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Abstract: In order to realize the real-time and accurate detection of potted flowers on benches, in
this paper we propose a method based on the ZED 2 stereo camera and the YOLO V4-Tiny deep
learning algorithm for potted flower detection and location. First, an automatic detection model of
flowers was established based on the YOLO V4-Tiny convolutional neural network (CNN) model,
and the center points on the pixel plane of the flowers were obtained according to the prediction box.
Then, the real-time 3D point cloud information obtained by the ZED 2 camera was used to calculate
the actual position of the flowers. The test results showed that the mean average precision (MAP)
and recall rate of the training model was 89.72% and 80%, respectively, and the real-time average
detection frame rate of the model deployed under Jetson TX2 was 16 FPS. The results of the occlusion
experiment showed that when the canopy overlap ratio between the two flowers is more than 10%,
the recognition accuracy will be affected. The mean absolute error of the flower center location based
on 3D point cloud information of the ZED 2 camera was 18.1 mm, and the maximum locating error of
the flower center was 25.8 mm under different light radiation conditions. The method in this paper
establishes the relationship between the detection target of flowers and the actual spatial location,
which has reference significance for the machinery and automatic management of potted flowers
on benches.

Keywords: potted flower; ZED 2 stereo camera; detection; location; YOLO V4-Tiny; deep learning

1. Introduction

Floriculture refers to practices involving the growing of cut flowers, potted flowering,
foliage plants, and bedding plants in greenhouses and fields. Floriculture products, have
the highest profit per unit area among compared to other agricultural products [1]. As
the population is aging, the future of floriculture production relies on a balance between
labor and technology [2], so mechanization and automation for floriculture management
are important to solve problems of labor shortage. With the development of the robot or
the automatic manipulator, precision management equipment can be developed to realize
the automatic transplantation, grading, and harvesting for floriculture [3]. For these tasks,
target detection and location are essential. So, the real-time and accurate detection of potted
flowers is necessary [4].

Machine vision technology has been used to achieve the precise management of flow-
ers. Through the method of machine vision, researchers can realize flower detection [5,6],
classification [7], and calculate the number of flowers [8,9] in a specific area. Compared
with manual methods, this method can improve economic efficiency [10]. Therefore, the
counting and handling of flowers can be handled by machine vision, which can optimize
the management process of flowers to a large extent. For the effective detection and tracking
of flower targets, Zhuang et al. (2018) proposed a robust detection method for citrus fruits
based on a monocular vision system and used the adaptive enhancement of red and green
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chromaticity maps to identify citrus regions [11]. Ryan et al. (2017) developed a set of esti-
mation methods for the growth density of peach blossoms based on a UAV [12]. Aleya et al.
(2013) used a k-means algorithm to separate flowers from backgrounds and detected dam-
aged flowers according to a histogram distribution of flowers [6]. Aggelopoulou et al. (2011)
set a black cloth screen behind fruit trees to collect images at a specific time and extract
flowers according to the color threshold [13]. Sarkate et al. (2013) combined computer
vision and image segmentation to predict the yield of gerbera flowers [14]. Zhao et al.
(2016) combined the adaptive red/blue (RB) chromaticity diagram and the sum of absolute
transformation differences to segment citrus regions [15].

The above-mentioned traditional methods use visual features, such as shape, texture,
color, or size, to complete target recognition. However, there are many interferences
where crops are grown (such as the type of the crop, lighting condition, and the growth
background, and so on) [16], and these interferences can easily affect the recognition effect,
thereby affecting the accuracy of detection [17]. With the development of computer vision
technology and the deep learning model, a CNN (convolutional neural network) model
was used for the detection of the target and the improvement of the detection performance
in the implementation of agricultural production [7,18–21]. In these studies, the CNN is
trained by a large number of samples. The trained CNN model can be used to detect the
target more accurately than the traditional recognition methods, and the ability to resist
external interference is stronger. However, under the condition of ensuring accuracy, the
detection speed of this method will be reduced, and the hardware equipment requirements
are high. Compared with other neural network detection models, the YOLO model has
significantly improved the detection speed while ensuring detection accuracy [22–24],
which is suitable for deployment on embedded devices. For example, the apple flower [25],
Phalaenopsis [26], and mobile flower [27] can be recognized. Redmon et al. (2017) trained
YOLO9000 simultaneously on the COCO detection dataset and ImageNet classification
dataset using the joint training of target detection and classification [28]. This method can
predict the detection of object classes without marked detection data. Wu et al. proposed
an apple blossom detection method based on the YOLO V4 deep learning algorithm
and simplified the apple blossom detection model through a channel pruning algorithm.
This method can accurately detect apple blossoms in a natural environment [25]. So, by
collecting the dataset of different growth statuses, growth environment, and the types of
the crop, the training of the CNN model can be used to match the requirements of the
detection and location for accuracy.

The real-time detection and location of potted flowers suffer from a high time con-
sumption and a low detection accuracy. In order to improve the detection and location
accuracy and real-time, in this study, the YOLO V4-Tiny model was used to detect potted
flowers. This model has a fast recognition speed, a high precision, and a small size, and
it is easy to have arranged in a mobile terminal [29]. Firstly, samples were used to train
the YOLO V4-Tiny model, and the trained model was then deployed on a mobile terminal
to achieve the accurate and rapid detection of flowers. Finally, a ZED 2 stereo camera
was used to process the recognized flower images, and the location of the flowers was
realized through camera coordinates and 3D point cloud information, so as to quickly and
accurately detect and locate flowers.

2. Materials and Methods
2.1. Process of the Flower Detection and Location Based on the ZED 2 Stereo Camera and the
YOLO V4-Tiny Model

YOLO (you only look once) [24] is a convolutional neural network (CNN) algorithm
that is different from the target detection method in two stages of the Flyer R-CNN (the
target candidate box is formed and then classified). It divides the input image into a grid
of S*S, and each grid is responsible for detecting the target falling into it. It predicts the
bounding box, positioning confidence, and probability vectors of all categories of targets
contained in all grids, so it has good real-time performance. In order to meet the real-
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time accuracy requirements on mobile terminals and edge computing devices at one time,
YOLO V4-Tiny is obtained by simplifying YOLO V3 [22], it is a single-stage target detection
model that performs well balance between accuracy and speed, and the trained weight
file is small can be transferred to the mobile terminal. [30]. the structure of the model was
shown in Figure 1a. The convolution layer of the CSP (Cross Stage Pritial connection) was
compressed, and the FPN is set as 2.
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The ZED 2 stereo camera is an integrated binocular camera that adopts advanced sens-
ing technology based on stereo vision and provides technologies such as video acquisition,
depth information acquisition, and real-time position information. It has been applied to
object reconstruction [31], position acquisition [32–34], etc.

The processes for potted flower detection based on the ZED 2 stereo camera and YOLO
V4-Tiny are shown in Figure 1b. In this study, the artificial labeled flower dataset was
constructed to train the CNN model of YOLO V4. The model can accurately detect the
flowers and mark the prediction box, and the flower center point on the pixel plane of
flowers is obtained according to the prediction box. With the match of the RGB image and
depth point cloud image collected by the ZED 2 stereo camera, the location coordinates of
the flowers can be obtained.

2.2. Potted Flower Detection Based on the YOLO V4-Tiny Model
2.2.1. Data Collection for YOLO V4-Tiny Model Training

The images were collected from Changshu Jiasheng Agricultural Co. LTD (120◦38′47′′,
31◦33′44.24′′) on 26 March 2019, and from Qiyi Flower Co. Ltd. (119◦23′38′′, 32◦0′18′′)
on 9 January 2021, respectively. The pictures of the flowers were collected by a digital
camera (Canon EOS M3, Canon Co. LTD, Tokyo, Japan), and the camera was about 100 cm
above the flower canopy, so the flower canopy is mainly located in the center of the image.
Figure 2 shows images of poinsettias and cyclamens.
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Figure 2. Poinsettia and cyclamen images collected for the YOLO V4-Tiny model training.

Considering the influences of different light intensities in the natural environments
and the camera parameters, 1000 images of poinsettias and cyclamens under different light
intensities, camera parameters, and shooting angles were selected during data collection. In
order to increase the training images, and to prevent over-fitting in the training, the selected
images were mirrored, shrunk, enlarged, rotated, and affine-transformed to enhance the
dataset, as shown in Figure 3. The images were then selected again, and images of flowers
that were too repetitive and that were missing due to data augmentation were deleted. The
number of final images for model training was 3000.
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Figure 3. Data augmentation after mirroring, shrinking, enlargement, rotation, and affine transformation.

2.2.2. Model Training

In order to train the CNN model, an annotation XMLdataset based on PASCAL
VOC data format, formatted by labeling with the LabelImg software, was constructed.
Two categories, cyclamen and poinsettia, were customized in LabelImg’s data, and the
outline of the flowers was selected using the rectangular box to label the target, shown
in Figure 4. The application generated coordinates containing the four vertices of the
rectangular box. The labeled dataset was imported to the YOLO for model training.
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Figure 4. Labeling the training dataset using LabelImag.

In addition, in order to accelerate model convergence and reduce training time, the
YOLO V4-Tiny weight file (YOLO V4-Tiny. Conv.29) without a full connection layer was
used for transfer learning. The weight file was obtained by training 80 categories on the
COCO dataset. Shared-parameter-based transfer learning consisted of training the weights
of the feature extraction part in the YOLO layer in advance to find common parameters or
prior distributions between the spatial model of the source data and the target data (for the
purpose of migration).

CNN model training was carried out on a computer. The main hardware configuration
of the computer was an Intel Core i5-9300H, an NVIDIA GeForce GTX 1650 GPU, and 16G of
memory, and CUDA and CUDNN were used to accelerate the calculation during training.



Horticulturae 2022, 8, 21 6 of 14

2.3. Real-Time Detection Based on the ZED 2 Camera and the Jetson TX2

In order to obtain the real-time location of flowers, a detection system was constructed
with the ZED 2 stereo camera (Stereolabs Inc., San Francisco, CA, USA) and the Jetson
TX2 (NVIDIA Co., Santa Clara, CA, USA) AI computing module. The ZED 2 camera was
used to obtain an RGB image and a depth point cloud of the flowers in real-time, and the
Jetson TX2 computing module processed the RGB image of flowers and obtained the plane
position of the flowers by the trained CNN model, transferred from the computer. The
spatial location of the flowers was obtained by matching the RGB image and the depth
point cloud obtained by the ZED 2 camera. Due to the RGB and depth image having
different dimensions and resolutions, the resolutions of the RGB image and depth image
were both set up as 1080P@30FPS with the right-hand coordinate system. With this mode,
the ZED has the balance between depth accuracy and processing time [32].

2.3.1. Plane Location Based on the YOLO V4-Tiny Detection Result

Due to the canopy of the cyclamen and poinsettia being approximately round or
elliptic, and the prediction box of the flowers obtained by YOLO V4-Tiny was close to the
outline of the flowers. Therefore, the center point of the prediction box obtained by the
YOLO V4-Tiny can be used as the central coordinate of flowers in the plane coordinate.
Figure 5 is the plane relation of the flower central coordinate. The point (µ0, v0) is the
vertex coordinate of the prediction box detected by the YOLO V4-Tiny model, and W and
H are the width and height of the prediction box, respectively. Accordingly, the center point
coordinate p′(µ1, v1) can be calculated as

µ1 = µ0 + W/2v1 = v0 + H/2 (1)

1 
 

 

 

 

Figure 5. Plane location based on the prediction box detected by the YOLO V4-Tiny method. Where,
(µ0, v0) is the vertex coordinate of the prediction box detected by the YOLO V4-Tiny model, and W
and H are the width and height of the prediction box.

2.3.2. Spatial Location Based on the ZED 2 Stereo Camera

With the depth sensor of the ZED 2 camera to obtain the 3D point cloud of the flower.
The spatial corresponding relationship between the pixel plane of the flowers and the
camera is shown in Figure 6. p(x, y, z) are the spatial coordinates of the central point of the
flower canopy. With the center point coordinate p′(u1, v1) analyzed by the YOLO V4-Tiny
detection method, the pixel plane of the point cloud can be obtained by matching the RGB
image and the depth point cloud, and the corresponding depth of the central point can
be obtained. More specifically, the position of the flower can be converted to the spatial
coordinates p(x, y, z) with the camera’s left lens as the origin.
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Figure 6. Spatial coordinate of the flower’s central point matching with the pixel plane and the ZED
2 stereo camera. Where p′(u1, v1) are the flower’s center point in the pixel plane, p(x, y, z) are the
spatial coordinates of the flower’s central point. O(0, 0, 0) are the spatial coordinates of camera’s
left lens.

2.4. Detection Accuracy Affected by a Different Overlap Ratio

With the growth of flowers, the plant canopy experiences an overlapping of each other.
The overlap ratio affects the accuracy of the detection result. Figure 7 shows the overlapped
flowers. The widths and the heights of the two flowers’ canopy are w1, w2, h1, and h2,
respectively, and w3 and h3 are the total width and height of the two flowers. The overlap
ratio (s) is defined as

s =

(
1− w3 × h3

w1 × h1 + w2 × h2

)
× 100% (2)
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Figure 7. The overlap of the two flower canopies, where, respectively, w1, w2, h1, and h2 are the
widths and heights of the two flowers’ plant canopy, w3 and h3 are the total width and height, and O1
and O2 are the central points the two flowers’ plant canopy. S is the overlap area of the two flower’s
plant canopy.

In order to determine the minimum distance of the two flowers, by adjusting the
distance between the two flowers, when the two potted flowers were detected as one
potted flower, the distance between the two flowers was defined as the minimal distance
between the two potted flowers, and the s calculated by Equation (2) is the maximal
overlap degree.
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2.5. Detection Accuracy Affected by Natural Light

The detection of the flowers by the ZED 2 camera was implemented in the greenhouse.
The radiation of the natural environment affects the detection and location accuracy. In
order to obtain the effect of the radiation, by using the ZED 2 camera and Jetson TX2, the
detection and location results for 15 pots of flowers at 9:00, 13:00, 15:00, and 17:00, in the
greenhouse as well as the radiation density, were collected by LightScout quantum light
sensor 3668I (Spectrum Tech., Inc., Haltom, TX, USA) at the same time.

3. Results
3.1. Training Results of the YOLO V4-Tiny Model

The results of the CNN model training after 4000 iteration steps are shown in Figure 8.
when the number of training iterations reaches about 3200, the Loss fluctuated slightly
around 0.2. Performance statistics were conducted for the weight of training completion, the
results are shown in Table 1, mainly including the detection average precision (AP), recall,
intersection over union (IoU), and mean average precision (mAP) under the threshold
mAP@IoU = 0.50. The training results meet the detection accuracy requirements.
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Table 1. The target detection performance evaluation results with the index intersection over union
(IoU), average precision (AP), mean average precision (mAP), and recall.

Average Precision (AP)
Recall Intersection over

Union (IoU)
Mean Average

Precision (mAP)
Average Detection

Frame RatePoinsettia Cyclamen Average

IoU = 0.5 90.56% 88.89% 89.00% 87.00% 68.18% 89.72% 16 FPS

By transferring the trained CNN model to the Jetson TX2 computing module and
collecting the RGB flower images by the ZED 2 camera, the average detection frame rate
reached 16 FPS (frames per second). The result was greater than 12 FPS [35], which meets
the real-time requirements.
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3.2. Spatial Location Results

In order to determine the spatial location results of the method based on CNN model,
The SORT (Simple online and real-time tracking) model [36] was used to compare the
location accuracy. Figure 9 is the y-direction location results of the two models with the
y-direction distance from 150mm to 300 mm, and the z-direction distance from 115 to
130 mm. The average location error of YOLO model at different z-direction distances is
23.41 mm, 31.34 mm, 40.8 mm, and 38.47 mm, respectively; and the average location error
of SORT model is 43.27 mm,47.91 mm, 53.00 mm, and 58.58 mm, respectively. The results
show that the location accuracy of the YOLO model is obviously high than the SORT model.
The variations of the YOOL model with different z-direction distances is indicated that the
crop height affects the location accuracy.

Horticulturae 2022, 8, x FOR PEER REVIEW 9 of 14 
 

 

3.2. Spatial Location Results 
In order to determine the spatial location results of the method based on CNN model, 

The SORT (Simple online and real-time tracking) model [36] was used to compare the 
location accuracy. Figure 9 is the y-direction location results of the two models with the 
y-direction distance from 150mm to 300 mm, and the z-direction distance from 115 to 130 
mm. The average location error of YOLO model at different z-direction distances is 23.41 
mm, 31.34 mm, 40.8 mm, and 38.47 mm, respectively; and the average location error of 
SORT model is 43.27 mm,47.91 mm, 53.00 mm, and 58.58 mm, respectively. The results 
show that the location accuracy of the YOLO model is obviously high than the SORT 
model. The variations of the YOOL model with different z-direction distances is indicated 
that the crop height affects the location accuracy. 

  

  

Figure 9. Spatial location error results with YOLO model and SORT model with different z-direction 
distance. (a) 115 mm, (b) 120 mm, (c) 125 mm, and (d) 130 mm. 

3.3. Detection Results of Different Overlap Ratio 
The minimum distance between flowers and the canopy overlap ratio (s) is shown in 

Figure 10. The minimum distance between flowers for the detection was 18–27 cm, with 
an average value of 23 cm. The maximum overlap ratio of the flower canopy ranged from 
10.7% to 28.92%, with an average value of 17.42%. Therefore, for the poinsettias and cyc-
lamens, false detection will occur when the canopy overlap ratio is over 10%. For mature 
cyclamens and poinsettias, the minimum distance between two pots of flowers should be 
27 cm to prevent false detection. 

0

20

40

60

80

150 175 200 225 250 275 300

Er
ro
r(m

m
)

Distance(mm)

(a)YOLO SORT

0

20

40

60

80

150 175 200 225 250 275 300

Er
ro
r(m

m
)

Distance(mm)

(b)YOLO SORT

0

20

40

60

80

150 175 200 225 250 275 300

Er
ro
r(m

m
)

Distance(mm)

(c)YOLO SORT

0

20

40

60

80

150 175 200 225 250 275 300

Er
ro
r(m

m
)

Distance(mm)

(d)YOLO SORT

Figure 9. Spatial location error results with YOLO model and SORT model with different z-direction
distance. (a) 115 mm, (b) 120 mm, (c) 125 mm, and (d) 130 mm.

3.3. Detection Results of Different Overlap Ratio

The minimum distance between flowers and the canopy overlap ratio (s) is shown
in Figure 10. The minimum distance between flowers for the detection was 18–27 cm,
with an average value of 23 cm. The maximum overlap ratio of the flower canopy ranged
from 10.7% to 28.92%, with an average value of 17.42%. Therefore, for the poinsettias
and cyclamens, false detection will occur when the canopy overlap ratio is over 10%. For
mature cyclamens and poinsettias, the minimum distance between two pots of flowers
should be 27 cm to prevent false detection.
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3.4. Detection and Location Results with Different Lights

Table 2 shows the detection results with varying levels of radiation. In the greenhouse
test, the radiation was 102, 408, 211, and 27 W/m2 at 9:00, 13:00, 15:00, and 17:00 of 31 March
2021, respectively. Table 2 shows the detection results with varying levels of radiation.
When the radiation is 27 W/m2, two pots of flowers are not detected; when the radiation is
102 W/m2, one pot of flowers is not detected. When the radiation is higher than 200 W/m2,
all flowers can be detected. Figure 11 shows the location results with varying levels of
radiation. The average location errors are 25.8, 13.1, 11.7, and 4.6 mm, respectively. The
results show that detection and location accuracy gradually increase with radiation, and
there will be missed detection at low radiation. Therefore, the working time for flower
detection and location is from 9:00 to 16:00 with higher radiation.

Table 2. Detection numbers of the flowers with varying levels of radiation at a different time on a
sunny day in the greenhouse.

Time 9:00 13:00 15:00 17:00

Radiation (W/m2) 102 408 211 27
Detected numbers 14 15 15 13

1 
 

 

 

 

Figure 11. The location results in varying levels of radiation at a different time on a sunny day in
the greenhouse.

4. Discussion

In a floriculture greenhouse, the detection and location of the potted flowers are
affected by the natural environment and the density of the flower. Meanwhile, real-time
detection and location are important for machinery and automatic management. In this
study, we established a method for the real-time detection and location of potted flowers
based on the ZED 2 camera and the YOLO V4-Tiny deep learning algorithm.

At present, real-time detection and location methods based on machine vision are
mainly focused on the detection of crops [8,12,37], but real-time location [34,38]. In this
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study, the real-time detection and location of flowers were preliminarily established by
using a YOLO V4-TINY algorithm as a detection algorithm. With the training result, the
CNN model was transferred to the edge computing module Jetson TX2 to realize the flower
detection and location. Compared with other CNN models, YOLO V4-Tiny has a fast
detection speed and a high detection accuracy [25]. It also ensures the simplification of
the model, making it easy to transfer in real-time computing on a mobile terminal [39].
Secondly, to improve the real-time performance, the Jetson TX2 AI computing module
was adopted as the running environment [40]. Finally, to obtain real-time RGB and depth
information about the flowers, we used a ZED 2 camera to collect 3D point clouds of
the flowers in real-time, and the ZED 2 matched the RGB and 3D point clouds automati-
cally [32]. With these methods and devices, the average detection frame rate could reach
16 FPS, greater than 12 FPS, which is considered the highest frame rate in real-time camera
tracking [35]. Therefore, the accuracy and real-time performance of the system can match
the requirements for the detection and location for precise management.

In the process of flower detection and location, in addition to a real-time performance,
the accuracy of detection and location is also important. Positioning accuracy determines
the quality of the detection and location. Lee et al. (2017) proposed a method for identifying
and retrieving flower species in a natural environment based on multi-layer technology,
identifying different types of flowers through color, texture, and shape characteristics.
After testing, the image recognition rate was 91.26% [41]. Tian et al. (2019) detected apple
flowers with a Single Shot MultiBox Detector (SSD) algorithm, with an average detection
accuracy of 87.40% [42]. Yamamoto et al. (2014) proposed a method that combines RGB
digital cameras and machine learning to identify tomato fruits. The identification accuracy
rate was 80% after testing [43]. The above research shows that the accuracy of the current
algorithm for flower detection is mostly between 80% and 95%. The experimental results
of our study show an accuracy of 89.72%, and performance was improved in terms of
detection accuracy. With the detection results of the CNN model, by matching between the
RGB image and 3D point clouds for the spatial location, the average error of the location
was less than 40 mm in different crop heights. and the comparison results with the SORT
method show that the YOLO model has obviously higher accuracy. By using the CNN
detection model, the flower canopy width, the number of the flower of each plant can be
obtained, and with the depth image, the morphosis of the flower can be analyzed [44].
These results can be used to realize the phenotyping analysis of the flower for the detection
of the growth status, quality, and grading for the floriculture. And the robot or manipulator
could be developed with the detection, location, and grading results to realize the precision
and unmanned management [45].

To improve the detection and location accuracy, influencing factors of the natural
environment were determined. The results show that the accuracy of detection and location
was affected when the light was weak. Thus, the operation can be implemented under suf-
ficient light conditions or using supplement light [46]. Regarding the distance and canopy
overlap between the two flowers, when the overlap ratio exceeded 10%, the minimum
distance required for the two flowers to avoid false detection was 27 cm. Moreover, for
the poinsettia and cyclamen culture, the distance between each flower on the bench was
30 cm [47–49], so this method meets the requirements for potted flower detection.

5. Conclusions

In this study, a potted flower detection and location method based on the ZED 2 stereo
camera and a CNN deep learning model was proposed. The CNN model based on YOLO
V4-Tiny was used to detect the flowers. With the detection results, by using RGB images
and 3D point clouds collected by the ZED 2 stereo camera, the spatial location of the flowers
was implemented. With the Jason TX 2 computing module, real-time and accurate detection
and location were achieved, and the results show that the system has sufficient detection
and location accuracy, an acceptable real-time tracking frame rate, and an appropriate
distance and canopy overlap ratio for natural environments with potted flower cultures. It
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provides a detection and location method for machinery and automatic management for
floriculture.

Although the CNN model was realized for flower detection and location, we con-
sidered only two types of flowers with similar canopy styles. It is necessary to train this
model with other flowers, different growth backgrounds, lighting conditions to improve the
model performance. However, with the Jenson TX2 AI computing device, by transferring
the CNN model trained by the computer to achieve deep learning model construction,
the learning ability is limited. In the future, by combining cloud computing with edge
computing, a cloud-edge collaborative framework can achieve real-time and automatic
learning for flower detection and location [39,50].
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