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Abstract: Mathematical modeling has been used to describe the characteristics of crop growth.
Establishing a growth model can help to better understand the responses of crops to their envi-
ronment and improve the efficiency of agricultural production. This study establishes empirical
growth models to predict the growth of greenhouse tomato. In this study, we collected beef tomato
(Solanum lycopersicum cv. ‘993′) growth data over two crop seasons in Taiwan and established growth
models by employing the commonly used Gompertz and Logistic curves. Days after transplanting
(DAT) and growing degree-days (GDD) were introduced as independent variables and their rela-
tionships with five traits, i.e., plant height, leaf area index, stem dry matter, leaves dry matter, and
fruits dry matter were determined. The performances of GDD models were slightly better than those
of the DAT models. In addition, we inferred five critical points with biological meaning based on
the proposed growth models. The critical points estimated by the Logistic model are closer to our
expectation than those of the Gompertz model, and they were applicable for the ‘993′ tomato in
Taiwan. These results can be used to predict tomato growth and adjust the fieldwork schedule to
improve the efficiency of the greenhouse production of tomatoes.

Keywords: tomato; Gompertz model; Logistic model; greenhouse; critical points; plant height; leaf
area index; dry matter; growing degree-days; days after transplanting

1. Introduction

Growth models have long been used to statistically describe the characteristics of crop
growth and the relationship between crops and the environment [1,2]. Growth models not
only summarize the knowledge about crop behavior [3] but can also be applied in many
aspects of greenhouse cultivation such as research, planning, and climate control [4,5].

Time (i.e., days after planting) and ambient temperature are important factors affect-
ing crop growth. Temperature is an important factor that influences crop development,
including germination, flowering, and maturation [6,7]. Different species and even va-
rieties have their optimal growth temperature [6,8,9]. Heat units, expressed in growing
degree-days (GDD), are frequently used to quantify the impact of temperature on biolog-
ical processes [10]. The GDD is the difference between the daily mean air temperature
(TAVG) and base temperature (TBASE) [10]. When the temperature is below the TBASE, the
development of a particular process will cease [9]. Cumulative GDD can effectively predict
crop biomass, leaf area index (LAI), and other traits [7,11].
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The LAI, dry matter (DM), and plant height (PH) are often used as indicators of crop
growth [7]. The LAI can quantify the vegetative canopy structure of crops [12]. Additionally,
the LAI can reflect the radiation interception ability of crops, and it is highly correlated
with yield [13]. However, the traditional method of measuring LAI is costly or destructive;
therefore, the LAI could be simulated directly from environmental parameters. LAI has
been modeled as a function of days after transplanting (DAT) [14,15] or as a function of
GDD [12,16–20]. Crop DM production is important for the optimization of greenhouse
management [21] together with PH, especially for crops that require support. In addition,
PH can be used to adjust crop coefficients when calculating evapotranspiration [22]. Both
DM production and PH can be simulated through growth models [23–28] to reduce labor
costs and damage to plants when sampling.

The growth process of crops involves the regulation of many metabolic pathways
and gene functions. In most cases, the growth rate of crops will change from slow to fast
before reaching a maximum, after which it will start to slow down; finally, the growth
rate will then reach zero [29]. Several sigmoid growth curves have been proposed to
describe this growth pattern of organisms [30]. Among these, the Gompertz and Logistic
models stand out, which are parsimonious and interpretable [1,24]. Logistic and Gompertz
models are called growth functions, and the first derivative and the second derivative of
the growth function are called growth rate and acceleration functions, respectively [31]. In
addition, both models can infer five critical points, which are helpful in the arrangement
of agricultural operations [24,31]. The five critical points are absolute acceleration point
(AAP), maximum acceleration point (MAP), inflection point (IP), maximum deceleration
point (MDP), and asymptotic deceleration point (ADP) [31]. Before AAP, the acceleration
of the growth rate is very slow; thus the actual growth starts after this point. MAP is the
maximum point of the acceleration function. IP has a maximum growth rate and the value
of the acceleration function will be zero. Additionally, after IP, the growth decelerates. In
other words, the value of acceleration function is negative. MDP is the minimum point of
the acceleration function. It is known that after ADP, the deceleration and growth rate go
to zero gradually, and the growth will no longer be significantly changed [31].

Tomato (Solanum lycopersicum L.) is one of the most important crops for greenhouse
production. This study investigated five traits, including PH, LAI, stem dry matter (SDM),
leaves dry matter (LDM), and fruits dry matter (FDM), and used two types of independent
variables, DAT and GDD, to fit the Gompertz and Logistic models. The objectives of the
present study were to investigate the fitting ability of the Gompertz and Logistic models
to the growth of tomatoes and to clarify the applicability of sigmoid growth curves in
greenhouse tomato cultivation.

2. Materials and Methods
2.1. Data Collection

All experiments were conducted in the solar greenhouse at the Taiwan Agricultural
Research Institute (TARI) located in Taichung City, Taiwan (latitude 24◦02′ N, longitude
120◦69′ E) (Figure S1). The size of the greenhouse was 29.2 m × 24 m × 4.4 m, and the
material was polyethylene film. Beef tomato cv. ‘993′ was used and planted in coconut
fiber substrate (Forteco Profit; Van der Knaap Group, Wateringen, the Netherlands). The
planting density was 27,907 plants ha−1. The tomatoes were irrigated and fertilized with a
drip system as well as pruned and managed following local practices.

The studied growth parameters were PH, LAI, SDM, LDM, and FDM. Growth pa-
rameters investigation was performed 1 day after the transplanting and repeated every
1–2 weeks. For each inspection, we randomly selected 3–5 plants to measure PH. The leaf
area was measured with a leaf area meter (LI-3000a; LI-COR Biosciences, Lincoln, NE, USA).
After measuring the leaf area and PH, the plant was separated into three parts: stem, leaves,
and fruits, and dried in an oven at 80 ◦C until the weight no longer changed to obtain the
DM. In this study, the growth data of tomatoes were collected for two crop seasons: October
2020 to January 2021 and October 2021 to January 2022. The data included a total of 45
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and 60 tomato plants grown in the 2020–2021 and 2021–2022 crop seasons, respectively.
The environmental parameters were air temperature (◦C) and relative humidity (RH, %)
inside and outside the greenhouse, which were automatically collected every 10 min and
averaged every day using a data logger (CR300; Campbell Scientific Inc., Logan, UT, USA).

Figure 1 shows the daily mean air temperature and RH during the 2020–2021 and 2021–
2022 crop seasons with no obvious difference in environmental conditions. Daily mean air
temperature showed a decreasing trend in both crop seasons. The temperature variation
outside the greenhouse was larger than those inside the greenhouse (SDinside < SDoutside).
The daily mean RH inside the greenhouse fluctuated around 60% and 90% throughout the
crop seasons, while the daily mean RH outside the greenhouse varied from 45% to nearly
100%. Thus, the greenhouse environment was relatively stable compared with the open
field.
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2.2. Establishment of the Sigmoid Growth Models

When establishing the growth model of the five traits of tomato, i.e., PH, LAI, SDM,
LDM, and FDM, we considered two types of independent variables, DAT and GDD. TBASE
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of tomato was set as 10 ◦C when calculating GDD [26]. Before modeling, we produced the
scatter plot of the dependent variable against each independent variable to confirm the
suitability of fitting the growth model with a sigmoid curve. If the relationship between the
independent and dependent variable was S-shaped, two sigmoid models, the Gompertz
(Equation (1)) and Logistic (Equation (2)), were used to fit the data.

yi = a·e(−eb−cxi ) + εi (1)

yi =
a

1 + e(−b−cxi)
+ εi (2)

where a denotes the asymptotic value of the dependent variable, b is the location parameter
related to the initial value of the model, c is the parameter that affects the growth rate in
the curve, e is the base of the natural logarithm, and εi is the error term.

We randomly selected 2/3 of the 2021–2022 data for model calibration, and the re-
maining 1/3 of the data were used for model validation. Due to the small amount of
data gathered during the 2020–2021 growth season, it was only used as another validation
set. Before selecting a candidate model, the assumptions, such as those of normality and
variance homogeneity, were examined. We used the probability plot correlation coefficient
(PPCC), which is the correlation coefficient between the model residuals and their expected
quantiles under a normal distribution, to test the normality hypothesis [32]. The higher the
calculated PPCC, the better the model residuals follow a normal distribution. The assump-
tion of homogeneity of variance was tested using residual plots of the model. An ideal
residual plot should have residuals scattered randomly around 0 and not in a megaphone
shape [33]. If the model violated the assumptions, the Box-Cox procedure (Equation (3))
was used to transform the data to make it follow the assumptions. The Box-Cox procedure
can automatically identify a transformation from the family of power transformations on
the dependent variable [33].

Y′ = Yλ (3)

where Y′ is the dependent variable after transformation, Y is the untransformed dependent
variable, and λ is a parameter determined from the data.

2.3. Model Performance Evaluation

Both the coefficient of determination (R2) (Equation (4)) and mean absolute error
(MAE) (Equation (5)) were used to evaluate the model performance during the calibration
and validation. For R2, larger values signify higher model performance. Contrarily, for
MAE, the lower values indicate a better model. Additionally, the root mean square error
(RMSE) (Equation (6)) was used to evaluate the goodness-of-fit of each model. For RMSE,
the lowest values indicate the optimal model.

R2 = 1− SSE
SST

(4)

MAE =
∑n

i=1|yi − ŷi|
n

(5)

RMSE =

√
SSE

n− p− 1
(6)

where SSE is the error sum of squares of the model, SST is the total sum of squares of the
model, n is the number of observations, yi is the ith observation value, ŷi is the fitted value
of the ith observation, and p is the number of parameters in the model. Both the Logistic
and Gompertz models have three parameters (i.e., a, b, and c).
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2.4. Critical Points of the Logistic and Gompertz Models

AAP and ADP can be calculated by equalizing the fourth derivative of the growth
function to zero. MAP and MDP are found by equalizing the third derivative of the growth
function to zero. IP is determined by equalizing the second derivative of the growth
function to zero. Korkmaz et al. [31] already determined these critical points of the Logistic
curve. In this paper, we only derived the Gompertz curve’s critical points; the derivation
process can be found in the Appendix A. Here, we summarized the critical points of the
two growth curves as Table 1.

Table 1. Critical points of the Logistic and Gompertz models. a, b, and c are the estimated parameters
of the two growth models, and e is the base of the natural logarithm.

Model AAP MAP IP MDP ADP

Logistic
(
−(ln(5+2

√
6)+b)

c ,
a(3−

√
6)

6

) (
−(ln(2+

√
3)+b)

c ,
a(3−

√
3)

6

) (
−b
c , a

2

) (
−(ln(2−

√
3)+b)

c ,
a(3+

√
3)

6

) (
−(ln(5−2

√
6)+b)

c ,
a(3+

√
6)

6

)
Gompertz

(
b−1.5021

c , a
e4.4909

) (
b−ln

(
3+
√

5
2

)
c , a·e−

3+
√

5
2

) (
b
c , a

e

) (
b−ln

(
3−
√

5
2

)
c , a·e−

3−
√

5
2

) (
b+1.7975

c , a
e0.1657

)
AAP: Absolute acceleration point; MAP: Maximum acceleration point; IP: Inflection point; MDP: Maximum
deceleration point; ADP: Asymptotic deceleration point.

2.5. Statistical Analysis

All statistical analyses were implemented using the R software (version 4.1.3; R
Foundation for Statistical Computing, Vienna, Austria), with ‘minpack.lm’ (version 1.2-
2) and ‘ppcc’ (version 1.2) packages used for model fitting and normality verification,
respectively. For parameter estimation of nonlinear model, the ‘minpack.lm’ package was
employed to obtain the numerical solution by minimizing residual sum of squares based
on the Levenberg-Marquardt algorithm [34]. ‘EnvStats’ package (version 2.7.0) was used to
conduct Box-Cox transformation when the model did not meet the assumptions.

3. Results and Discussion

In the present study, we employed Logistic and Gompertz models to connect the
several growth traits (i.e., PH, LAI, SDM, LDM, and FDM) of tomatoes with DAT and
cumulative GDD. To construct a model that exhibits good adaptability, a series of steps are
required, including: (1) selecting suitable model types, (2) checking model assumptions,
(3) fitting models, (4) evaluating model performance, and (5) model interpretation [1,35].
The overall research schema is summarized in Figure 2.

3.1. Verifying the Model Assumptions

Because the residuals of the fitted model (based on the original data) violated the
assumptions of homogeneity of variance (Figures S2–S5), we implemented the Box-Cox
procedure to transform the data. The λ values obtained are shown in Table 2. After the
variable transformation, the PPCC values of the models were all higher than 0.87, indicating
that the model residuals obeyed the normality assumption (Table S1). The residual plots
revealed that the violations of assumptions were improved substantially after the data
transformation (Figures S2–S5). However, even after the data transformation, there was still
heteroscedasticity in the model residuals (Figures S2–S5). Meade et al. [36] and Thornley
and France [37] considered that heteroscedasticity was common in the establishment of
growth models since the increase in measurement was often accompanied by an increase
in the overall variance.
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Table 2. λ values of the Box-Cox transformation.

Variable λ

PH 0.88
SDM 0.63
LDM 0.72
FDM 0.84
LAI 0.81

PH: plant height; SDM: stem dry matter; LDM: leaves dry matter; FDM: fruits dry matter; LAI: leaf area index.

3.2. Evaluation of the Fitted and Predictive Performance of the Models

From the examination of the scatter plots of the observations of each trait against
the DAT and GDD, the relationships of five traits (i.e., PH, LAI, SDM, LDM, and FDM)
with DAT and GDD are all S-shaped (Figures 3 and 4). The fitted Logistic and Gompertz
growth curves can describe the relationship between variables well (Figures 3 and 4). The
R2 values of the models are between 0.82–0.97, and MAE values are low in calibration
(Table 3). The R2 values using 1/3 of the data from the 2021–2022 season for validation
are between 0.77–0.95 (Table 4), and those for the 2020–2021 season are between 0.64–0.92
(Table 5), indicating that these models can be used for prediction.



Horticulturae 2022, 8, 1021 7 of 15

Table 3. Calibration results of the sigmoid growth models established with the 2/3 of the 2021–2022
crop season data.

Trait Independent Variable
Logistic Gompertz

R2 MAE RMSE R2 MAE RMSE

PH (cm)
DAT 0.97 5.28 8.04 0.96 5.75 9.06
GDD 0.97 4.94 7.44 0.97 5.61 8.88

SDM
(g/plant)

DAT 0.94 0.73 1.14 0.94 0.71 1.09
GDD 0.95 0.72 1.11 0.94 0.71 1.06

LDM
(g/plant)

DAT 0.90 1.56 2.51 0.89 1.58 2.52
GDD 0.89 1.55 2.49 0.89 1.58 2.50

FDM
(g/plant)

DAT 0.89 3.60 7.68 0.88 3.45 7.69
GDD 0.89 3.53 7.68 0.88 3.47 7.72

LAI
DAT 0.82 0.18 1.15 0.83 0.17 1.18
GDD 0.82 0.17 1.15 0.83 0.17 1.17

DAT: days after transplanting; GDD: growing degree-days; PH: plant height; SDM: stem dry matter; LDM: leaves
dry matter; FDM: fruits dry matter; LAI: leaf area index; R2: coefficient of determination; MAE: mean absolute
error; RMSE: root mean square error.

Table 4. Validation of the sigmoid growth models established in 2021–2022 using the 1/3 of 2021–2022
crop season data.

Trait Independent Variable
Logistic Gompertz

R2 MAE RMSE R2 MAE RMSE

PH (cm)
DAT 0.95 6.12 8.78 0.95 6.01 8.57
GDD 0.95 5.89 8.50 0.95 6.06 8.52

SDM
(g/plant)

DAT 0.89 0.77 1.20 0.89 0.73 1.18
GDD 0.89 0.75 1.19 0.89 0.74 1.18

LDM
(g/plant)

DAT 0.83 1.59 2.40 0.84 1.51 2.36
GDD 0.84 1.56 2.38 0.84 1.50 2.36

FDM
(g/plant)

DAT 0.81 3.24 6.31 0.81 3.10 6.27
GDD 0.81 3.20 6.32 0.81 3.11 6.29

LAI
DAT 0.77 0.22 0.25 0.79 0.21 0.25
GDD 0.78 0.21 0.25 0.80 0.21 0.25

DAT: days after transplanting; GDD: growing degree-days; PH: plant height; SDM: stem dry matter; LDM: leaves
dry matter; FDM: fruits dry matter; LAI: leaf area index; R2: coefficient of determination; MAE: mean absolute
error; RMSE: root mean square error.

Table 5. Validation of the sigmoid growth models established in 2021–2022 using the 2020–2021 crop
season data.

Trait Independent Variable
Logistic Gompertz

R2 MAE RMSE R2 MAE RMSE

PH (cm)
DAT 0.68 17.86 28.00 0.67 17.50 27.67
GDD 0.66 18.74 29.63 0.64 18.14 29.09

SDM
(g/plant)

DAT 0.90 0.76 1.12 0.91 0.76 1.07
GDD 0.91 0.74 1.09 0.91 0.78 1.08

LDM
(g/plant)

DAT 0.83 1.69 2.55 0.84 1.64 2.44
GDD 0.84 1.62 2.48 0.85 1.59 2.37

FDM
(g/plant)

DAT 0.92 3.09 5.42 0.92 3.06 5.51
GDD 0.92 3.02 5.32 0.92 2.95 5.33

LAI
DAT 0.77 0.24 0.29 0.79 0.23 0.28
GDD 0.78 0.23 0.29 0.80 0.22 0.28

DAT: days after transplanting; GDD: growing degree-days; PH: plant height; SDM: stem dry matter; LDM: leaves
dry matter; FDM: fruits dry matter; LAI: leaf area index; R2: coefficient of determination; MAE: mean absolute
error; RMSE: root mean square error.
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Figure 3. Scatter plots of the observations and fitted Logistic (left column) and Gompertz (right
column) growth curves with days after transplanting (DAT) as the independent variable. (a) Plant
height, (b) stem dry matter, (c) leaves dry matter, (d) fruits dry matter, and (e) leaf area index of the
Logistic model. (f) Plant height, (g) stem dry matter, (h) leaves dry matter, (i) fruits dry matter, and
(j) leaf area index of the Gompertz model.
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Figure 4. Scatter plots of the observations and fitted Logistic (left column) and Gompertz (right
column) growth curves with growing degree-days (GDD) as the independent variable. (a) Plant
height, (b) stem dry matter, (c) leaves dry matter, (d) fruits dry matter, and (e) leaf area index of the
Logistic model. (f) Plant height, (g) stem dry matter, (h) leaves dry matter, (i) fruits dry matter, and
(j) leaf area index of the Gompertz model.
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For each trait, the Logistic and Gompertz curves have similar performances at R2,
MAE, and RMSE (Tables 3–5). Although the two models are sigmoid curves, their growth
trends are different. That is, the Logistic curve is symmetric, whereas the Gompertz curve
is asymmetric [36,38]. It means that the height (Y coordinate) of the IP for the Logistic curve
is exactly half the entire curve. On the other hand, the height of the IP of the Gompertz
curve is smaller than that of the Logistic function. The symmetric characteristic may be a
limitation for some growth processes, which cannot meet the characteristic of the Logistic
function [36,39]. The Gompertz function may also meet the features of some growth
processes better than that of the Logistic function [36,39]; however, the performance of the
Logistic model is comparable to or better than that of the Gompertz model [1,39]. These
findings are consistent with our results. Figures 3 and 4 showed that the growth of the
Logistic curve was slow at the initial stage, and dropped rapidly in later stages; however,
the growth of the Gompertz curve was very fast at the beginning and decreases slowly
in the later stages. Therefore, if resources permit, both Logistic and Gompertz functions
should be considered, which is in agreement with Vieira and Hoffmann [39].

In the comparison of two types of independent variables, the model with GDD as the
independent variable performs slightly better than the model with DAT as the independent
variable (Tables 3–5) because GDD takes additional temperature-related information into
account than DAT. The performance of models did not show much difference in whether
the GDD or DAT was used as an independent variable, the reason may be that there was
no significant difference in environmental conditions between the two seasons (Figure 1).
However, because the climate usually changes, the use of GDD may predict crop growth
more accurately than DAT [40,41].

Comparing the model of different traits, the prediction performance of LAI is relatively
poor compared to other traits (Tables 3–5). This result is consistent with previous studies
where the simulation of LAI was difficult and with low accuracy [5,26]. However, our per-
formance of the sigmoid curve simulation of LAI is still acceptable (R2 > 0.70, MAE < 0.25,
RMSE < 1.18) (Tables 3–5). In addition, the predictive performance of 2020–2021 is worse
than that of 2021–2022, especially for PH (Tables 4 and 5). We probably did not consider
other important factors that may affect the growth of tomatoes such as light. Temperature
and solar radiation are the most important climate factors affecting crop growth [5,21,42].
However, the change in temperature inside the greenhouse does not follow the pattern of
solar radiation as closely as in the open field, thus using GDD alone may not be enough
to accurately predict crop growth inside greenhouses [5,21]. Therefore, to control error
variation more effectively and improve the predictive ability of the model, additional
light-related variables should be considered.

3.3. Inferences in Critical Points

One of the advantages of using sigmoid curves to build growth models is that some
biologically meaningful parameters can be derived from the mathematical properties of the
curve [31], which can be coordinated with agricultural practices [24,25,43]. Silva et al. [44]
used the critical points of growth models to observe the harvest time of ‘Green Dwarf’
coconut fruits with the best water flavor. Diel et al. [45] characterized the production of
biquinho pepper by the interpretation of Logistic model’s parameters and critical points,
and discovered the best cultivar and growing season for subtropical region. The crit-
ical points of DAT and GDD derived from the two curves for each trait are shown in
Tables 6 and 7, respectively. The AAP, MAP, and IP of the Logistic model are all later
than those estimated by the Gompertz model; the interval between MDP and ADP of
the Logistic model is shorter than that of the Gompertz model (Tables 6 and 7). These
characteristics reflect the different properties of the two sigmoid curves. The Gompertz
model is a fast-growing curve in the early stage, while the Logistic is a rapidly stable curve
in the later stages. Overall, the critical points estimated by the Logistic model are closer to
our expectation than those of the Gompertz model.
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Because APP is known as a lag time point [31], there is almost no crop growth before
the APP, which also reflects the time required for tomatoes to adapt to the new environment
and rebuild their roots after transplanting. From Tables 6 and 7, the PH is the earliest
growth trait, and most of the AAP values of PH are negative, indicating that PH has started
to grow before transplanting. SDM and LDM reach AAP almost simultaneously but the
subsequent LDM grows faster than SDM (Tables 6 and 7). In addition, the critical points
of LAI are approximately 1–2 days earlier than that of LDM, revealing that young tissues
have higher water content (Table 6). The IP determines the time at which the growth rate
is maximum. According to the results of the Logistic model, the growth rate of tomato
stems and leaves reaches a peak approximately one month after transplanting (Table 6)
when the GDD is 525–575 ◦C (Table 7). The growth rate of tomato fruit reaches its peak
approximately two months after transplanting (Table 6) when the GDD is approximately
825 ◦C (Table 7). If the crop requires any growth management such as fertilization, it is
most efficient before the IP [24,43]. In general, when the IP can be reached in a smaller
GDD or DAT, it indicates that the growth under this situation is more precocious [46]. A
short interval between MAP and MDP showed that the production was concentrated in a
short time [46]. Finally, at the ADP, plant growth tends to stabilize towards the end of its
production cycle. After ADP, too much nutrition will not significantly promote the growth
of crops, while the fertilizer input should be carefully controlled.

Table 6. Critical days after transplanting.

Trait
Logistic Gompertz

AAP MAP IP MDP ADP AAP MAP IP MDP ADP

PH −3.1 15.3 40.0 64.8 83.1 −17.5 0.1 31.6 63.2 90.3
SDM 14.8 23.9 36.2 48.6 57.7 8.0 16.0 30.4 44.8 57.2
LDM 14.4 22.2 32.6 43.1 50.9 8.5 15.4 27.7 40.0 50.6
FDM 40.9 48.2 57.9 67.7 74.9 36.7 42.7 53.5 64.4 73.7
LAI 12.9 20.7 31.3 41.8 49.6 7.2 14.0 26.2 38.4 48.9

PH: plant height; SDM: stem dry matter; LDM: leaves dry matter; FDM: fruits dry matter; LAI: leaf area index;
AAP: absolute acceleration point; MAP: maximum acceleration point; IP: inflection point; MDP: maximum
deceleration point; ADP: asymptotic deceleration point.

Table 7. Critical growing degree-days.

Trait
Logistic Gompertz

AAP MAP IP MDP ADP AAP MAP IP MDP ADP

PH 29.1 292.7 648.6 1004.6 1268.2 −227.9 71.5 606.6 1144.2 1605.2
SDM 272.0 400.4 573.7 747.0 875.3 174.3 286.6 487.3 688.9 861.8
LDM 256.2 370.9 525.9 680.8 795.6 176.5 276.3 454.7 633.9 787.6
FDM 642.2 720.2 825.6 931.0 1009.0 604.0 667.4 780.8 894.6 992.2
LAI 231.5 346.2 501.2 656.1 770.9 153.5 251.5 426.7 602.6 753.5

PH: plant height; SDM: stem dry matter; LDM: leaves dry matter; FDM: fruits dry matter; LAI: leaf area index;
AAP: absolute acceleration point; MAP: maximum acceleration point; IP: inflection point; MDP: maximum
deceleration point; ADP: asymptotic deceleration point.

Both the Logistic and Gompertz models need only three parameters (i.e., a, b, and c) to
describe the growth of tomatoes, producing acceptable and interpretable results [1,47,48].
However, it is worth noting that the Logistic and Gompertz models are both empirical
models, so the conclusions that can be drawn from the experiment will depend on the
manner in which the data were collected [49]. Therefore, the reliability of empirical models
needs to be validated using the experimental data of more varieties and a wider range of
climate conditions. Nonetheless, because the greenhouse environment can be regulated
and is relatively stable compared with the open field, the growth of crops can be efficiently
predicted by the experimentally determined models. Shi et al. [50] evaluated the perfor-
mance of a novel beta sigmoid function using real and simulated the DM data of six crop
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species generated by four commonly used growth functions (i.e., the exponential, Logistic,
Gompertz, and von Bertalanffy equations). Compared to other growth models, the beta
sigmoid function allowed for both symmetric and asymmetric growth, and it performed
better than the above growth functions. Kocian et al. [51] proposed a Bayesian machine
learning approach to dynamically model the sigmoid-type growth of greenhouse crops.
It was found that this approach could accurately fit the data, and it was more robust to
the changes of different environmental conditions. In the future, we can use novel growth
models or combine machine learning methods to further enhance the model performance
and the robustness to the environmental change.

4. Conclusions

In the present study, we collected tomato growth data for two crop seasons in Taiwan
and established growth models using two sigmoid functions (i.e., the Gompertz and
Logistic curves). The growth models established in this study can accurately predict the
growth of five important traits of tomato, including PH, LAI, SDM, LDM, and FDM. In
addition, we inferred five critical points that can be used for practical management based
on the proposed growth models. The performances of GDD models were slightly better
than those of the DAT models. Although there was no significant difference in model
performance between the Gompertz and Logistic models, the critical points estimated
by the Logistic model are closer to our expectation than those of the Gompertz model.
Therefore, the Logistic model developed in this study is more applicable for greenhouse
‘993′ tomatoes compared to the Gompertz model. When these models are used to predict
the growth of tomatoes, the GDD predictions using local weather forecasts or historical
weather data can be used to adjust the planned fieldwork schedule based on the traditional
calendar day method. Since the greenhouse environment is relatively stable and can be
controlled, the empirical model has several potential applications. Finally, the reliability
of the model can be improved using experimental data of more varieties and climatic
conditions.
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Appendix A

y = a·e(−eb−cx) (A1)
dy
dx

= −a·exp[−exp(b− cx)]·exp(b− cx)·(−c)

= ac·exp(b− cx)·exp[−exp(b− cx)] (A2)

d2y
dx2 = ac·exp(b− cx)·(−c)·exp[−exp(b− cx)] + ac2·exp(b− cx)·exp[−exp(b− cx)]·exp(b− cx)

= ac2·exp(b− cx)·exp[−exp(b− cx)]·[−1 + exp(b− cx)] (A3)

d3y
dx3 = ac2·exp(b− cx)·(−c)·exp[−exp(b− cx)]·[−1 + exp(b− cx)] + ac2·exp(b− cx)

·exp[−exp(b− cx)]·[−exp(b− cx)]·(−c)·[−1 + exp(b− cx)] + ac2·exp(b− cx)
·exp[−exp(b− cx)]·exp(b− cx)·(−c)

= ac3·exp(b− cx)·exp[−exp(b− cx)]·
{
[exp(b− cx)− 1]2 − exp(b− cx)

}
(A4)

d4y
dx4 = ac3·exp(b− cx)·(−c)·exp[−exp(b− cx)]·

{
[exp(b− cx)− 1]2 − exp(b− cx)

}
+ ac3

·exp(b− cx)·exp[−exp(b− cx)]·[−exp(b− cx)]·(−c)
·
{
[exp(b− cx)− 1]2 − exp(b− cx)

}
+ ac3·exp(b− cx)·exp[−exp(b− cx)]

·{2[exp(b− cx)− 1]·exp(b− cx)·(−c)− exp(b− cx)·(−c)}

= ac4·exp(b− cx)·exp[−exp(b− cx)]·
{
[exp(b− cx)]3 − 6·[exp(b− cx)]2 + 7·exp(b− cx)− 1

}
(A5)

d2y
dx2 = 0⇒ exp(b− cx) = 1 , from which x0 =

b
c

, y0 =
a
e

(A6)

d3y
dx3 = 0⇒ 1− 3·exp(b− cx) + [exp(b− cx)]2 = 0 , from which

x1 =
b− ln

(
3−
√

5
2

)
c

, y1 = a·e−
3−
√

5
2 ; x2 =

b− ln
(

3−
√

5
2

)
c

, y2 = a·e−
3−
√

5
2 (A7)

d4y
dx4 = 0⇒ −1 + 7·exp(b− cx)− 6·[exp(b− cx)]2 + [exp(b− cx)]3 = 0 , from which

x3 =
b− 1.5021

c
, y3 =

a
e4.4909 (A8)

The points (x0,y0), (x1,y1), (x2,y2), (x3,y3), and (x4,y4) correspond to IP, MAP, MDP,
AAP, and ADP of the Gompertz model, respectively.
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