HLB Severity
Index y

Ct Value of
CLas DNA

HLB Severity
Index y

2247×2075-02-26 36.5 ± 0.6 z, ab 0.0 ± 0.0 34.9 ± 4.4 0.3 ± 0.3
2247×6070-02-2 35.1 ± 0.2 ab 0.0 ± 0.0 34.7 ± 3.6 0.0 ± 0.0

46×20-04-6 32.8 ± 2.3 ab 0.2 ± 0.0 32.8 ± 1.7 0.7 ± 0.1
A+Volk×Orange-19-11-8 36.1 ± 1.5 ab 0.0 ± 0.0 37.8 ± 4.4 0.3 ± 0.2

C-22 33.8 ± 2.3 ab 0.4 ± 0.0 38.0 ± 4.0 0.1 ± 0.1
C-54 36.1 ± 1.9 ab 0.1 ± 0.0 37.9 ± 3.9 0.3 ± 0.1

Cunningham citrange 38.1 ± 0.9 ab 0.0 ± 0.0 35.3 ± 4.7 0.3 ± 0.3
Kuharske citrange 36.3 ± 0.5 ab 0.3 ± 0.0 36.1 ± 5.6 0.0 ± 0.0

UFR-1 39.4 ± 0.3 a 0.0 ± 0.0 34.5 ± 4.1 0.0 ± 0.0
UFR-15 34.7 ± 0.3 ab 0.0 ± 0.0 40.0 ± 0.0 0.0 ± 0.0
UFR-17 35.9 ± 1.1 ab 0.1 ± 0.0 36.3 ± 4.0 0.3 ± 0.3
UFR-2 38.3 ± 0.2 a 0.2 ± 0.0 38.8 ± 2.6 0.4 ± 0.4
US-802 33.8 ± 1.7 ab 0.0 ± 0.0 39.3 ± 1.4 0.2 ± 0.2
US-812 33.9 ± 1.7 ab 0.1 ± 0.0 38.5 ± 3.3 0.1 ± 0.1

WGFT+50-7 34.4 ± 1.6 ab 0.0 ± 0.0 36.3 ± 4.1 0.0 ± 0.0
x-639 34.6 ± 2.7 ab 0.0 ± 0.0 34.3 ± 3.5 0.2 ± 0.1
UFR-4 32.4 ± 1.4 b 0.2 ± 0.0 34.1 ± 3.7 0.1 ± 0.1
UFR-5 33.0 ± 2.2 ab 0.2 ± 0.0 37.8 ± 3.4 0.2 ± 0.1

UFR-16 35.0 ± 0.2 ab 0.1 ± 0.0 34.6 ± 3.8 0.0 ± 0.0
US-897 36.0 ± 0.7 ab 0.7 ± 0.0 36.3 ± 3.4 0.1 ± 0.1
US-942 35.8 ± 1.4 ab 0.0 ± 0.0 38.1 ± 3.4 0.1 ± 0.1
F value 2.2 ** 1.60 ns 1.20 ns 1.29 ns

z Means ± standard error (n = 6) followed by at least one common letter are not significantly different at p < 0.05 by
Tukey’s honestly significant difference test. y Foliar disease symptoms were visually rated on a scale of 0 to 5, with
0 representing a healthy canopy and 5 representing the most disease symptoms. ** p < 0.01. ns = nonsignificant at
p < 0.05. - Blank space. Ct values < 38 indicate CLas-infection.
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3.3. Leaf Nutrient Concentrations

Leaf nutrient concentration was evaluated only in the second year of growth and
varied with the rootstock used in each trial (Tables S1–S3). The scion and rootstock influ-
enced leaf nutrient concentrations. Macro- and micronutrients, except calcium, were in
the optimal range in all trials [39]. This study was located within an area having mostly
Spodosols, which contain a characteristic acidic subsurface layer that might have risen
to the top surface during the bedding process before tree planting. This, along with the
fertilizer mix applied, might cause soil pH to drop in some areas across the field with
values as low as 5.0, and as a result, calcium became less available for uptake [40]. Thus far,
calcium deficiency symptoms have not been present at the canopy level, though potential
effects on fruits remain to be seen.

In the ‘Ray Ruby’ trial, although all rootstocks induced foliar nitrogen levels within the
recommended range, 2247×6070-02-2, A+Volk×Orange-19-11-8, US-942, and WGFT+50-7
inducing significantly greater N levels (30–31 g kg−1; p < 0.002) than trees on UFR-16
(25.7 g kg−1). These results are preliminary, and they can vary as trees grow. Because trees
are developing in an HLB-endemic environment, thorough attention is needed to minimize
the detrimental effects that can potentially be caused by the disease. On the other hand,
leaf nitrogen levels were not correlated with tree size, and similar studies support the latter
statement [41]. However, fertilization programs with increased nitrogen may promote
excessive vegetative growth, which can make ACP populations peak and enhance CLas
transmission [40,42].

4. Conclusions

In this study, we presented early-perfomance data related to growth under Huan-
glongbing (HLB) conditions of 2-year-old ‘Ray Ruby’ grapefruit, ‘Glenn’ navel orange
F-56-11, and ‘UF 950’ mandarin trees grafted on UFR, commercial, and other recently
released rootstocks. Rootstock performance differed among scions. Tree size, CLas titer,
and leaf nutrient concentration were the variables most affected by the rootstock in each
trial. Tree size varied depending on the rootstock with each citrus scion. UFR-15 produced
the largest ‘Ray Ruby’ grapefruit trees, whereas ‘Glenn’ navel orange F-56-11 and ‘UF 950’
mandarins were larger on C-22 and US-802, respectively. Despite that most trees across
trials becoming CLas-infected, minimum HLB visual symptoms were observed, and trees
grew vigorously and remained relatively healthy over the experiment. WGFT+50-7 and
Willits induced the lowest HLB symptoms in ‘Ray Ruby’ and ‘Glenn’ trees, respectively.
‘UF 950’ on Cunningham, Kuharske, UFR-1, UFR-15, UFR-16, WGFT+50-7, and Willits
showed the lowest HLB symptoms by the end of the evaluation.

Most trees had leaf macro- and micronutrients within optimum levels, except for Ca.
Although significant different N concentrations in leaves were observed in the ‘Ray Ruby’
trial, no correlation was detected either with tree size or CLas titer/HLB severity index.
As trees reach maturity, tree size differences might have further implications regarding
cultural practices (harvest, pruning, trimming, chemical spraying, etc.), thus impacting
production costs. Longer-term studies are still required to evaluate tree performance
regarding productivity, fruit quality, and HLB resilience to determine the most consistent
and economically viable rootstocks for fresh-market grapefruit, navel orange and mandarin
production in Florida.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/horticulturae8111027/s1, Figure S1: Temperature and precipitation
data collected in 2019/20 (A) and 2020/21 (B) by the Florida Automated Weather Network (FAWN)
using the St. Lucie West (Florida, USA) weather station. The red vertical line represents the end of the
solar year; Table S1: Macro- and micronutrients concentration in the leaves of ‘Ray Ruby’ grapefruit
on multiple rootstocks; Table S2: Macro- and micronutrients concentration in the leaves of ‘Glenn’
navel orange F-56-11 on multiple rootstocks; Table S3: Macro- and micronutrients concentration in
the leaves of ‘UF 950’ mandarin on multiple rootstocks.

https://www.mdpi.com/article/10.3390/horticulturae8111027/s1
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