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Abstract: Table grape berries are classified as a perishable crop that deteriorates quickly after harvest.
The application of melatonin after harvest was found to be effective for retarding senescence and
slowing ripening. In the current study, we tested the influence of two melatonin concentrations
(50 and 100 µmol) as a postharvest application on quality, bioactive compounds, and enzyme activities
of grape berries cv “Crimson” stored at 0 ± 1 ◦C and 90% relative humidity (RH) for 35 days. Our re-
sults indicated that melatonin application extends the shelf-life of berries by reducing weight loss and
maintaining total soluble solids (TSS), titratable acidity (TA), berry adherence strength, and firmness.
Melatonin treatment also reduced pectin methyl esterase (PME) and polygalactouranase (PG) enzyme
activities compared to the control. Moreover, O2

•− and H2O2 rates in berries were reduced by high
melatonin concentration. Moreover, peroxidase (POD) and catalase (CAT) enzyme activities were
increased by melatonin application. Our findings suggested using melatonin postharvest to increase
shelf life and maintain quality attributes during refrigerated storage, which could be advantageous
on a large scale.

Keywords: grapes; melatonin; postharvest; antioxidant; quality

1. Introduction

Table grapes (Vitis vinifera L.) belong to the Vitaceae family that cultivated globally
due to their high nutritional characteristics [1]. Grape berries are high in vitamins, fiber,
antioxidants, and folic acid, which help to reduce the risk of some human diseases such as
blood cholesterol and hypertension [2]. The table seedless grape (Crimson) was developed
by David Ramming and Ron Tarailo at the University of Fresno, CA [3,4]. Crimson berries
are slightly elongated with lightred berries and the color of skin varies from pink to dark
pink-red. The table grape is classified as a non-climacteric fruit. However, table grape is
a perishable fruit and suffers from water loss after harvest. Stem drying and browning,
shatter of berries, wilting, and shrivelling causes a decrease in quality after harvest.

The senescence of fruits is an unavoidable natural process that causes several phys-
iological and biochemical changes. A decline in color intensity, desired flavor, nutrition
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levels, and shortened shelf life occur during the senescence stage [5]. Reducing the senes-
cence processes after harvested considers the main challenge for increasing shelf-life and
maintaining nutrient levels. The consumption of chemical composition by respiration,
compounds oxidation, and cell wall softening are the main reasons for fruit decay after
harvest [6]. The quality and shelf-life of fruits depends on their own nutritional value and
exogenous factors such as temperature, humidity, and air composition [7].

Melatonin (N-acetyl-5-methoxytryptamine, MT) is an important hormone connected
to many biological activities inside plant cells such as antioxidant mechanisms [8]. Mela-
tonin is considered to be safe as reported by FDA (https://www.fda.gov, accessed on
1 September 2022). Additionally, it has been discovered that exogenous melatonin can help
plants adapt to a variety of abiotic stresses, including drought, salt, and heavy metals [9].
Melatonin is formed in horticultural crops including grapes and plays a prominent role in
crop ripening [10,11]. It has been well known that exogenous melatonin application scav-
enges reactive oxygen species (ROS) from fruits by enhancing the activity of antioxidant
enzymes and non-enzymatic antioxidants [12–14]. In addition, exogenous melatonin treat-
ment delayed fruit senescence [15], fruit softening [16], weight loss [17], decay rates [18],
and respiration rate [19]. Therefore, the purpose of the current research was to improve the
shelf life and quality of grapes by exogenous melatonin application.

2. Materials and Methods
2.1. Experiment Design and Treatments

Crimson seedless grape fruits were purchased from private farm at El Qattah, Giza
Governorate, Egypt. Clusters were harvested at a ripe stage (full berry size and 19% TSS) in
mid-September free from mechanical damage, insect damage and any outer decay. Clusters
were randomly divided into three groups of similar color, size and form, then clusters
were immersed in M0 (control, distilled water), M50 µmol (50 µmol L−1 melatonin) or
M100 µmol (100 µmol L−1 melatonin) for 30 min at 22 ◦C (Figure 1). The use of previous
concentrations depends on previous study [17]. Each cluster was left until its surfaces dried
at room temperature at 25 ± 5 ◦C, then packed into a punnet (polyethylene plastic package
dimensions of 21 cm × 14 cm × 8 cm) of 500 ± 30 g. Each group (treatment) included
5 replicates, and each replicate contained 5 punnets (25 punnets per treatment). All punnets
were stored at 0 ± 1 ◦C and 90% RH for 35 days. For every 7 days of storage duration,
punnets were weighted to calculate % weight loss (storage times were 0, 7, 14, 21, 28, and
35 days). Approximately 10 g of samples were randomly taken from punnets to measure
the chemical compounds levels and enzymes activities.
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2.2. Fruit Quality

To determine total soluble solids (TSS), a hand refractometer model HR-110 was used
and the results were presented as a percentage (%) of the juice. The titratable acidity (TA) (%)
was measured by titrated 10 mL of the juice to pH 8 using sodium hydroxide (0.1 N) and
phenolphthalein (1%) according to AOAC [20]. TA was calculated as mg of tartaric acid per
100 mL of juice. TSS/ acid ratio was determined by divided TSS values on TA values.

To measure firmness, the fruit texture analyzer model “GS-15, serial No. FTA2, UP
Umweltanalytische Produkte GmbH” was used and expressed as Newton. According to
Abd Elwahab et al. [21], adherence strength (g) was measured by using a scale and force
meter (Shatilons instrument). The relative membrane permeability % (RMP) was measured
as described previously by Ashraf et al. [22]. In brief, 0.5 g of samples were cut and mixed
with 20 mL of distilled water in test tubes. Then, tubes were vortexed for 5 s and the
solution was measured for initial electrical conductivity (EC0). After that, the tubes were
kept at 4 ◦C for 24 h and assayed for EC1. To determine EC2, the samples were autoclaved
at 120 ◦C for 20 min. The results of RMP (%) was calculated by the following formula:

Relative permeability (%) = ((EC1 − ECo)/(EC2 − ECo))× 100 (1)

2.3. Enzyme Activity

1.0 g of berries peduncles were taken and extracted as described by Lee and Macmil-
lan [23] to measure the enzyme activity of pectin methyl esterase (PME) and polygalac-
touranase (PG) enzymes. The reaction mixture for the two enzymes consisted of 2.0 mL pectin
solution, 0.5 mL bromothmol blue + 1.5 mL water. The pH was adjusted to 7.5. The initial
absorbance at 620 nm for the PME enzyme and 445 nm for PG enzyme of the mixture was
measured vs. water. After that, 20 µL of PME or PG enzyme substrates were added to initiate
the reaction. The absorbance at 620 and 445 nm was recorded. The initial reaction rate was
linear for 3 minutes. The enzyme activity was recorded as described previously [24].

To determine the antioxidant enzyme activity, 0.2 g of the samples were homogenized in
precooled 50 mM phosphate buffer (pH 7.8) (1.6 mL) and centrifuged undercooling (4 ◦C) at
12,000× g for 20 min and supernatant was collected. The method described by Tao et al. [25]
was used to determine the activity of peroxidase (POD, EC 1.11.1.7). To measure the catalase
activity (CAT, EC 1.11.1.6), the method of Dhindsa et al. [26] was used.

2.4. Determination of O2
•− Production Rate

The production rate of O2
•− was measured as described previously by He et al. [27]

with minor modification. Briefly, 0.2 g of samples were macerated in 2 mL of 50 mm
phosphate buffer (pH 7.8) and then centrifuged under cooling (4 ◦C) at 12,000× g for
20 min. After that, 0.5 mL of phosphate buffer and 0.1 mL of 10 mm hydroxylamine
hydrochloride were added to 0.5 mL of supernatant and kept at room temperature for
30 min. After incubation, 1 mL of 7 mm naphthylamine and 1 mL of 17 mM sulfanilamide
were incorporated into the mixture solution and incubated for an additional 30 min. The
absorbance of the samples was measured at 530 nm.

2.5. H2O2 Measurement

The methods of Velikova et al. [28] were used to measure the hydrogen peroxide (H2O2)
concentration with minor modifications. 0.5 g of samples were homogenized in 3 mL of
tri-chloroacetic acid (TCA) (1%) (w/v). Then centrifuged (10,000 rpm) under cooling at 4 ◦C
for 10 min. Then0.75 mL of the supernatant was mixed with 0.75 mL of 10 mm K-phosphate
buffer (pH 7.0) plus 1.5 mL of KI (1M). By comparing a sample’s absorbance at 390 nm to a
reference calibration curve, the concentration of H2O2 was calculate. A standard curve plotted
in the range of 0 to 15 nmol mL-1 was used to calculate the concentration of H2O2.
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2.6. Statistical Analysis

The data was submitted for statistical variance analysis. To compare means, the Tukey
test was used. To demonstrate the differences between treatments, a one-way ANOVA test
was used. SAS’s analysis of variance package was used to statistically analyses the data.

3. Results
Weight Loss, TSS, Titratable Acidity, and TSS: Acids Ratio

As expected, weight loss of grape berries increased with increasing storage periods in
the control and treated berries (Figure 1A). However, compared to the control, the grape
berry treated with 50 or 100 µmol melatonin L-1 was effective in reducing weight loss
after 7 days till the end of the refrigerated storage (Figure 2A). Additionally, the difference
between the two concentrations was not significant. TSS increased in all treatments until
21 days of storage and then decreased in the control treatment while melatonin treatments
were constant (Figure 2B). There were no significant differences between treatments until
21 days of storage. After 28 and at the end of storage time, both melatonin concentrations
showed higher TSS than the control without any difference between them.
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Figure 2. Effect of three concentrations of melatonin on (A) weight loss, (B) TSS, (C) titratable acidity,
and (D) TSS: acids ratio of grape berries stored at 0 ◦C for 35 days. Values are means ± SE from
five replicates (n = 5). The same letter means no significant differences between the values (p < 0.05)
according to the Tukey test.

There were no changes in TA content in grape berries until 21 days of storage (Figure 2C).
However, an increase after 28 days was observed and then disappeared. There was no
statistical difference between treatments until 14 days of storage. After 28 days, the lower
content of TA was observed in 50 µmol melatonin L−1 compared to 100 µmol melatonin L−1

and the control. At the end of storage, no differences were observed between treatments.
Regarding TSS/acid ratio, no difference was observed among all treatments until 21 days of
storage (Figure 2D). After 28 and 35 days of storage, the control treatment showed the lowest
ratio compared to both melatonin concentrations.
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The results in Figure 3A indicated that firmness was decreased with increasing storage
time. There was no significant difference observed between all treatments until 21 days
of storage. In the period from 28 to 35 days of storage, both melatonin concentrations
showed higher TSS content than the control. Berry adherence strength (BAS) decreased in
parallel with increasing storage time (Figure 3B). The differences between treatments were
not significant until 7 days of storage. However, after 14 days of storage until the end, the
decreasing rate was higher in the control treatment than in either of the melatonin concen-
trations. Relative membrane permeability (RMP) was increased with increasing storage
periods (Figure 3C). There was no significant difference recorded between treatments until
14 days of storage. However, after 21 days until the end of storage, the control treatment
showed a higher RMP than both melatonin concentrations.
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Figure 3. Effect of three concentrations of melatonin on (A) firmness, (B) berry adherence strength,
and (C) relative membrane stability of grape berry stored at 0 ◦C for 35 days. Values are means ± SE
from five replicates (n = 5). Same letter means no significant differences between the values (p < 0.05)
according to the Tukey test.

After 35 days of storage, PG and PME enzyme activities were higher in the control
treatment than 50 and 100 µmol melatonin L−1, respectively (Figure 4A,B). However, POD
enzyme and CAT enzyme activities were increased with increasing melatonin concentration
(Figure 4C,D). Both O2

•− production rate and H2O2 were reduced as melatonin levels
increased (Figure 4E,F).
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Figure 4. Effect of three concentrations of melatonin on (A) PG enzyme activity, (B) PME enzyme
activity, (C) POD activity, (D) CAT activity, (E) O2

•− production rate, and (F) H2O2 of grape berry
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means no significant differences between the values (p < 0.05) according to the Tukey test.

4. Discussion

Weight loss is the main challenge after harvest because it decreases the appearance
and quality of horticultural crops. It has been reported that transpiration and respiration
of fresh fruits and vegetables are the main reasons for water loss [29,30]. Our results and
previous work indicate that melatonin application retards the loss of water during cold
storage [31]. Moreover, Wang et al. [32] found that melatonin postharvest application
decreases the weight loss of sweet cherry fruits. In this study, no significant difference was
observed in TSS by melatonin treatments until 21 days of storage. However, at the end
of storage periods, both melatonin concentrations increased TSS content compared to the
control. (Figure 2B). Similar increases in TSS were also observed by exogenous melatonin
application in grape berries [18,33], tomatoes [34], strawberries [35], and sweet cherries [15];
this increase in TSS could be due to melatonin reducing respiration and reducing the loss
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of soluble acids [33]. Melatonin treatment decreased the loss of TA in berries after 35 days
from storage (Figure 2C). Previously, Fan et al. [36] recorded higher TA levels in guava
fruits treated with exogenous melatonin compared with control. Moreover, previous works
reported that exogenous melatonin application reduces the loss of TA in grape berries
and sweet cherries during cold storage [15,37]. The reduction of TA loss by melatonin
application could be due to its role in senescence reduction [18].

Grape berry firmness is the most important quality parameter which affects the stor-
age period. The loss of firmness in fruits and vegetables was found to be linked with
the degradation and solubilization of plant cell walls by numerous enzymes such as PG
and PME that response for cell wall degradation [38]. In this study, melatonin applica-
tion delayed the loss of firmness (Figure 3A). In accordance with this result, a previous
report showed that application of melatonin on guava fruits had higher firmness level
than untreated fruits [36]. Additionally, other study indicated that melatonin application
conserved the firmness of sweet cherry fruits [15]. The results in Figure 4A,B supported the
hypothesis that melatonin application decreased the softening of grape berries by reducing
PG and PME enzymes activities. Moreover, other work found that exogenous melatonin
application decreased the activities of PG and PME enzymes in mango fruits, resulting in
less softness [16]. The previous result could be related to the role of melatonin in reducing
ethylene production [38]. Our results in Figure 3C showed that RMP was decreased by
melatonin treatment. A possible explanation for this result could be due to the role of
melatonin in mitigating the peroxidation of plant cell membrane lipids and maintaining
the integrity of the cell membrane [15].

The result of this study in Figure 4C corroborates the finding of Li et al. [39], who
indicated that exogenous melatonin treatment increased the activity of POD in cherry
tomato fruit. POD and CAT activities were also increased in broccoli florets by exogenous
melatonin application [40]. In a previous study, the application of exogenous melatonin
enhanced the POD and SOD activities in sweet cherries [15]. Increasing POD and CAT
activities were found to be effective for reducing the harmful effects of O2

•− and H2O2
rates that decreased in our study (Figure 4E,F). It has been well known that the senescence
of fruits is mainly due to membrane lipid oxidation, reactive oxygen metabolism [41],
and oxidation of nucleic acids and proteins [12]. Our results in Figure 4E,F supported
the hypothesis that melatonin application reduced O2

•− and H2O2 rates in the berries,
which resulted in lower repining and senescence during storage [42]; these results are in
agreement with some other reports that found that melatonin application significantly
lowers the H2O2 rate in stored peach and cassava [43,44]. Moreover, Wang et al. [15]
observed a decrease in O2

•− and H2O2 rates in sweet cherries by melatonin postharvest
application. More studies on the effect of melatonin on bioactive compounds such as
chlorophylls, pigments, and vitamins should be performed [45].

5. Conclusions

The current work emphasises the hypothesis that melatonin application after harvest
markedly increases the shelf-life and storage ability of grape berries. The enhancement of
grape shelf-life in response to melatonin might be linked with the activities and synthesis
of cell-wall degradation enzymes including PG and PME (Figure 5). In addition, melatonin
treatment enhanced POD and CAT activities, which mitigate O2

•− and H2O2 rates. In
conclusion, we suggest that melatonin treatment could be an effective application for pre-
serving grape berries quality during cold storage. It is recommended to use a concentration
of 100 µmol melatonin as it increases the rate of adhesion of grape berries and thus reduces
the separation of berries from the cluster, which is one of the qualities required during the
export of grapes.
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