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Abstract: NAC transcription factors (TFs) are plant-specific TFs that play essential roles in plant
development; however, the function of NAC TFs in loquat development remains unknown. The
natural triploid loquat (Eriobotrya japonica Lindl.), Longquan No.1. B355, has larger organs than its
corresponding diploid loquat (B2). Here, we cloned an NAC-like TF (EjNACL47 (NAC-like 47)) from
the cDNA of triploid loquat B355 flowers. EjNACL47 has a conserved domain of NAC TFs and is
homologous to AtNAC47. Transient expression in tobacco leaves revealed that EjNACL47 localized to
the nucleus, and yeast-two-hybrid screening confirmed that the C-terminus displayed transcriptional
activity. Interestingly, real-time qRT-PCR indicated that the expression levels of EjNACL47 in leaves
and flower organs in triploid loquat (B355) were higher than those in diploid loquat (B2), implying
that EjNACL47 might be associated with the larger organ size in B355. Moreover, Arabidopsis lines
ectopically expressing EjNACL47 presented obviously larger leaves, flowers, and siliques than the
wild-type variant, suggesting that EjNACL47 plays a positive role in Arabidopsis organ enlargement.
These results offer insight into the molecular mechanism of NAC TFs involved in regulating organ
size in loquat.
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1. Introduction

The development of plant organs to a specific size is the result of the long-term
evolution of plant adaption to the environment. At the cytologic level, the growth of plant
organs can be divided into two coordinated processes: cell proliferation and expansion [1].
At the molecular level, plant organ size is a complex trait controlled by multiple genes,
and its regulation can involve a complex gene network of multiple components and
pathways [2,3]. For annual horticultural crops, fruit weight (FW)2.2 and FW3.2 regulate cell
division during tomato fruit-size evolution [4,5]. FW11.3 and physalis organ size 1 modulate
fruit size by regulating cell expansion [6,7]. Additionally, a recent study demonstrated that
CsFUL1 modulates cucumber fruit elongation by regulating auxin transport [8]. Although
molecular controls associated with the size of annual horticultural crop organs, such as
tomato and cucumber, are well known [4–8], knowledge regarding perennial fruit trees is
unclear.

Loquat (Eriobotrya japonica Lindl.) of the apple subfamily genus belonging to the
Rosaceae family is a subtropical evergreen fruit tree native to southern China. Loquat fruit
ripens in late spring or early summer [9,10], making it a popular fruit worldwide. However,
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because the seeds of loquat fruit are too large and the pulps small, and given the suscepti-
bility to various biotic or abiotic stresses, breeding loquat with excellent agronomic traits is
important for loquat breeders. Triploid plants have excellent agronomic traits, including
larger organs and stronger resistance to stress [11]. Larger organs, such as leaves, flowers,
and fruits, make triploid plants important for breeding. Although fruit thinning [12] and
application of plant-growth regulators [13] are widely used to increase fruit size in loquat,
the mechanisms of organ-size regulation have not been fully elucidated. Su et al. [14] found
that loquat proliferated only a small proportion of cell layers after fruit set and suggested
that regulation of cell size would be a more promising aim for further fruit size-related
breeding. Further research revealed that cell size is more important to fruit size than cell
number in loquat, and that expression of the EjBZR1 (BRASSINAZOLE-RESISTANT 1) gene
is negatively correlated with cell and fruit size [15]. However, the molecular mechanisms
underlying organ-size regulation in loquat remain poorly understood.

The NAC family of transcription factors (TFs) is one of the largest families of unique
plant TFs. Plant NAC is derived from the acronym NAM (no apical meristem) cloned
from Petunia hybrida in 1996 [16] and ATAF1/2 and CUC2 (cup-shaped cotyledon) cloned
from Arabidopsis thaliana [17]. Numerous studies show that NAC plays important roles
in plant growth and development, response to stress, and other processes [16–23]. Rose
(Rosa hybrida) RhNAC100 regulates the expression of genes related to cell elongation [22].
SlNAP2 plays an important role in regulating leaf senescence and fruit yield in tomatoes (S.
lycopersicum) [23]. Overexpression of AdNAC72 in kiwifruit not only enhances AdMsrB1
expression, but also increases free methionine (Met) and 1-aminocyclopropane-1-carboxylic
acid content and ethylene-production rates [18]. Additionally, grapevine (Vitis vinifera)
VviNAC33 facilitates the transition from a vegetative to mature phase by inducing leaf de-
greening and growth cessation [19], and FaRIF is a key regulator of strawberry fruit ripening
from early developmental stages by controlling abscisic acid biosynthesis and signaling, cell
wall degradation and modification, the phenylpropanoid pathway, volatile production, and
the balance of aerobic/anaerobic metabolism [20]. Moreover, Picea wilsonii PwNAC11 plays
a dominant role in plants that respond positively to early drought stress [21]. However,
relatively few studies have been conducted on NAC in relation to loquat. Current studies
on loquat NAC have mainly focused on loquat fruit postharvest lignification aspects [24,25].
EjNAC1 could transactivate the gene promoters in loquat and Arabidopsis for genes in
the lignin biosynthesis pathway. Transient over-expression of EjNAC1 in tobacco leaves
resulted in the accumulation of lignin and induction of the expression of endogenous
lignin biosynthesis genes. In conclusion, EjNAC1 was associated with fruit lignification
by activating genes involved in lignin biosynthesis. EjNAC3 trans-activated the lignin
biosynthesis-related EjCAD-like promoter. Further analysis indicated that EjNAC3 could
physically bind to the promoter of the EjCAD-like gene. Thus, EjNAC3 is a direct regulator
of loquat chilling-induced lignification, via regulations of EjCAD-like. However, there are
no studies on NAC-related molecular mechanisms associated with organ-size regulation in
loquat.

Rauf et al. [26] first characterized SPEEDY HYPONASTIC GROWTH (SHYG; AtNAC47),
which is induced by waterlogging (i.e., root submergence), in Arabidopsis. Overexpres-
sion of SHYG in transgenic Arabidopsis enhances waterlogging-triggered hyponastic leaf
movement and cell expansion in abaxial cells of the basal petiole region, whereas both
responses are largely diminished in shyg-knockout mutants. Additionally, more than a
dozen genes related to cell expansion responded to SHYG expression [26]. Because cell
expansion might play a key role in organ-size regulation in loquat and the role of NAC47 in
cell expansion has not been further reported, in this study, we isolated an NAC gene from
the natural triploid of Longquan No.1 loquat (E. japonica Lindl.) (B355), which encodes a
protein (EjNACL47) highly homologous to Arabidopsis AtNAC47. The results also indicated
that EjNACL47 plays a role in cell expansion and organ-size regulation.
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2. Materials and Methods
2.1. Plant Materials

The loquat materials were the natural triploid of Longquan No.1 loquat (Eriobotrya
japonica Lindl.) B355 and diploid loquat of Longquan No.1 loquat B2, which were preserved
in the polyploid loquat resource garden of the Key Laboratory of Fruit Science, Southwest
University. The wild-type Arabidopsis background used for transformation was Columbia
and preserved in our laboratory. The culture condition was 22 ◦C with a 16 h/8 h light/dark
cycle. Nicotiana benthamiana was the tobacco variety used for transient expression and
was also preserved in our laboratory. The culture condition was 25 ◦C with a 16 h/8 h
light/dark cycle.

2.2. EjNACL47 Cloning

Homologous genes of AtNAC47 were identified from the B355 loquat flower bud
transcriptome database (unpublished). Primers were designed according to the selected se-
quences using SnapGene software (https://www.snapgene.com/, accessed on 10 March 2021).
The cDNA B355 loquat flower bud was used as the template to amplify the full-length
fragment of the target gene via PrimeSTAR Max premix (2×) (Takara, Shiga, Japan). The
reaction conditions were as follows: 95 ◦C for 5 min, followed by 35 cycles of 95 ◦C for 30 s,
56 ◦C for 30 s, 72 ◦C for 10 s, and 72 ◦C for 10 min. The primers used for amplification are
listed in Supplementary Table S1.

2.3. Bioinformatics Analysis

EditSeq (www.dnastar.com, accessed on 30 March 2021.) was used to determine the
open reading frame and translated amino acid sequences in order to predict the protein
molecular weight and isoelectric point. Chromosome locations of EjNACL47 were ana-
lyzed using BioEdit software to align the sequence against the loquat genome sequence
and obtain the chromosome position of EjNACL47 [27]. We then used Basic Local Align-
ment Search Tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 30 March 2021)
to identify homologous sequences. Homology alignment of EjNACL47 with MdNAC47-
like(XP_028946255.1), PmNAC25(XP_008240449.1), PaNAC29-like(XP_021830120.1),
PpNAC29(XP_020424848.1), PdNAC29(XP_034226057.1), DzNAC47-like(XP_022742166.1),
AtNAC47(NP_187057.2), AtNAC2(NP_188170.1), AtNAC25(NP_564771.1), NAM/CUC2-
like(AAB71483.1), and AtRD26(OAO97067.1) was performed using DNAMAN software
(https://www.lynnon.com/, accessed on 30 March 2021). Evolutionary analyses were
conducted using MEGA7 [28], and evolutionary history was inferred using the neighbor-
joining method [29]. The percentage of replicate trees in which the associated taxa clustered
together in the bootstrap test (1000 replicates) is shown next to the branches [30]. Evolu-
tionary distances were computed using the number of differences method [31] and are
given in units of the number of amino acid differences per sequence.

2.4. Real-Time qRT-PCR Analysis

Total RNA was isolated from B2 and B355 loquat material using the plant total RNA
extraction kit (Tiangen, Beijing, China) according to manufacturer’s instructions. The first
strand of cDNA was synthesized from 1 µg of total RNA using SuperScript reverse tran-
scriptase (Takara). Gene-expression levels were measured by qRT-PCR using a Novostar-
SYBR supermix kit (NovoProtein, Shanghai, China) on a Bio-Rad CFX96TM machine
(Bio-Rad, Hercules, CA, USA), with EjActin used as an internal reference. The reaction
conditions were as follows: 95 ◦C for 3 min, followed by 40 cycles of 95 ◦C for 15 s, 56 ◦C
for 30 s, and 72 ◦C for 30 s. The program temperature of the melting curve ranged from
65 to 95 ◦C. Relative expression levels were calculated using the 2−∆∆Ct method [32], and
each reaction was performed in triplicate. The primers used are listed in Supplementary
Table S2.

https://www.snapgene.com/
www.dnastar.com
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.lynnon.com/
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2.5. Subcellular Localization

To verify its expression in the nucleus, the full-length coding sequence of EjNACL47
(without the terminating codon) was ligated into the binary vector CaMV35S::GFP (modi-
fied from pCAMBIA2300) (Supplementary Table S1). The resultant CaMV35S::EjNACL47-
eGFP plasmid was introduced into Agrobacterium tumefaciens strain GV3101 and infiltrated
into tobacco (Nicotiana benthamiana) leaves for transient assays.

Strain GV3101 was activated by YRK (YEB + 50 mg/mL rifampicin + 50 mg/mL
kanamycin) on a plate and cultured at 28 ◦C for 2 days. Single colonies were selected and
placed in medium containing 2 mL YRK for overnight culture at 25 ◦C and shaking at
250 rpm, followed by transfer of 30 µL of the bacterial solution into 25 mL YRK medium
(including 10 mM MES and 200 mM acetosyringone) for further culture until reaching
an optical density at 600 nm (OD600) of ~1.2 to ~1.5. After centrifugation at 5000 rpm for
10 min, the supernatant was discarded, and the bacteria were resuspended in an equal
volume of 10 mM MgCl2. After adding 200 mM acetosyringone, the bacteria were incubated
in the dark for 3 h. Young leaves of N. benthamiana cultured to ~4 weeks of age (4–5 true
leaves) and in a good growth state were selected for injection. Before injection, a wound
was gently cut in the lower epidermis of the leaf with a needle, and then the bacterial
fluid was transferred with a 1 mL syringe and slowly injected into the leaf at the wound.
After culturing in the dark for 12 h, the cells were moved to an incubator for normal
growth. After 48 h of infiltration, the infiltrated N. benthamiana leaves were observed using
a confocal laser scanning microscope (SP8; Leica, Wetzlar, Germany).

2.6. Transcriptional Activity Assay

The transcription activation assays were performed using the Yeastmaker Yeast Trans-
formation System 2 (Clontech, Mountain View, CA, USA). Different regions of EjNACL47
were cloned into the pGBKT7 vector, and these plasmids and the control plasmid pGBKT7
were introduced into the yeast strain Y2HGold. Transformants were grown on SD medium
lacking tryptophan (SD-Trp) and SD medium lacking Trp, histidine (His), and adenine
(Ade) (TDO). The primers used for the assays are listed in Supplementary Table S1.

2.7. Genetic Transformation in Arabidopsis

Plant-expression vectors containing the target genes were transferred into Arabidopsis
by flower dip-mediated Agrobacterium GV3101 [33]. The constructed plant-expression
vector plGN-35S-EjNACL47-NOS-BE (Supplementary Table S1) was used to transform
the Agrobacterium GV3101 strain by the electric shock method. After culturing in YRK
medium at 28 ◦C for 2 days, a single bacterial colony was selected and activated in a
test tube. Positive bacterial solution (1 mL) was then drawn from the micropipettor and
transferred into 250 mL YRK medium for incubation at 28 ◦C and 250 rpm until reaching an
OD600 of ~1.2 to ~1.6. After centrifugation at 5000 rpm for 10 min at 25 ◦C, the supernatant
was discarded, and the bacteria were resuspended in the same volume of osmotic medium
(15% sucrose, 0.05% MES, and 0.02% silweet) to form the immersion solution. The siliques
and open flowers of Arabidopsis were cut off, and the inflorescences were immersed in the
immersion solution and removed ~15 s later. Finally, black plastic bags were used to cover
the aboveground parts of Arabidopsis and placed flat in the dark for ~12 h. The plastic bags
were then removed and the plants placed in an incubator for further growth. After 1 week,
the plants grew well enough to be disseminated again and then cultured routinely until
the seeds were received.

2.8. β-Glucuronidase (GUS) Histochemical Identification and Cell-Area Statistics

GUS activity was detected in transgenic plants using 5-bromo-4-chloro-3-indolyl-β-
D-glucuronic acid as a substrate [34]. A small amount of the sample to be detected was
transferred into an appropriate amount of GUS dye and reacted at 37 ◦C for 1 h to 2 h.
Decolorization was performed using a 75% (v/v) alcohol wash three to five times, with the
alcohol replaced every 30 min. Photographs were taken using a stereomicroscope (SZX9;
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Olympus, Tokyo, Japan), and the lower epidermal cells of Arabidopsis leaves were observed
and photographed using an upright fluorescence microscope (BX41; Olympus). Cell area
was measured using ImageJ software (National Institutes of Health, Bethesda, MD, USA).

3. Results
3.1. EjNACL47 Expression Is Positively Correlated with Organ Size

Triploid loquat B355 is a natural triploid loquat obtained by screening naturally
pollinated seeds of diploid loquat B2. The leaves of B355 loquat were larger than those
of the corresponding B2 loquat (Figure 1A). For research convenience, we divided the
period from prebloom to early bloom into five stages (a–e). During the process of B355
loquat bud growth, the buds of each stage were larger than those of B2 loquat at the same
developmental stage (Figure 1B). Therefore, it is of great significance to clarify the molecular
mechanism of organ-size regulation in triploid loquat by clarifying the expression and
regulatory mechanisms of related genes in various developmental stages of each organ.

Horticulturae 2021, 7, 323 5 of 13 
 

 

Decolorization was performed using a 75% (v/v) alcohol wash three to five times, with the 
alcohol replaced every 30 min. Photographs were taken using a stereomicroscope (SZX9; 
Olympus, Tokyo, Japan), and the lower epidermal cells of Arabidopsis leaves were 
observed and photographed using an upright fluorescence microscope (BX41; Olympus). 
Cell area was measured using ImageJ software (National Institutes of Health, Bethesda, 
MD, USA). 

3. Results 
3.1. EjNACL47 Expression Is Positively Correlated with Organ Size 

Triploid loquat B355 is a natural triploid loquat obtained by screening naturally 
pollinated seeds of diploid loquat B2. The leaves of B355 loquat were larger than those of 
the corresponding B2 loquat (Figure 1A). For research convenience, we divided the period 
from prebloom to early bloom into five stages (a–e). During the process of B355 loquat 
bud growth, the buds of each stage were larger than those of B2 loquat at the same 
developmental stage (Figure 1B). Therefore, it is of great significance to clarify the 
molecular mechanism of organ-size regulation in triploid loquat by clarifying the 
expression and regulatory mechanisms of related genes in various developmental stages 
of each organ. 

 
Figure 1. Comparison of leaf and flower bud size between B2 and B355 loquat. (A) Leaf size 
difference between B2 and B355 loquat. Scale, 5 cm. The leaves of annual summer shoots and spring 
shoots are shown on left and right, respectively. (B) Differences in the flower buds of B2 and B355 
loquat. a-e represent development stages. Scale, 5 mm → represents the development process. 

Because AtNAC47 is related to cell expansion [26], we identified an AtNAC47 
homologous gene (DN242232_c1_g1) in loquat by sequence alignment and named it 
EjNACL47. Given that the expression pattern of a gene is usually related to its function, 
we analyzed expression levels of EjNACL47 in the leaves and flower buds of B2 and B355 
at various developmental stages. The results showed that EjNACL47 expression increased 
gradually with the development of flower buds in either B2 or B355, with its expression 
level in the d- and e-flower buds and young leaves of B355 higher than that in B2 (Figure 
2). These results suggested that EjNACL47 might be involved in regulating organ size. 

 

Figure 1. Comparison of leaf and flower bud size between B2 and B355 loquat. (A) Leaf size difference
between B2 and B355 loquat. Scale, 5 cm. The leaves of annual summer shoots and spring shoots are
shown on left and right, respectively. (B) Differences in the flower buds of B2 and B355 loquat. a–e
represent development stages. Scale, 5 mm→ represents the development process.

Because AtNAC47 is related to cell expansion [26], we identified an AtNAC47 homolo-
gous gene (DN242232_c1_g1) in loquat by sequence alignment and named it EjNACL47.
Given that the expression pattern of a gene is usually related to its function, we analyzed
expression levels of EjNACL47 in the leaves and flower buds of B2 and B355 at various
developmental stages. The results showed that EjNACL47 expression increased gradually
with the development of flower buds in either B2 or B355, with its expression level in the
d- and e-flower buds and young leaves of B355 higher than that in B2 (Figure 2). These
results suggested that EjNACL47 might be involved in regulating organ size.
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3.2. EjNACL47 Isolation and Sequence Analysis

To explore the molecular mechanism regulating organ size in B2 and B355, we cloned
EjNACL47 (Supplementary Table S1). The resulting cDNA sequence was 1201 bp in length
and encoded a protein of 377 amino acid residues (Supplementary Figure S1), with a
predicted molecular weight of 42.0 kDa and an isoelectric point of 8.612 (Supplementary
Figure S2A). The chromosome locations of EjNACL47 were identified using BioEdit soft-
ware to align the sequence against the genome sequences of loquat. The results show that
EjNACL47 were located on chromosome 17 (Supplementary Figure S3).

EjNACL47 contains an NAC domain with a sequence common to the NAC family [35]
and shares high similarity at the amino acid level with AtNAC47 (Supplementary Figure S4).
Compared with other NAC proteins, EjNACL47 harbored a highly conserved N-terminus,
whereas the C-terminus differed from those of other NAC proteins (Supplementary Figure
S2A). Phylogenetic analysis showed that EjNACL47 was highly homologous to MdNAC47-
like protein and demonstrated varying degrees of homology with PmNAC25, PaNAC29-
like, PpNAC29, PdNAC29, DzNAC47-like, AtNAC47, AtNAC2, AtNAC25, NAM/CUC2-
like, and AtRD26 (Supplementary Figure S2B).

3.3. Subcellular Localization of EjNACL47

To examine the subcellular localization of EjNACL47, we constructed the
CaMV35S::EjNACL47-eGFP vector (Supplementary Table S1) and introduced it into a
transient expression system in N. benthamiana leaves using the agrobacterium-mediated
method (Supplementary Figure S5). Confocal laser scanning microscopy showed that the
GFP signal was exclusively present in the nucleus and overlapped with the fluorescent
signal of the nuclear dye 4′,6-diamidino-2-phenylindole (DAPI) (Figure 3A). These results
indicated that EjNACL47 localizes to the nucleus.
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3.4. EjNACL47 Transcriptional Activity

EjNACL47 alignment with other plant NAC proteins showed that EjNACL47 harbored
a highly conserved N-terminal NAC domain for DNA binding, although the location of the
activation domains remains unknown. We then investigated EjNACL47 transcriptional ac-
tivity by cloning different regions of the EjNACL47 CDS into the pGBKT7 (BD) vector (Sup-
plementary Table S1). The results showed that yeast cells carrying the BD-transcriptional
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activation region (TAR) grew well in SD/-Trp and TDO medium (Figure 3B), indicating
that the EjNACL47 TAR exhibited transcriptional activation activity. Conversely, yeast
cells carrying the BD-full length or BD-NAC domain only grew on SD/-Trp medium
(Figure 3B). These results suggested that the activation domain of EjNACL47 is located at
the C-terminus.

3.5. EjNACL47 Promotes Organ Enlargement in Arabidopsis

To characterize the function of EjNACL47, transgenic Arabidopsis plants were gener-
ated using the flower-dip strategy (Supplementary Figure S6), in which EjNACL47 was
expressed ectopically (Figure 4). Positive plants were identified by GUS staining [34]
(Figure 4A) and DNA amplification (Supplementary Table S1 and Figure 4B), and Ej-
NACL47 expression was detected by qRT-PCR (Figure 4C). Three transgenic lines (OE-1, -2,
and -5) were selected for further analysis.
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EjNACL47 plasmide. (C) Relative expression level of EjNACL47 in the transgenic plants. Error bars
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To analyze the effect of ectopic expression of EjNACL47 on the growth and develop-
ment of A. thaliana, we observed the phenotypes of the T3 generation in the three transgenic
lines (OE-1/2/5). The results showed that the petiole of transgenic Arabidopsis became
longer, and the whole leaf disc became wider than that of the wild type (Figure 5A,C).
Additionally, the flower organs of transgenic Arabidopsis were significantly increased
(Figure 5B), and the silique length of transgenic plants was also longer than that of Col-0
plants (Figure 5D,G). Moreover, observation of root growth by vertical culture revealed
that transgenic Arabidopsis had longer primary roots than the wild type (Figure 5E,F).
The results indicated that ectopic expression of EjNACL47 promoted the development of
Arabidopsis, and that the organs of transgenic plants were significantly larger than those of
the wild type.
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changes in transgenic Arabidopsis at 3 weeks of age. Scale bars, 5 cm and 3 cm, respectively.
(B) Phenotypic changes in transgenic Arabidopsis flowers. Scale bar, 1 mm. (D,E) Comparison
of fruit silique length and root length between wild-type and transgenic Arabidopsis, respectively.
Scale bar, 1 cm. (F,G) Statistics on root length and silique length of wild-type and transgenic Arabidop-
sis, respectively. Error bars represent the standard deviation from five root-length measurements and
10 silique-length measurements, respectively. ** p < 0.01, *** p < 0.001.

3.6. EjNACL47 Promotes Cell Expansion in Arabidopsis by Enhancing the Expression of Expansin
and Xyloglucan Endotransgluco Sylase/Hydrolase (XTH) Genes

To further analyze the specific mechanism of organ enlargement in Arabidopsis, we
evaluated the lower epidermal cells of transgenic Arabidopsis leaves, finding them generally
larger than those of the wild type (Figure 6A and Supplementary Figure S7). To determine
its significance, we measured the area of the epidermal cells, revealing that the area
of transgenic Arabidopsis lower epidermal cells was larger than that of the wild type
(Figure 6B). Furthermore, RT-PCR analysis showed that the expression of six expansin and
five XTH genes encoding cell-wall-loosening proteins was enhanced in cells overexpressing
EjNACL47 (Figure 6C).
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Figure 6. Ectopic expression of EjNACL47 enlarges cell area in Arabidopsis. (A) Changes in lower
epidermal cells of transgenic Arabidopsis. Scale bar, 50 µm. (B) Statistical analysis of wild-type
and transgenic Arabidopsis cell area. Error bars represent the standard deviation from 25 cell-area
measurements. * p < 0.05, ** p < 0.01. (C) Differentially expressed expansin and XTH genes in
transgenic Arabidopsis. FPKM, fragments per kilobase per million.

4. Discussion

The 150 amino acids at the N-terminus of NAC TFs are highly conserved and comprise
the binding domain, whereas the C-terminal transcriptional regulatory domain of NAC
TFs is diverse. The N-terminus is divided into five subdomains (A–E), of which the
A subdomain is related to the formation of a functional dimer structure. The B and E
subdomains are not highly conserved and are related to the functional diversity of NAC
proteins, whereas the C and D subdomains contain nuclear-localization signals and are
highly conserved in plants and involved in DNA binding [36,37]. The D subdomain of
some NAC proteins contains a highly hydrophobic negative-regulatory region that inhibits
transcriptional activation activity [38]. The transcriptional regulatory region is located
in the highly variable C-terminus and is capable of either activating [39,40] or inhibiting
gene transcription [41–43]. In the present study, we identified EjNACL47 as an NAC TF
with typical structural characteristics. Specifically, EjNACL47 localized to the nucleus and
exerted transcriptional activation activity from its C-terminus. Notably, transcriptional
activity was not present in the full-length protein, indicating that the N-terminal domain
might play a regulatory role in transcriptional activation.

NAC expression is induced by many environmental factors and plant-developmental
stages, with the degree of expression varying in different plants, stages, and organs. In
Arabidopsis, NAC1 expression differs between roots, stems, and leaves, with the highest ex-
pression observed in roots and relatively low expression in stems and leaves [44]. CarNAC1
is expressed in various organs of chickpeas, and its expression increases with leaf age
and changes during seed development and germination, suggesting a possible role in
plant development [45]. The growth of plant organs involves two continuous processes:
cell proliferation and expansion. After formation of the organ primordium, cells begin
to proliferate, and as the organ grows, the proliferation of cells located at the apex of the
primordium stops, and the cells begin to expand [46]. In the present study, the qRT-PCR
results showed that EjNACL47 expression increased gradually with the development of
flower buds, with expression levels in B355 loquat leaves and d and e stages flower buds
higher than those observed in B2. These findings suggest that EjNACL47 might play a role
in organ-size regulation, most likely through its involvement in cell expansion.

Previous studies report that plants can compensate for impeded plant-cell prolifer-
ation by increasing cell size in order to reach the final organ size [47]. The increase in
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cell size is the result of increased cytoplasm content and cell-wall loosening, with the
expansion of cells inevitably accompanied by an increase in cytoplasmic content [48,49].
The cell wall is wrapped around the cell membrane, which plays a protective role [50],
and the increase in cell size necessitates cell-wall loosening to accommodate the increased
cytoplasm content. The regulatory factors involved in plant cell-wall loosening are mainly
expansin, XTH, and glycoside hydrolase. Expansin breaks the hydrogen bonds between
polysaccharides and causes a rearrangement of microfilaments in the cell wall, leading
to cell-wall loosening [51]. XTH catalyzes the hydrolysis and reconnection of xyloglu-
can and regulates cell-wall loosening and remodeling through a mechanism known as
“molecular grafting” [52,53]. A previous study showed that Rose (Rosa hybrida) RhNAC100
overexpression in Arabidopsis substantially reduced petal size by repressing petal-cell ex-
pansion, whereas RhNAC100 silencing in rose petals significantly increased petal size and
promoted cell expansion in the petal abaxial subepidermis. Expression analysis showed
that 22 of the 29 cell-expansion-related genes evaluated exhibited changes in expression in
RhNAC100-silenced rose petals [22]. In the present study, Rauf et al. observed enhanced
expression of several expansin and XTH genes encoding cell-wall-loosening proteins in
SHYG (AtNAC47) overexpressors, but decreased expression in shyg mutants, indicating
that AtNAC47 positively regulates the expression of expansin and XTH genes and cell ex-
pansion [26]. Consistently, compared with the wild-type variant, the cell size of Arabidopsis
overexpressing EjNACL47 was significantly larger, and the expression of six expansin and
five XTH genes was enhanced in EjNACL47 overexpressors. We speculated that EjNACL47
might also promote cell expansion in Arabidopsis through direct or indirect regulation
of expansin and XTH genes, ultimately leading to organ-size enlargement in Arabidopsis.
Furthermore, we found that EjNACL47 is highly expressed in B355 flower buds and leaves,
indicating that EjNACL47 expression level might play a regulatory role in the organ size
of loquat. Recent studies have shown that the expression of MdNAC047 is enhanced un-
der salt stress, and MdNAC047 directly activates MdERF3 (ethylene response factors gene)
expression by binding to the promoter of MdERF3 to promote ethylene release and enhance
tolerance to salt stress [54]. Arabidopsis NAC047/SHYG directly or indirectly stimulates
local cell expansion through direct activation of ACC OXIDASE5(ACO5), which encodes a
key enzyme of ethylene biosynthesis, constituting an intrinsic ET-SHYG-ACO5 activator
loop for rapid petiole cell expansion upon waterlogging [26]. Ethylene, as an important
hormone for development and stress response, is involved in regulating two important
molecular processes during leaf cell expansion, namely, rapid plasmosome acidification
to reduce cell wall hardness and enhance cell wall elongation, and upregulation of EX-
PANSIN genes. In conclusion, we believe that NAC047 may be involved in different aspects
of plant development by regulating different target genes. Whether there are ethylene
responsive genes involved in EjNAC47-mediated development and stress response needs
to be further verified. Taken together, this discovery offers a new understanding of the
organ-enlargement problem in triploid loquat and highlights the necessity for further
investigation of EjNACL47-related mechanisms in organ-size regulation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/horticulturae7090323/s1, Figure S1: Cloning of EjNACL47; Figure S2: Sequence analysis of
EjNACL47; Figure S3: The chromosome locations of EjNACL47; Figure S4: Phylogenetic analysis
of NAC members from loquat and Arabidopsis; Figure S5: CaMV35S::EjNACL47-eGFP vector con-
struction; Figure S6: PLGN-35S-EjNACL47-NOS-BE vector construction; Figure S7: Lower epidermal
cell changes of transgenic Arabidopsis; Table S1: Gene-specific primers used in isolation of EjNACL47
genes and vector construction; Table S2: Gene-specific primers used in RT-PCR analysis.
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