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Abstract: Due to the growing knowledge about the microorganism–plant relationship, medicinal
plants have gained great attention in their bio fertilization programs using biostimulants based on
microorganisms. Plectranthus amboinicus (Lour.) Spreng. is a perennial herb belonging to the family
Lamiaceae and has therapeutic and nutritional properties attributed to its natural phytochemical com-
pounds, which are highly valued in the pharmaceutical industry. A pot experiment was conducted to
evaluate the efficiency of Rhodotorula muciligenese (Y1), Candida sake (Y2), Candida apicola (Y3), and
Candida kunwiensis (Y4) yeast strains in concentrations of 0 (C1), 1 × 104 (C2), 1 × 107 (C3), and 1 × 109

(C4) CFU mL−1 on the growth performance, productivity, and antioxidant activity of P. amboinicus
plants. Yeast applications promoted growth attributes, nutritional value, and antioxidant activity in
P. amboinicus leaves. Candida apicola exhibited the greatest root growth, herb weight, and essential
oil production; it also stimulated carbohydrates, protein, and mineral content, as well as DPPH and
FRAP activities. Whereas Rhodotorula muciligenese recorded the lowest values in this respect, among
the concentrations used, the 1 × 107 CFU mL−1 concentration showed the highest values in this
respect. These new findings showed that the foliar application of Candida apicola not only maximized
the growth and productivity but also maximized the nutritional value and antioxidant activity of
P. amboinicus.

Keywords: Indian borage; yeast; biostimulation; candida; Rhodotorula muciligenese; essential oil;
phenotypic plasticity

1. Introduction

Despite the importance of chemical fertilizers in the agriculture sector and crop pro-
duction, they cause air and groundwater pollution, as well as having a pivotal role in
climate change [1]. Agroecosystem protection and plant development stimulation are
critical issues, so it is necessary to alternate this traditional agricultural technique with a
safer one. Huge efforts have been made to reduce reliance on such chemical fertilizers by
developing biologically based biostimulants as an alternative. Using biostimulants is rec-
ommended as a unique approach to enhance the sustainability of agricultural systems and
minimize chemical fertilizer usage [2]. Biological biostimulants are living microorganisms
that can promote plant growth by several techniques, such as providing essential amino
acids and vitamins, enhancing the nutrient supply and uptake, as well as improving root
system development [3–5].

Yeasts are eukaryotic organisms that are classified as fungi, with about 1,500 species
described [6]. Despite yeast populations being generally high in the rhizosphere and soil [7],
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reports about the role of yeasts as plant growth promoters are very limited [8,9]. Yeasts
have exhibited environmental niche adaptations, including the capacity to colonize the
rhizosphere alongside plant roots [7,8,10]. Many reports indicate that yeast strains can
promote plant growth by a variety of mechanisms, such as phosphate solubilization [11],
producing siderophore [12], phytohormones [13], and nitrogen and sulfur oxidation [7], as
well as mycorrhizal-root colonization promotion [14]. Additionally, yeast can be used as
a biocontrol agent [15]. Yeast stimulated active ingredient synthesis in Silybum marianum
L. [16], increased productivity and essential oil quality [3], and improved root growth and
nutrient levels [3,17]. Candida sp. promoted the plant growth of Phaseolus vulgaris plants
grown under normal and drought stress conditions [9]. Furthermore, the application of
Candida tropicalis significantly improved the growth and productivity of maize plants [18].
Ignatova [19] indicated that Rhodotorula mucilaginosa has high IAA-producing and plant
growth-promoting potential.

Plectranthus amboinicus (Lour.) Spreng. (Indian borage), a perennial herb, is one of
the Lamiaceae members and native to the tropics and warm areas of Africa, Asia, and
Australia [20]. This plant has nutritional and curative traits due to its high content of active
compounds that are extremely valuable in the pharmaceutical industry. Its leaves have the
capability to produce an essential oil that has high quantities of carvacrol [21], thymol [22],
β-caryophyllene, α-humulene, γ-terpinene, p-cymene, α-terpineol, and β-selinene [23,24],
active ingredients, which exhibit various pharmacological properties [25,26], including
antitumor, antioxidant, antimicrobial, anti-inflammatory, anti-epileptic, wound healing,
larvicidal, and analgesic activities [23,27–31]. It is widely used in folk medicine for treat-
ing constipation, colds, headaches, asthma, coughs, and fever conditions. Moreover, P.
amboinicus leaves are used as flavoring agents and are often eaten raw as a component
in traditional food [32,33]. Due to the aroma of P. amboinicus leaves, it has horticultural
properties, as it is cultivated in gardens and pots [34].

Biostimulants enhance plant growth and stimulate active ingredient synthesis, im-
proving nutrient availability and nutrient uptake of many crop plants [35,36]. However,
the plant species vary in their response to different biostimulants. To verify this hypothesis,
four yeast strains of Rhodotorula muciligenese, Candida sake, Candida apicola, and Candida
kunwiensis as biological biostimulants were used as a foliar spray to evaluate their efficiency
on the growth, productivity, and essential oil yield, as well as the antioxidant activities of
Plectranthus amboinicus (Lour.) Spreng.

2. Materials and Methods
2.1. Location and Materials Source

This pot investigation was conducted at the Experimental Farm of South El-Tahreer
Station, Horticulture Research Institute, Agricultural Research Center, Giza, Egypt during
the successive seasons of 2019–2020. Cuttings of Plectranthus amboinicus (Lour.) were
obtained from the National Gene Bank, Giza, Egypt. Yeast strains of Rhodotorula muciligenese
(JGBTA-S1), Candida sake (ATCC: 14478), Candida apicola (CBS 4078), and Candida kunwiensis
(CS 9678) were obtained from the Microbiology Department, Ain Shams University, Egypt.

2.2. Yeast Culturing

The yeast strains were grown on yeast peptone dextrose (YPD) liquid medium, which
contains 20 g L−1 peptone, 10 g L−1 yeast extract, and 20 g L−1 glucose [37]. Then the
medium was autoclaved at 121 ◦C for 20 min. Each strain was inoculated separately with
a loop full and incubated at 30 ◦C for 48 h on a rotary shaker at 150 rpm. The culture
media were centrifuged at 6000 rpm for 10 min. Yeast cream mass was washed twice using
sterile distilled water to eliminate any remaining culture medium, and then yeast cells were
suspended in sterile distilled water. Finally, a hemocytometer slide and a light microscope
were used for adjusting the yeast cell count to the concentrations of 1 × 104, 1 × 107, and
1 × 109 CFU mL−1.
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2.3. Experimental Design and Layout

The cuttings were planted in pots (35 × 50 cm) filled with sandy loam soil on February
1st for both seasons. Each pot contained one stem cutting, and the pots were placed in
a greenhouse. The plants were foliar sprayed monthly with yeast strains of Rhodotorula
muciligenese (Y1), Candida sake (Y2), Candida apicola (Y3), and Candida kunwiensis (Y4) in
concentrations of 0 (C1), 1 × 104 (C2), 1 × 107 (C3), and 1 × 109 (C4) CFU mL−1. The
first application was made 44 days after planting. This investigation was performed in
a randomized complete design with three replicates; each replicate included five pots (a
plant per pot). All the pots were fertigated monthly with 2 g L−1 of a water-soluble NPK
fertilizer (10-20-10). The experimental soil was analyzed, and its physical and chemical
properties were as follows: 88.6% sand, 9.1% clay, 2.3% silt, pH: 7.9, EC: 1.2 dS m−1, N:
0.01%, P: 0.4 ppm, K: 9.5 meq 100 g−1, Fe: 4.1 ppm, Mn: 1.3 ppm, Zn: 0.9 ppm.

2.4. Growth Parameters

The plants were collected for growth and biochemical analysis after 150 days from
planting. All plants from each treatment were separately collected and the shoots were
weighed fresh. The roots were separated, cleaned, and washed under running tap water to
remove any soil, and air-dried for 2 h, then their fresh weights were recorded. The plant
height, number of branches and leaves, root length and weight, root: shoot length ratio,
and phenotypic plasticity traits were estimated. The phenotypic plasticity index (PPI) was
estimated according to Valladares et al. [38] using the following formula:

Phenotypic plasticity index =
Maximum mean − minimum mean

Maximum mean
.

2.5. Essential Oil Extraction

The essential oil was extracted from the fresh herb using the water distillation method
of Viuda-Martos et al. [39] for 3 h using the Clevenger apparatus for oil percent and oil
yield determination. The fresh herbs (100 g) from each treatment were distilled in triplicate
and the oil contents are presented as the average value. The extracted oil was dried using
anhydrous sodium sulfate. Oil percent was expressed using the following formula:

Essential oil % =

(
Oil volume in the graduated tube

sample dry weight

)
× 100.

2.6. Biochemical Analysis

At the harvest stage, leaf samples were collected and submerged immediately in liquid
nitrogen, then pulverized to a fine powder using a mortar and maintained at −80 ◦C for
antioxidant determination. Other leaf samples were collected and oven-dried at 60 ◦C till
the constant weight was recorded for biochemical analysis.

2.6.1. Total Carbohydrates, Ash, and Protein Content

Total carbohydrates (%) were measured in dried leaves by the colorimetric method as
mentioned by Dubois et al. [40]. Briefly, 1 mL of sample was mixed with phenol solution 5%
(1 mL) and 5.0 mL sulfuric acid, then the mixture was shaken thoroughly and maintained
for 20 min in a water bath at 23–30 ◦C. The developed color was determined at 490 nm
wavelength throughout the UVVIS spectrophotometer analysis. Glucose was used as a
standard for calibration curve. The ash content (%) of the leaf samples was assessed at
550 ◦C for overnight using a muffle furnace AOAC [41]. The protein content (%) was
estimated by multiplying N percent by the conversion factor (6.25) of nitrogen-protein [42].

2.6.2. Radical Scavenging (DPPH Assay)

The assay of DPPH (1,1-diphenyl-2-picrylhydrazyl) was performed following the
procedures of Brand-William et al. [43] and Badhani et al. [44], with minor modifications.
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A 5 mL ethanol (80%) was mixed with 100 µM DPPH, then 1 mL of leaf sample extract
was mixed with 3 mL of cation DPPH and maintained in the dark at room temperature for
20 min. The wavelength of 520 nm was used to measure the reduction in absorbance. The
readings were presented in mg ascorbic acid equivalent (AAE) per 100 g−1 FW.

2.6.3. Ferric Reducing Antioxidant Potential (FRAP)

The assay of ferric reducing antioxidant potential (FRAP) was estimated calorimetri-
cally as the procedure of Benzie and Strain [45] and Badhani et al. [44] with little modifica-
tions. The FRAP reagent consisted of 20 mM ferric chloride (10:1:1, v/v/v), 10 mM TPTZ
(2,4,6-tri-2-pyridyl-1,3,5-triazin), and 300 mM acetate buffer (pH-3.6). A total of 3.0 mL of
FRAP reagent was mixed with 0.1 mL of methanolic leaf extract and maintained for 8 min
at 37 ◦C. A UV-VIS spectrophotometer was used for FRAP determination at the wavelength
of 593 nm. Ascorbic acid was used as a blank sample, and the readings were expressed in
mg ascorbic acid equivalent (AAE) per 100 g−1 FW.

2.6.4. Nutrients Estimation

Dried leaves were grinded for element analysis. A 0.5 g of leaf sample was digested
using sulfuric and perchloric acids to measure the nutrient content [46]. The total N (%)
was estimated using the modified micro Kjeldahl method described by Black et al. [47].
The P (mg 100 g−1) content was determined colorimetrically using stannous chloride
phosphomolybdic-sulfuric acid, as described by Jackson [46], and the K (mg 100 g−1)
content was determined using a flame-photometer, as described by Jackson and During [48].

2.7. Statistical Analysis

In this study, a randomized complete design was used as an experimental layout. The
experimental design included two factors: (1) four yeast strains (Rhodotorula muciligenese,
Candida sake, Candida apicola, and Candida kunwiensis) and (2) four concentrations (0, 1 × 104,
1 × 107, and 1 × 109 CFU mL−1). The experiment was repeated twice in two different
seasons with three replicates for each treatment. In order to compare the significant
differences between treatments, the analysis of variance (ANOVA) was made according to
Snedecor and Cochran [49]. Tukey’s test was used for post-hoc analysis (p < 0.05).

3. Results
3.1. Vegetative Growth

Foliar application with yeast strains significantly improved the growth performance
of P. amboinicus plants (Figure 1). The Y3 treatment significantly maximized the plant
height, number of branches, and leaves values, as compared to other yeast strains for both
seasons (Table S1). Increasing the concentration led to an increase in growth attributes to
reach the maximum growth when the plants were foliar sprayed with C3 application. The
tallest plants were obtained by Y3×C3 treatment, which gave 101.6 cm for the first season
despite there being no significant differences between Y3 × C3 and Y3 × C2, Y3 × C4,
Y4 × C2, Y4 × C3, and Y4 × C4 treatments. Furthermore, Y3 × C3 treatment recorded the
highest plant height value (107.4 cm for the second seasons), albeit the differences between
Y3 × C2 and Y3 × C4 treatments were non-significant. The Y1 × C4 application resulted
in the smallest increase in plant height, with 15% higher than control plants.
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1 × 107 (C3), and 1 × 109 (C4) CFU mL–1 concentrations during 2019 and 2020 seasons. Data are mean 

value ± SE. Means with different letters for each season significantly differed, using Tukey’s test at 

p ≤ 0.05 level, n = 15. 

Yeast strains exhibited efficiency in stimulating more branches and leaves, as 

revealed by the highest values when Y3 treatments were applied (7.5 and 8.8 for the first 

and second seasons, respectively, for number of branches and 83.2 and 87 for the first and 

second seasons, respectively, for leaves number). The C3 concentration significantly 

showed the tallest plants, which carry the greatest number of branches and leaves. In this 

regard, the Y4-treated plants had lower values (4.3 and 5.3 for the first and second seasons, 

respectively). On the other hand, untreated plants significantly gave the lowest growth 

performance. The interaction of Y3 × C3 significantly gave the highest growth. 

3.2. Root Traits  

The results presented in Figure 2 reveal the root weight and length values of P. 

amboinicus plants, as affected by different yeast strains’ foliar application. The root traits 

Figure 1. Plant height (cm) (a), number of branches (b), and number of leaves (c) of Plectranthus
amboinicus (Lour.) Spreng. plants subjected to Rhodotorula muciligenese (Y1), Candida sake (Y2), Candida
apicola (Y3), and Candida kunwiensis (Y4) yeast strains foliar application at 0 (C1), 1 × 104 (C2), 1 × 107

(C3), and 1 × 109 (C4) CFU mL–1 concentrations during 2019 and 2020 seasons. Data are mean value
± SE. Means with different letters for each season significantly differed, using Tukey’s test at p ≤ 0.05
level, n = 15.

Yeast strains exhibited efficiency in stimulating more branches and leaves, as revealed
by the highest values when Y3 treatments were applied (7.5 and 8.8 for the first and second
seasons, respectively, for number of branches and 83.2 and 87 for the first and second
seasons, respectively, for leaves number). The C3 concentration significantly showed the
tallest plants, which carry the greatest number of branches and leaves. In this regard, the Y4-
treated plants had lower values (4.3 and 5.3 for the first and second seasons, respectively).
On the other hand, untreated plants significantly gave the lowest growth performance. The
interaction of Y3 × C3 significantly gave the highest growth.
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3.2. Root Traits

The results presented in Figure 2 reveal the root weight and length values of P. amboini-
cus plants, as affected by different yeast strains’ foliar application. The root traits showed
significant differences within yeast strains applied, as both root weight and length values
showed the maximum values as affected by Y3 application relative to other yeast strains
(Table S2). Regarding the concentration, C3-plants significantly showed the highest root
growth. On the other hand, C1-plants presented the lowest values in this respect. The
Y3 × C2 and Y3 × C3 treatments outperformed other treatments in this respect, as they
gave the highest root weight and length values. The lowest root weight (4.6 and 4.8 g for
the first and second seasons, respectively) and length values (10.5 and 12.3 cm for the first
and second seasons, respectively) were obtained from the untreated plants. The highest
root: shoot length ratio were noticed by P. amboinicus plants subjected to Y3 at C2 and C3
concentrations and Y2 × C3 treatment for both seasons.
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Figure 2. Root length (cm) (a), root weight (g) (b), and root:shoot length ratio (c) of Plectranthus
amboinicus (Lour.) Spreng. plants subjected to Rhodotorula muciligenese (Y1), Candida sake (Y2), Candida
apicola (Y3), and Candida kunwiensis (Y4) yeast strains foliar application at 0 (C1), 1 × 104 (C2), 1 × 107

(C3), and 1 × 109 (C4) CFU mL–1 concentrations during 2019 and 2020 seasons. Data are mean value
± SE. Means with different letters for each season significantly differed, using Tukey’s test at p ≤ 0.05
level, n = 15.
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3.3. Yield Attributes and Phenotypic Plasticity

The herb fresh weight values exhibited in Figure 3 showed an improvement as affected
by yeast treatments (Table S3), and Y3 outperformed the other strains in this respect (349
and 337.3 g for the first and second seasons, respectively). Treated plants with Y3 × C3
exhibited the heaviest weights, as recorded 342.9 and 334.7 g for the first and second
seasons, respectively, while untreated plants presented the lowest values in this respect.
Essential oil percent and yield traits showed an increase, as influenced by yeast applications,
and Y3 exhibited the highest values in this respect. Plants subjected to foliar application
with Y3 × C3 presented an improvement in the essential oil yield of 72.2 and 70% relative
to untreated plants for the first and second seasons, respectively. The Y1 × C4 treatment
significantly showed the lowest essential oil yield after untreated plants, despite achieving
an increase in the essential oil yield of about 41 and 43% for the first and second seasons,
respectively, relative to untreated plants.
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Figure 3. Fresh weight (g) (a), essential oil (%) (b), and essential oil yield (mL) (c) of Plectranthus
amboinicus (Lour.) Spreng. plants subjected to Rhodotorula muciligenese (Y1), Candida sake (Y2), Candida
apicola (Y3), and Candida kunwiensis (Y4) yeast strains foliar application at 0 (C1), 1 × 104 (C2), 1 × 107

(C3), and 1 × 109 (C4) CFU mL–1 concentrations during 2019 and 2020 seasons. Data are mean value
± SE. Means with different letters for each season significantly differed, using Tukey’s test at p ≤ 0.05
level, n = 15.
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The presented results in Figure 4 revealed the phenotypic plasticity index (PPI) values
of P. amboinicus plants in response to yeast strains. Lower PPI values were observed for
the number of leaves (0.23 and 0.28 for the first and second seasons, respectively) and oil
percent (0.24 and 0.25 for the first and second seasons, respectively). On the other hand,
number of branches, essential oil yield, and herb and root weight traits showed great
enhancement affected by yeast applications, and they gave the highest PPI values. The root
length exhibited a moderate plastic response (0.53 and 0.55 for the first and second seasons,
respectively).
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Figure 4. Phenotypic plasticity index of Plectranthus amboinicus (Lour.) Spreng. traits as affected
by Rhodotorula muciligenese (Y1), Candida sake (Y2), Candida apicola (Y3), and Candida kunwiensis (Y4)
yeast strains foliar application at 0 (C1), 1 × 104 (C2), 1 × 107 (C3), and 1 × 109 (C4) CFU mL−1

concentrations during 2019 (a) and 2020 (b) seasons. Data are mean value ± SE.

3.4. Carbohydrates, Ash, and Protein

The carbohydrate, ash, and protein levels of P. amboinicus leaves exposed to foliar
applications with yeast strains have been improved (Figure 5). The plants subjected to Y3
showed the highest values in this respect, in contrast to the Y4 application, which gained
the lowest values in this respect (Table S4). A growing increase was observed in total
carbohydrates, ash, and protein values with increasing yeast concentration, as the maxi-
mum values were obtained by C3, then declined after that (except of total carbohydrates in
the first season) (Table S4). The highest carbohydrate content was observed by Y3 × C3
treatment, which was recorded 26.4 and 29.5% higher for the first and second seasons,
respectively, relative to untreated plants. Likewise, the ash and protein content recorded
the highest levels following Y3 × C3 application, as they gave 30.6 and 29.6% for ash and
31.7 and 32.1% for protein for the first and second seasons, respectively.
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Figure 5. Total carbohydrates (%) (a), ash (%) (b), and protein (%) (c) of Plectranthus amboinicus (Lour.)
Spreng. plants subjected to Rhodotorula muciligenese (Y1), Candida sake (Y2), Candida apicola (Y3), and
Candida kunwiensis (Y4) yeast strains foliar application at 0 (C1), 1 × 104 (C2), 1 × 107 (C3), and
1 × 109 (C4) CFU mL−1 concentrations during 2019 and 2020 seasons. Data are mean value ± SE.
Means with different letters for each season significantly differed, using Tukey’s test at p ≤ 0.05 level,
n = 15.

3.5. DPPH and FRAP

Illustrated results in Figure 6 show that the antioxidant activities of DPPH and FRAP
were significantly influenced by all yeast strains. Higher antioxidant activities were given
by Y3 application against Y4, which recorded the lowest values in this respect (Table S5).
The maximum increase in DPPH value was noticed by plants grown under the Y3 strain
application at the concentration of C3 (225.8 and 237.6 mg 100 g−1 for the first and second
seasons, respectively) and C4 (224 and 235.2 mg 100 g−1 for the first and second seasons,
respectively). Whereas, the lowest DPPH value (186 and 195.5 mg 100 g−1 for the first and
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second seasons, respectively) was given by untreated plants. Regarding FRAP, the Y3 × C3
treatment resulted in 44.6 and 54.7% higher in FRAP value for the first and second seasons,
respectively, as compared with untreated plants.
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Figure 6. DPPH (mg 100 g−1) (a) and FRAP (mg AAE 100 g−1 FW) (b) of Plectranthus amboinicus
(Lour.) Spreng. plants subjected to Rhodotorula muciligenese (Y1), Candida sake (Y2), Candida apicola
(Y3), and Candida kunwiensis (Y4) yeast strains foliar application at 0 (C1), 1 × 104 (C2), 1 × 107 (C3),
and 1 × 109 (C4) CFU mL−1 concentrations during 2019 and 2020 seasons. Data are mean value ±
SE. Means with different letters for each season significantly differed, using Tukey’s test at p ≤ 0.05
level, n = 15.

3.6. Nutrients Content

Data in Table S6 clearly indicate that P. amboinicus leaves nutrient contents (i.e., N, P,
and K) were significantly (p ≤ 0.05) impacted following foliar application of all yeast strains.
Generally, increasing the Y concentration caused a gradual increase in the P. amboinicus leaf
nutrients (Figure 7). The highest levels of the investigated elements were noticed at 1 × 107

concentration. By applying Y3 at the 1 × 107 concentration, the improvements in nutrient
content, as compared with the control, were 46.1%, 45.82 mg 100 g−1, and 45.1 mg 100 g−1

for N, P, and K, respectively, for the first season, and 47.14%, 43.27 mg 100 g−1, and 40 mg
100 g−1 for N, P, and K, respectively, for the second season). However, the lowest levels of
the investigated elements were noticed in untreated plants.
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Figure 7. N (%) (a), P (mg 100 g−1) (b), and K (mg 100 g−1) (c) of Plectranthus amboinicus (Lour.)
Spreng. plants subjected to Rhodotorula muciligenese (Y1), Candida sake (Y2), Candida apicola (Y3), and
Candida kunwiensis (Y4) yeast strains foliar application at 0 (C1), 1 × 104 (C2), 1 × 107 (C3), and
1 × 109 (C4) CFU mL−1 concentrations during 2019 and 2020 seasons. Data are mean value ± SE.
Means with different letters for each season significantly differed, using Tukey’s test at p ≤ 0.05 level,
n = 15.

4. Discussion

Yeast application is a biostimulation technique performed in the agriculture sector for
enhancing growth performance and productivity by amending plants with the metabolic
substances essential for plant growth [3,50]. Obtained results indicated that P. amboinicus
growth was significantly improved as a response to yeast applications, particularly C.
apicola. Moreover, root weight and length values showed a great enhancement following
all yeast strains. The enhancement in root growth is a good indicator of productivity
improvement, soil nutrient acquisition, and water uptake efficiency [51], so the root system
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has the ability to improve its competitiveness under specific conditions [52]. Indole-3-
acetic acid (IAA) is one of the most widespread phytohormones released by yeasts [53],
which stimulates cell division and root growth, causing more root tip generation and
branching, leading to an increase in root systems under the soil surface [54]. R. mucilaginosa
is a good-producing IAA and has a high plant growth-promoting ability [19]; moreover,
Candida species may produce gibberellins, IAA, and other plant growth promoters [55].
Yeast provides plants with indole-3-pyruvic acid, polyamines, gibberellins, and other plant
growth-promoting substances that contribute to improving plant performance [7]. During
reproductive growth, the competition between roots and shoots for photosynthates is the
dominant factor controlling the growth of roots [56]. Yeast foliar applications increased
the root and shoot length of P. amboinicus plants, especially Candida sp. Similar results
were noticed by Sannazzaro [57], who illustrated that yeast supplementation improved the
root: shoot length ratio of lotus plants under saline conditions. Furthermore, Alwhib [58]
reported that yeast application improved the root: shoot weight ratio of tomato plants
grown under drought conditions.

Plant growth occurs naturally as a result of cell divisions, elongation, and differ-
entiation, these functions are controlled by a group of naturally occurring compounds
(plant growth regulators) with hormonal action [9,59,60]. Yeasts may directly promote
plant growth by generating a wide range of biologically active substances, such as amino
acids, enzymes, vitamins, etc., which have an efficient stimulating influence on plant cells
and development during the life cycle and help to raise their productivity [7,13], or in-
directly by releasing antimicrobial compounds that assist in reducing phytopathogenic
infection [7,61,62]. The improvement observed in P. amboinicus growth following Candida
treatments may be due to the capability of Candida for fixing nitrogen [18]. Yeast species are
able to produce the plant hormone zeatin [63,64]. Zeatin, a member of cytokinin family, is
vital in embryogenesis, shoot and root meristem maintenance, and vascular development
during plant growth and development [65]. Seed inoculation with yeast strains promotes
the length and biomass of seedlings and stimulates plant growth [8,13,66].

In this study, plants subjected to R. mucilaginosa application exhibited growth stimu-
lation. R. mucilaginosa has a significant growth-promoting influence of many agricultural
crops [67,68]. Various genes in the R. mucilaginosa genome have the potential to impact
plant hormonal reactions, which positively impact plant growth [69], including abscisic
acid pathway genes, the auxin pathway genes, the gene (g288.t1) necessary to change the
inactive form of the plant hormone cytokinin into the active form [70], and the first gene
(g5608.t1) in the cytokinin pathway production [69]. C. apicola is considered a sophorolipid-
producing member [71]. Sophorolipids are glycolipid microbial surfactant molecules,
which are connected to cell membranes. Glycolipids have an extensive range of biological
functions, including generating and storing energy, creating, and maintaining the structural
components of cell membranes, producing vitamins and hormones, absorbing vitamins, as
well as providing insulation and protection [72].

The ability of a plant to change its single genotype to exhibit different phenotypes
in response to environmental factors is known as phenotypic plasticity [73]. Various
plant features exhibit a diverse degree of plasticity with several environmental conditions.
Interestingly, the plant displays a plastic reaction to biostimulant application [51]. The
phenotypic plasticity index describes the grade of phenotypic plasticity on a scale from 0
(no plastic response) to 1 (high plasticity). Higher PPI values were exhibited by branches
number, herb, and root weights, as well oil yield traits, which indicates that plant productiv-
ity reached its maximum when yeast supplementation was applied. High PPI values of the
roots are a good predictor of plant health, as it is important for nutrient absorption under
unfavorable environmental conditions that influence plant species distribution and plant re-
action to low soil resources [74]. Hill et al. [75] and Bossdorf et al. [76] describe the alteration
in root/shoot allocation and root architecture associated with nutrient availability.

All yeast applications significantly increased the essential oil productivity of P. amboini-
cus plants. Yeast showed significant differences in essential oil percent and yield of Zinnia
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elegans [77], as well as foliar application with yeast, increased oil yield, and quality [3]. The
improvements in oil quantity and quality of lovage plants following yeast supplementation
were also noticed by Złotek et al. [78].

In the current study, total carbohydrates, ash, and protein content were increased
following yeast applications, and their levels were elevated with increasing yeast concen-
tration until C3 (1 × 107 CFU mL−1), and they declined after that. These results are in
harmony with Taha et al. [79] who stated that using the high rate of yeast application did
not result in any additional beneficial improvement, and they indicated that this may be
owing to the adverse impact of the highest yeast level. The enhancements in vegetative
growth are an indicator of more photosynthetic pigments, more carbohydrates, and protein
synthesis. Yeast extracts stimulated protein, amino acid, and total carbohydrate levels in
caraway, faba bean, sugarbeet, and wheat plants [66,80–84]. C. apicola is one of the yeasts
with significant biological potential for protein production [85]. The improvements in the
vegetative growth of P. amboinicus following yeast treatments mean a favorable impact
on the biological activities and plant metabolism, moreover, a stimulating effect on the
antioxidant activity [77,78]. Fungi have considerable antioxidant activity and perfect activ-
ity versus the DPPH radical [86]. Candida sp. has the ability to produce antioxidants [87].
Fungi are a potent antioxidant source [88]. Abbas [80] stated that yeast enhanced plant
metabolism and boosted antioxidant activity in faba beans; moreover, Złotek [78] reported
that yeast caused a significant improvement in the antioxidant enzyme activities of the
lovage plants.

Root growth are increased by an increase in the root length, branching, mass, and root
hair amount, which causes greater root surface area and more nutrient absorption. The
increase in root traits of P. amboinicus, which are affected by yeast application, is followed
by an increase in the leaf macronutrients. Yeast is an important source of amino acids
and protein, and both act as an extra nitrogen source. R. mucilaginosa has the capability to
enhance urea utilization in plants [68,69]. Phosphorus is a vital element for cell growth
and plant development and has a critical role in many functions, including cell division,
photosynthesis, nutrient uptake, and biological oxidation [89]. Phosphate-solubilizing
fungi can convert the insoluble P form to the soluble form, causing an improvement in
soil fertility [11]. The efficiency of P solubilizing properties of fungal strains differs [90].
Both C. tropicalis and Rhodotorula sp. yeast strains are able to provide plants with soluble
inorganic P [18,91]. Sen et al. [69] found that R. mucilaginosa increased the growth of rice
plants grown in low-phosphate conditions and that R. mucilaginosa can solubilize insoluble
calcium phosphate in the media. Rhodotorula glutinis showed a high K concentration that
was released from mica in the soil [92]. The macronutrient levels of onion bulbs showed
an increase, as affected by yeast extract foliar spray [17,93]. Furthermore, similar findings
were observed by Ahmed et al. [94] on potatoes and by Mahmoud et al. [95] on xerophytic
plants.

5. Conclusions

The effects of Rhodotorula muciligenese, Candida sake, Candida apicola, and Candida kun-
wiensis yeast strains foliar application at 0, 1 × 104, 1 × 107, and 1 × 109 CFU mL−1

concentrations on the growth and productivity of Plectranthus amboinicus plants were inves-
tigated in this study. Yeast applications had a marked influence on growth and nutritional
quality, as well as a significant impact on the antioxidant activities of P. amboinicus leaves, in
particular, Candida apicola. Herein, Candida apicola application increased plant performance
and quality, especially at 1 × 107 concentration, which presented the heaviest fresh herb
(342.9 and 334.7 g for the first and second seasons, respectively) and maximum essential
oil yield (72.2 and 70% higher relative to untreated plants for the first and second seasons,
respectively), with an increase in DPPH value by 17.6 and 17.8% and by 44.6 and 54.7%
higher in FRAP value for the first and second seasons, respectively. Additional studies are
required to investigate if mixing the yeast strains could give better growth.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/horticulturae8100887/s1. Table S1. Effects of yeast strains of
Rhodotorula muciligenese, Candida sake, Candida apicola, and Candida kunwiensis yeast strains at 0, 1 ×
104, 1 × 107, and 1 × 109 concentrations on plant height (cm), branches number, and leaves number
of Plectranthus amboinicus (Lour.) Spreng. in 2019 and 2020 growing seasons. Table S2. Effects of
yeast strains of Rhodotorula muciligenese, Candida sake, Candida apicola, and Candida kunwiensis yeast
strains at 0, 1 × 104, 1 × 107, and 1 × 109 concentrations on root length (cm), root weight (g), and
root:shoot length ratio of Plectranthus amboinicus (Lour.) Spreng. in 2019 and 2020 growing seasons.
Table S3. Effects of yeast strains of Rhodotorula muciligenese, Candida sake, Candida apicola, and Candida
kunwiensis yeast strains at 0, 1 × 104, 1 × 107, and 1 × 109 concentrations on fresh weight (g), essential
oil (%), and essential oil yield (mL) of Plectranthus amboinicus (Lour.) Spreng. in 2019 and 2020
growing seasons. Table S4. Effects of yeast strains of Rhodotorula muciligenese, Candida sake, Candida
apicola, and Candida kunwiensis yeast strains at 0, 1 × 104, 1 × 107, and 1 × 109 concentrations on total
carbohydrate (%), total ash (%), and protein (%) of Plectranthus amboinicus (Lour.) Spreng. in 2019
and 2020 growing seasons. Table S5. Effects of yeast strains of Rhodotorula muciligenese, Candida sake,
Candida apicola, and Candida kunwiensis yeast strains at 0, 1 × 104, 1 × 107, and 1 × 109 concentrations
on antioxidant DPPH, and antioxidant FRAP of Plectranthus amboinicus (Lour.) Spreng. in 2019 and
2020 growing seasons. Table S6. Effects of yeast strains of Rhodotorula muciligenese, Candida sake,
Candida apicola, and Candida kunwiensis yeast strains at 0, 1 × 104, 1 × 107, and 1 × 109 concentrations
N (%), P (mg 100 mL-1), and K (mg 100 mL-1) of Plectranthus amboinicus (Lour.) Spreng. in 2019 and
2020 growing seasons.
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