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Abstract: Touch stimulus responses are common in plants. Some flowering plants sense the arrival of
their pollinators and secrete nectar or release pollen sacs, facilitating successful pollination. Molecular
mechanisms for mechanical stimulus responses in plants are well characterized in Arabidopsis leaves,
but not in non-model plants or other organs such as flowers. Here, we performed RNA-seq analysis
of touched flower buds of Dianthus hybrida, a major ornamental plant. Upon touch treatment,
931 and 132 genes were upregulated and downregulated, respectively. GO enrichment analysis
revealed that genes encoding serine/threonine protein kinases were significantly abundant among
the upregulated genes, which is consistent with previous studies that demonstrated the pivotal role
of protein phosphorylation in the touch stimulus response of Arabidopsis leaves. In comparison with
the gene expression profile of touched Arabidopsis leaves, the same families but different homologs of
the representative touch-induced genes encoding protein kinases were upregulated, showing that
phosphorelay signaling was the common mechanism for touch stimulus response in flowers and
leaves, but the players of the phosphorelay signaling were different. These results will contribute to
further studies on the mechanical stimulus responses of ornamental flowers and the utilization of
this mechanism for breeding programs.

Keywords: tactile stimulus; ornamental plant; RNA-seq

1. Introduction

Plants continuously encounter and can sense environmental mechanical stimuli such
as wind, rainfall, sounds, and touch to control their growth and development [1,2]. Me-
chanical stimuli contribute to the successful pollination of some flowers. For example, in
the legume Desmodium setigerum, flower color and shape are changed by pollination and
bee visits [3]. In the case of Oenothera drummondii, flowers produce nectar that is sweeter
than usual after being treated with the playback sound of a flying bee [4]. The male flower
of the dioecious Catasetum releases pollen sacs when pollinators touch the center of the
flower, helping to effectively pollinate this species [5]. Although flowers are thought to
sense mechanical stimuli, their response to them is less documented.

Molecular mechanisms of touch stimulus responses in plants have been studied ex-
clusively in Arabidopsis thaliana. Many signaling molecules, including potential secondary
messengers and plant hormones, have been implicated in touch-induced responses. First,
a very rapid change in cytosolic free Ca2+ concentration occurs after the stimulation of
plant cells [6–12]. An increase in Ca2+ concentrations is sensed by Ca2+-binding pro-
teins that regulate downstream molecular processes [8–12] such as the phosphorylation
of proteins, resulting in the modulation of protein conformation [13–15]. In Arabidopsis,
24 touch-responsive phosphopeptides, including kinases, phosphatases, cytoskeleton pro-
teins, membrane proteins, and ion transporters, were identified after initiation of touch
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treatments [16]. A non-phosphorylated isoform of touch-regulated phosphoprotein 1
(TREPH1) exhibited insensitive phenotypes to touch treatments and loss of the induction
of touch-induced gene expression [16].

Touch-induced gene expression occurred 10 to 40 min after the initiation of touch
treatments, while the increase in Ca2+ concentrations and Ca2+-independent protein phos-
phorylation occurred shortly after treatment. The representative touch-induced genes,
TCHs, were originally isolated as responsible genes after stimuli, such as touch, wind,
rain, wounding, and darkness [1]. TCH1 encodes an Arabidopsis calmodulin, CAM2,
whereas TCH2 and TCH3 encode calmodulin-like (CML) proteins, CML24 and CML12,
respectively [1,17–19], which is consistent with the above description that Ca2+-dependent
pathways are involved in touch stimulation. Touch-induced genes were also identified
throughout the genome, and a representative gene, CML39 was isolated [20]. TCH4 encodes
xyloglucan endotransglucosylase/hydrolase [21].

The phytohormone jasmonate (JA) is also an important molecule involved in touch-
induced responses in plants. An Arabidopsis mutant defective in allene oxide synthase (aos)
and JA did not show touch-induced morphological changes [22]. In contrast, the expression
of touch-induced genes was detected in the mutant, indicating that this was not sufficient
to show touch-induced morphological changes, and that the expression of these genes was
independent of the JA signaling pathway or upstream of the pathway [22].

Although these characteristics have been well documented in Arabidopsis leaves, touch-
induced gene expression in flowers remains mostly unknown. Here, we investigated the
gene expression profiles after exposure to touch stimulus of the flowers of an ornamen-
tal plant, Dianthus hybrida, which is an interspecific hybrid between D. chinensis and D.
barbatus. The genus Dianthus, a member of the family Caryophyllaceae [23], is one of the
major ornamental flowers of commercial importance, with production similar to that of
Chrysanthemum and Rosa. The Dianthus is commonly known as “carnation,” which refers
to Dianthus caryophyllus and several intra/interspecific hybrids. Dianthus flowers vary
widely in colors and shapes [24–27]. Molecular understanding of physiological mechanism
underlying environmental stimulus effects on flower morphology will facilitate to develop
new varieties. The genome project of D. caryophyllus is almost complete [28], allowing
us to perform transcriptome analyses. In this report, we aimed to list the differentially
expressed genes after touch stimulation in D. hybrida flowers and indicate directions for
future research that will serve as a basis for further development and utilization of this
response in breeding programs.

2. Materials and Methods
2.1. Plant Materials and RNA Extraction

D. hybrida cultivar “Telstar Scarlet” plants were grown in plastic pots (10.5 cm diameter
and 9.5 cm height) in a wind- and vibration-free PVC box placed in a growth chamber
under the following conditions; 14 h light/10 h dark, temperature of 28 ◦C and relative
humidity of 70% (Figure 1A). Photosynthetic photon flux density (PPFD) was 315 µmol
m−2 s−1. Three untouched flower buds were sampled as controls, and another three buds
were touched by hand for 40 s with hands and sampled 40 min later, following a previous
study on Arabidopsis leaves [20]. All biological replicates were sampled from different
plants. Total RNA was extracted using the RNeasy Plant Mini Kit (QIAGEN, Germantown,
MD, USA) following the manufacturer’s instructions.
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Figure 1. RNA-seq summary of touched D. hybrida flower buds. (A) D. hybrida plants grown in a 

wind- and vibration-proofed box. The bottom panel shows a flower and a bud. (B) PCA plot of three 

replicates each of touched (t) and untouched (ut) samples using uniquely mapped reads. (C) MA 

plot of expressed genes (TPM > 2.5 at least in all three replicates of either touched or untouched 

sample). Red dots indicate DEGs (FDR < 0.001). (D) GO enrichment analysis of DEGs.  
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for Illumina (New England Biolabs, Hitchin, Hertfordshire, UK). The libraries were 

bulked with others and sequenced using the NovaSeq6000 (Illumina, San Diego, CA, 

USA) with paired-end 150-bp reads.  

Due to unavailability of chromosome-level genome assembly of D. hybrida, the ge-

nome scaffold of the closely related species Dianthus caryophyllus (carnation), the highest-

quality genome sequence within the genus, was used as a reference. Scaffold, gene anno-
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mapped to carnation scaffolds using the STAR aligner ver. 2.7.3a [29] with options “--
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(DEGs) were called with glmLRT of R package edgeR ver. 3.26.8 [30], and transcripts per 
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filer ver 3.12.0 [31] and visualized using the R package corrplot ver 0.92 [32]. To compare 

the transcriptome profile of D. hybrida flower buds with that of Arabidopsis leaves, micro-

array data from a previous study [20] was used. 
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Figure 1. RNA-seq summary of touched D. hybrida flower buds. (A) D. hybrida plants grown in a
wind- and vibration-proofed box. The bottom panel shows a flower and a bud. (B) PCA plot of three
replicates each of touched (t) and untouched (ut) samples using uniquely mapped reads. (C) MA plot
of expressed genes (TPM > 2.5 at least in all three replicates of either touched or untouched sample).
Red dots indicate DEGs (FDR < 0.001). (D) GO enrichment analysis of DEGs.

2.2. RNA-seq Analysis

Total RNA sequencing was conducted by Rhelixa (Tokyo, Japan). Strand-specific
RNA-seq libraries were prepared using the NEBNext Ultra II Directional mRNA-seq Kit
for Illumina (New England Biolabs, Hitchin, Hertfordshire, UK). The libraries were bulked
with others and sequenced using the NovaSeq6000 (Illumina, San Diego, CA, USA) with
paired-end 150-bp reads.

Due to unavailability of chromosome-level genome assembly of D. hybrida, the genome
scaffold of the closely related species Dianthus caryophyllus (carnation), the highest-quality
genome sequence within the genus, was used as a reference. Scaffold, gene annota-
tion, and Arabidopsis homolog data for carnation were downloaded from the Carnation
DB [28] (http://carnation.kazusa.or.jp, accessed on 7 December 2021). RNA-seq reads
were mapped to carnation scaffolds using the STAR aligner ver. 2.7.3a [29] with options
“–outFilterMultimapNmax 1 –quantMode GeneCounts”. Differentially expressed genes
(DEGs) were called with glmLRT of R package edgeR ver. 3.26.8 [30], and transcripts per
kilobase million (TPM) values were computed after trimmed mean of M values (TMM)
normalization. GO enrichment analysis was performed using the R package clusterProfiler
ver 3.12.0 [31] and visualized using the R package corrplot ver 0.92 [32]. To compare the
transcriptome profile of D. hybrida flower buds with that of Arabidopsis leaves, microarray
data from a previous study [20] was used.

3. Results and Discussion

To explore the gene expression profiles in the flower buds of D. hybrida in response
to touch stimulus, we performed transcriptome analysis of the flower buds 40 min after
touch treatment. On average, 22.8 million reads were obtained for each sample, and 71.5%
of the total reads were uniquely mapped to carnation scaffolds (Table S1). Transcripts
from 15,258 genes were detected (TPM ≥ 2.5, in all three replicates in either touched or
untouched conditions). Principal component analysis based on the uniquely mapped read
count showed that touched and untouched samples were clearly separated by the PC1
value with a 74.4% contribution rate (Figure 1B), suggesting touch-induced transcriptional
changes in the flower buds. Genes with the highest loading values along the PC2 axis
were a CEP1 homolog and three UDP-glycosyltransferase genes, which are involved in
pollen development [33], indicating that the PC2 represented inflorescence developmental

http://carnation.kazusa.or.jp
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stage. Gene expression analysis showed that 961 and 132 genes were up- or downregulated
by touch treatment, respectively (FDR < 0.001, edgeR; Figure 1C; Supplementary Excel
File). GO enrichment analysis revealed that genes with GO “protein serine/threonine
kinase activity” were significantly upregulated in response to touch stimuli (Figure 1D),
which was consistent with previous studies that demonstrated the importance of protein
phosphorylation in Arabidopsis touch-delayed bolting [16,34]. Other GO terms related to
phosphorelay signaling, such as “non-membrane spanning protein tyrosine kinase activity”,
“MAP kinase activity”, and “MAP kinase kinase kinase activity” were also enriched in
touch-induced upregulated genes. In addition, GO “xyloglucan:xyloglucosyl transferase
activity,” a representative mechanosensitive response [21], was detected. Although related
GO terms were not enriched significantly, calmodulin genes, such as a CAM5 homolog,
and JA biosynthetic (LOX1, 4, OPR3, and AOC3 homologs) and signaling genes (JAZ1 and
NINJA homologs) were upregulated. On the other hand, genes with GO “photosynthesis”
were significantly downregulated upon touch stimulus, which resembled responses to
other biotic stresses including bacteria, insects, and wounding [35].

To explore whether touch stimulus responses are generally conserved between flowers
and leaves, we compared the RNA-seq data of D. hybrida flower buds with the microarray
data of Arabidopsis leaves from a previous study [20]. All DEGs commonly detected in
both experiments showed the same expression changes (Figure 2A,B), except for one clock-
related gene, FKF1, which appeared to reflect the difference in sampling time. TCH4, which
encodes xyloglucan endotransglucosylase [21], and its two Dianthus homologs were com-
monly upregulated. For calmodulin, CML49, but not CAM5, was upregulated in touched
Arabidopsis leaves, while their homologs, Dca25393 and Dca20630, respectively, showed the
opposite expression patterns in the flower buds of D. hybrida, which implies that different
organs utilize different calmodulin family members as touch signaling components. GO
enrichment analysis revealed that genes for “protein serine/threonine kinase activity” were
enriched in commonly detected and flower bud-specific DEGs, but not in leaf-specific ones
(Figure 2C). In fact, 32 out of 44 genes encoding serine/threonine kinases were detected as
DEGs only in flower buds, while no kinase gene was differentially expressed specifically in
leaves. These kinases might be key players in a flower-specific touch stimulus response.
Although it must be considered that these DEGs specific to one condition might reflect the
difference between the two species and/or growth condition, these results suggest that an
organ-specific molecular mechanism for touch stimulus response might exist, which could
be the basis of organ function, as in the case of flowers listening to bees [4].
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Figure 2. Comparison of transcriptome profile between D. hybrida flower buds in this study and
Arabidopsis leaves [20]. (A) Pairwise gene expression comparison, red dots indicating DEGs in this
study (FDR < 0.001). (B) Venn diagram of up- and downregulated genes. (C) GO enrichment analysis
of common, D. hybrida flower bud-specific, and Arabidopsis leaf-specific DEGs.
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4. Conclusions

Touch stimuli induced upregulation of genes encoding protein kinase, xyloglucan
endotransglucosylase, calmodulin, and JA biosynthetic and signaling components and
downregulation of photosynthetic genes in D. hybrida flower buds. This response was
consistent with that of Arabidopsis leaves, in which protein phosphorylation events oc-
cur immediately after mechanical stimulation, followed by the increase in Ca2+ and JA
concentrations [16,20,22], implying that molecular mechanisms for the touch stimulus
response are generally conserved among plant organs and among plant species. In contrast,
a large proportion of protein kinase genes was induced only in flower buds, suggesting an
organ-specific response to tactile stimulation. Our results will contribute to further studies
on physiological mechanisms underlying touch stimulus response of ornamental flowers
and utilization of this response in future breeding programs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/horticulturae8100918/s1, Table S1: mapping rate of RNA-seq reads to carnation scaffold
sequences, File S1: statistical summary of differentially expressed genes.
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