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Abstract: High temperatures due to global warming can cause harmful effects on the productivity of
lettuce, a cool-season crop. To identify lettuce heat shock protein (HSP) genes that could be involved in
early responses to heat stress in plants, we compared RNA transcriptomes between lettuce plants
with and without heat treatment of 37 ◦C for 1 h. Using transcriptome sequencing analyses, a total
of 7986 differentially expressed genes (DEGs) were identified including the top five, LsHSP70A,
LsHSP70B, LsHSP17.3A, LsHSP17.9A and LsHSP17.9B, which were the most highly differentially
expressed genes. In order to investigate the temporal expression patterns of 24 lettuce HSP genes with
a fold-change greater than 100 under heat stress, the expression levels of the genes were measured by
qRT-PCR at 0, 1, 4, 8, 14, and 24 h time points after heat treatment. The 24 LsHSP genes were classified
into three groups based on the phylogenetic analysis and/or major domains available in each protein,
and we provided a potential link between the phylogenetic relationships and expression patterns of
the LsHSP genes. Our results showed putative early heat-responsive lettuce HSP genes that could be
possible candidates as breeding guides for the development of heat-tolerant lettuce cultivars.

Keywords: heat shock proteins; heat stress; lettuce; qRT-PCR; transcriptome sequencing

1. Introduction

Lettuce (Lactuca sativa L.) is one of the most economically important leafy vegetables in
the world and its production is currently increasing due to the growing interest in healthy
food [1]. Lettuce is a cool-season crop, with an optimal growing temperature range of 17 to
28 ◦C, and floral initiation generally occurs between 21 and 27 ◦C [2]. Heat stress refers to a
temperature environment exceeding the optimal limit for a certain species. When exposed
to heat stress, physiological disorders such as tip burn, premature bolting, puffy heads and
rib discoloration are commonly observed in lettuce [3].

Climate change is expected to increase the frequency and severity of extremes in
temperature, resulting in significant damage to vegetable crop production [4]. According to
the global climate report issued by the National Oceanic and Atmospheric Administration,
USA. (NOAA), 2020 was ranked as the second warmest year in 141 years of recording, with
the global land and ocean surface temperature increasing by an average of +0.98 ◦C [5]. In
addition to the continuous increase in average temperature due to the greenhouse effect,
short periods of abnormally high temperatures, resulting in a significant reduction in crop
growth and yield are also a result of climate change [6]. Peng et al. (2004) found a decline
of approximately 10% in yield for each 1 ◦C increase during the dry season [7]. Even a
few hours of temperatures that are higher than optimal can induce dormancy in lettuce
seeds [8]. Spinach and lettuce may produce stalks (bolt) and cucumber tends to produce a
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higher ratio of male to female flowers in response to high temperature, which can reduce
yield and commercial value [9].

Unlike animals, plants are unable to change their position when directly exposed to
persistently changing environmental stresses [10]. Thus, plants cannot avoid the exposure
to heat stress, which poses a serious threat to plants [11]; however, plants have a sophis-
ticated adaptive system at the cellular and molecular levels [12,13]. Heat shock proteins
(HSPs), also called stress proteins, play a central role in the protection of cells exposed
to different types of stress in plant tissue [14]. In plants, these proteins are grouped into
five principal classes based on their approximate molecular weight: (1) Hsp100 family,
(2) Hsp90 family, (3) Hsp70 family, (4) Hsp60 family, and (5) small heat shock proteins
(sHsps) family [15]. Under heat stress, HSPs, as molecular chaperones, bind to heat-
denatured proteins and mediate refolding, assembly for repairing denatured proteins or
degradation of misfolded proteins to maintain homeostasis of proteins [16–18].

It is important to develop heat tolerant lettuce varieties because there is a very low
consumer acceptance threshold for lettuce with symptoms typically associated with expo-
sure to heat stress. So far, studies on lettuce transcriptomics under cold or diverse light
conditions are limited [19,20] since the genetically validated reference genome of lettuce
was first reported in 2017 [21]. There is a need to identify the genes that respond to heat
stress and investigate their expression patterns during the stress. In this study, we focused
on identifying putative early heat stress-responsive HSP genes in lettuce by analyzing
transcriptomes and their temporal expression patterns during heat stress and the phyloge-
netic relationships among them. This information will be helpful in developing the next
generation of lettuce cultivars with enhanced heat tolerance through molecular breeding.

2. Materials and Methods
2.1. Plant Material and Growth Conditions

Korean blue leaf lettuce (Lactuca sativa cv. LB Sang 169) seeds obtained from the
National Institute of Horticultural and Herbal Science (NIHHS), Korea were sown in
50 cell trays and grown in the NIHHS greenhouse, which was maintained at an optimal
temperature of 22/20 ◦C (day/night). At 18 days after sowing, seedlings were transferred
into a temperature-controlled LED growth chamber (VS-91G09M-HL. VISION Co., Daejeon,
Korea). Seedlings were grown under white light at an intensity of 120 umol m−2 s−1 and a
16/8 h day/night photoperiod, with the temperature maintained at 20/18 ◦C (day/night),
and 60–65% humidity. The 25-day-old plants were exposed to a heat stress treatment of
37/35 ◦C (day/night), without any change in the light intensity. At different time points
(0 h, 1 h, 4 h, 8 h, 14 h and 24 h after heat treatment), the aerial part of the lettuce was
sampled, frozen in liquid nitrogen and stored at −80 ◦C. After 24 h of heat treatment, plants
were transferred back to the optimal temperature for observation of phenotypic alteration
(Supplementary Materials, Figure S1).

2.2. Morphometric Analysis

The maximal length (maximal length from the apical to the basal parts of the leaf) and
width of the 4th leaf (measured at the midpoint) of each plant were measured at 3, 6, 10 and
13 days after heat treatment. At 13 days after heat stress treatment, the fresh weight of each
plant was measured and the dry weight was determined by oven-drying it at 70 ◦C for 72 h.

2.3. RNA Preparation and Transcriptome Sequencing Analysis

Total RNA was extracted from the frozen leaf samples using a Plant RNeasy Extraction
Kit (Qiagen, Hilden, Germany). The RNA samples were treated with DNase I (Qiagen,
Germany), and cDNA was synthesized using the iScript cDNA synthesis kit (Bio-Rad,
Hercules CA, USA). The integrity of the RNA was examined by agarose gel electrophoresis.
RNA-Seq libraries were generated with a TruSeq Stranded Total RNA LT Sample Prep Kit
(Illumina, San Diego CA, USA) and sequenced by a paired-end-sequencing method using
Illumina’s HiSEquation 2000 (Macrogen, Seoul, Korea).
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2.4. Data Analysis Quality Control

Quality control (QC) of raw paired-end reads was done by FastQC v0.11.7. The Q20%
and Q30% are the proportion of nucleotides with a quality score > 20 and 30, respectively.
In order to reduce biases in the analysis, artifacts such as low-quality reads, adaptor
sequence, contaminant DNA or polymerase chain reaction (PCR) duplicates were trimmed
by using Trimmomatic (http://www.usadellab.org/cms/?page=trimmomatic, accessed on
29 January 2021). Trimmed reads were mapped to reference genome (Lsat_Salinas_v7) with
HISAT2 version 2.1.0, Bowtie2 2.3.4.1 (https://ccb.jhu.edu/software/hisat2/index.shtml,
accessed on 29 January 2021). After mapping reads, StringTie version 2.1.3b (https://
ccb.jhu.edu/software/stringtie/, accessed on 29 January 2021) was used for transcript
assembly and the expression profiles of the assembled transcript for each sample were
calculated. The FPKM (fragment per kilobase of transcript per million mapped reads)
value is used as the expression profile in the case of paired-end sequencing.

2.5. Differentially Expressed Genes (DEG)

DEG analysis was performed to compare samples grown under high temperature
(37/35 ◦C day/night) and optimal temperature (20/18 ◦C day/night, control) conditions.
Statistical analysis was conducted using the fold change (FC) per comparison pair. The
significant results were selected based on conditions of |FC| ≥ 2 and p-value < 0.05.

2.6. Quantitative RT-PCR (qRT-PCR) Analysis

The synthesized cDNA was used for qRT-PCR analysis by using AccuPower 2X
GreenStar qPCR Master Mix (Bioneer, Daejeon, Korea) and a CFX96 Touch Real-Time PCR
Detection System (Bio-Rad, Hercules, CA, USA). Relative mRNA levels were determined by
normalizing the PCR threshold cycle number of each target gene with that of the reference
gene, UBQ21 [22]. In the qRT-PCR analysis, three technical repeats were measured for each
biological replicate analyzed. The primers used for qRT-PCR analyses are presented in
Supplementary Materials, Table S1.

2.7. Phylogenetic Analysis

Protein sequences of lettuce HSPs were aligned using ClustalW and the phylogenetic
tree was generated based on the neighbor-joining method implemented in MEGA X [23]
under the parameters of the Jones–Taylor–Thornton (JTT) model with uniform rates among
sites, and pairwise deletion of gaps.

3. Results
3.1. Effects of Heat Stress on the Early Vegetative Growth of Lettuce

To examine the effect of heat stress on the early vegetative growth of lettuce, lettuce
plants were exposed to high temperature conditions (37/35 ◦C day/night) for 24 h. The
morphological traits of the lettuce were investigated after 3, 6, 10 and 13 days of the heat
treatment compared to those grown under the optimal temperature condition (20/18 ◦C
day/night, control). Heat-induced inhibition of leaf growth was observed in the lettuce
with the heat stress compared to control (Figure 1A,B). Comparison of leaf size between
plants with and without heat treatment exhibited a significant difference at the 13-day
time point after heat treatment: the length and width of the leaves in the plants with heat
treatment decreased by 15% and 14%, respectively, compared to control. Furthermore,
both fresh and dry weights of lettuce with heat treatment were also significantly reduced
by 19% and 27%, respectively, compared to control (Figure 1C). There were no signs of
physiological disorders associated with high temperature stress such as tip burn, premature
bolting, or rib discoloration observed in our experiment with a 24 h heat treatment.

http://www.usadellab.org/cms/?page=trimmomatic
https://ccb.jhu.edu/software/hisat2/index.shtml
https://ccb.jhu.edu/software/stringtie/
https://ccb.jhu.edu/software/stringtie/
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Figure 1. Effect of heat stress on the early vegetative development of lettuce. (A) Lettuce plants
treated with heat stress (37 ◦C) and with optimal temperature (20 ◦C) during 24 h. Scale bar = 5 cm.
(B) Changes in leaf length and width in lettuce at 3, 6, 10 and 13 days after heat treatment compared
to control. (C) Changes in fresh weight and dry weight in lettuce with and without heat treatment.
Asterisks indicate significant differences compared with the control (* p < 0.05, ** p < 0.01, Student’s t
test). Each bar represents mean ± SE of three independent experiments.

3.2. Heat Treatment Induced the Expression of a Heat Shock Protein Gene, LsHSP70-2711
in Lettuce

In order to investigate the expression levels of a known lettuce heat shock protein gene,
LsHSP70-2711 (COGE: Lsat_1_v5_gn_9_22920.1) during heat stress [24], the abundance of
the transcript was determined by qRT-PCR analyses in lettuce at different time points of
heat treatment (1, 4, 8, 14 and 24 h). A significant increase in LsHSP70-2711 expression was
observed in lettuce under heat stress condition for all time points examined, compared to
the control (Supplementary Materials, Figure S2). Based on the highest expression level of
LsHSP70-2711 at the 1 h time point of heat stress treatment, RNA samples prepared at the
time point were applied for transcriptome sequencing to identify early heat-responsive
HSP genes in lettuce.
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3.3. Transcriptome Profiling of Lettuce with Heat Treatment

To compare the expression profiles of lettuce grown in two different conditions—with
and without heat treatment—whole transcriptome sequencing was conducted using RNA
isolated from each group at the 1 h time point after heat treatment. The FASTQC software
was utilized for quality control of the raw sequence data. After removing low-quality
reads and adaptor sequences, we generated 67,144,596 clean reads, including 6,763,559,164
total read bases from the sample under heat stress (37/35 ◦C day/night) for 1 h, and
75,171,018 clean reads, including 7,571,262,233 total read bases from the sample under
optimal temperature (20/18 ◦C day/night, control). Trimmed data were mapped against
the reference genome (Lsat_Salinas_v7) using the HISAT2 program. The obtained mapped
reads were then assembled successfully using StringTie-e version 2.1.3b, based on the
reference genome (Table 1).

Table 1. Summary statistics of transcriptome analyses.

Total Read
Bases

Total Processed
Reads GC (%) QC20

(%)
QC30
(%)

Mapped
Reads

Mapped
Ratio (%)

Optimal
temperature (20 °C) 7,571,262,233 75,171,018 45.05 99.13 96.64 66,549,755 88.53

High
temperature (37 °C) 6,763,559,164 67,144,596 44.00 99.18 96.77 64,208,699 95.63

3.4. Differentially Expressed Gene Analysis

Significantly up- and downregulated genes with |FC| ≥ 2 and raw p-value < 0.05
were identified (Figure 2A). A total of 7986 unigenes were discovered to be differentially
expressed between samples with and without heat treatment. Compared to the sample
with optimal temperature, 4402 unigenes were upregulated and 3584 were downregulated
in the sample with heat treatment (Figure 2A).

The smear plot in Figure 2B represents the distribution of DEGs in the up- or downreg-
ulated section and confirms the genes are differentially expressed compared to the control
according to expression volume, which is defined as the geometric mean of two groups’
expression level. Twenty-four LsHSP genes upregulated more than a 100-fold under the
1 h heat treatment were selected for further studies (Table 2). Among them, the five HSP
genes with the highest differential expression were LsHSP70A, LsHSP70B, LsHSP17.3A,
LsHSP17.9A and LsHSP17.9B.

Table 2. The 24 differentially expressed lettuce heat shock protein genes selected in this study.

Gene Name Gene Symbol Description

Fold Change
(High

Temperature)
/Optimal

Temperature)

High
Tempera-

ture
FPKM

Optimal
Tempera-

ture
FPKM

LsHSP70A LOC111912265 heat shock cognate 70 kDa protein 2-like 2652.36 253.41 0.08
LsHSP70B LOC111909436 heat shock cognate 70 kDa protein 2-like 1842.68 346.31 0.16

LsHSP17.3A LOC111907241 17.3 kDa class I heat shock protein-like 1430.81 314.21 0.18
LsHSP17.9A LOC111883736 17.9 kDa class II heat shock protein-like 867.15 575.13 0.59
LsHSP17.9B LOC111883707 17.9 kDa class II heat shock protein-like 804.25 118.73 0.11
LsHSP70C LOC111878184 heat shock 70 kDa protein 797 73.23 0.08
LsSHSPA LOC111903402 small heat shock protein, chloroplastic 722.28 44.25 0.05

LsHSP83A LOC111888460 heat shock protein 83-like 642.29 430.69 0.61
LsHSP17.9C LOC111883742 17.9 kDa class II heat shock protein-like 599.83 382.16 0.55
LsHSP17.9D LOC111883705 17.9 kDa class II heat shock protein-like 521.53 297.66 0.49
LsHSP70D LOC111909434 heat shock cognate 70 kDa protein 2-like 500.86 134.68 0.24
LsHSP83B LOC111876685 heat shock protein 83 430.44 146.87 0.30

LsHSP17.3B LOC111880347 17.3 kDa class I heat shock protein-like 388.74 329.52 0.75
LsHSP17.8A LOC111888905 17.8 kDa class I heat shock protein-like 378 15.51 0.01
LsHSP15.7 LOC111904729 15.7 kDa heat shock protein, peroxisomal 364.15 32.8 0.08

LsHSP17.8B LOC111888937 17.8 kDa class I heat shock protein-like 346.51 14.04 0.01
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Table 2. Cont.

Gene Name Gene Symbol Description

Fold Change
(High

Temperature)
/Optimal

Temperature)

High
Tempera-

ture
FPKM

Optimal
Tempera-

ture
FPKM

LSHSP17.9E LOC111883704 17.9 kDa class II heat shock protein-like 343.39 375.45 1.00
LsSHSPB LOC111892899 small heat shock protein, chloroplastic 331.61 306.43 0.82

LsHSP70E LOC111901569 stromal 70 kDa heat shock-related protein,
chloroplastic-like 288.39 106.59 0.33

LsHSP17.3C LOC111907242 17.3 kDa class I heat shock protein 212.52 617.27 2.65
LsHSP17.5 LOC111905717 17.5 kDa class I heat shock protein-like 209.04 793.21 3.46
LsHSP22 LOC111891650 22.0 kDa class IV heat shock protein-like 160.13 19.88 0.11

LsHSP17.4 LOC111910362 17.4 kDa class III heat shock protein 157.84 91.11 0.51
LsHSP18.1 LOC111888907 18.1 kDa class I heat shock protein-like 139.04 10.47 0.04
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Figure 2. Transcriptome profiling of gene expression dynamics in lettuce with heat treatment. (A) Number of differentially
expressed genes (DEGs) in lettuce with heat treatment (37 ◦C) compared to those with optimal temperature (20 ◦C) for 1 h. (B) The
EdgeR smear plot shows the Log2 fold change (FC, y-axis) against the average log count per million (CPM, x-axis). The dashed
red line shows the location of the value of FC = 100. Points above the line have FC > 100 and those below the line have FC < 100
values. The red arrows indicate the top five LsHSP genes displaying both a large magnitude of FC and high expression volume.
The two dashed blue lines represent two-fold changes. This plot is colored such that those points having a fold-change less than
|FC|< 2 are shown in gray, |FC|≥ 2 in pale blue, and |FC|≥ 2, raw. p-value < 0.05 in dark blue.
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3.5. Experimental Validation of Gene Expression by qRT-PCR

To further validate the comparative transcriptome results for the 24 HSP genes, tran-
script level variances between the heat-stressed and optimal conditions were examined
using qRT-PCR analyses. The transcript levels of 24 genes were highly upregulated in the
lettuce treated with 1 h heat stress, which coincided with the gene expression detected by
the transcriptome analyses (Figure 3).
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was carried out by qRT-PCR (p < 0.05, Student’s t test). The x-axis represents temperature and the
y-axis represents relative transcript level (×Log2fold change). Each bar represents mean ± SE of
three independent experiments.

3.6. Time-Course Gene Expression Patterns of the Lettuce HSPs and Their
Phylogenetic Relationships

To investigate changes in the gene expression under heat stress, the expression levels
of the 24 LsHSP genes in plants exposed to heat stress for 0 h, 1 h, 4 h, 8 h, 14 h and 24 h
were determined by qRT-PCR. The highest expression level of the 24 LsHSP genes was
observed at the 1 h time point after heat treatment, suggesting that all the LsHSP genes
selected are likely to respond early to heat stress (Figure 4). Almost all the LsHSP genes
examined had a distinct peak expression in response to heat at the 1 h time point, which
drastically declined at the 4 h time point, with the exceptions of LsSHSPA, LsHSP17.5 and
LsHSP18.1, which exhibited more than 50% of their peak expression at the 4 h time point.

Horticulturae 2021, 7, x FOR PEER REVIEW 9 of 15 
 

 

3.6. Time-Course Gene Expression Patterns of the Lettuce HSPs and Their Phylogenetic 

Relationships 

To investigate changes in the gene expression under heat stress, the expression levels 

of the 24 LsHSP genes in plants exposed to heat stress for 0 h, 1 h, 4 h, 8 h, 14 h and 24 h 

were determined by qRT-PCR. The highest expression level of the 24 LsHSP genes was 

observed at the 1 h time point after heat treatment, suggesting that all the LsHSP genes 

selected are likely to respond early to heat stress (Figure 4). Almost all the LsHSP genes 

examined had a distinct peak expression in response to heat at the 1 h time point, which 

drastically declined at the 4 h time point, with the exceptions of LsSHSPA, LsHSP17.5 and 

LsHSP18.1, which exhibited more than 50% of their peak expression at the 4 h time point. 

 

Figure 4. Relative expression level of heat shock protein genes at different time points under heat 

stress. Alterations in expression levels of lettuce heat shock protein genes with (37 °C) and without 

(20 °C) heat treatment for 24 h. The expression levels of LsHSP genes are higher in lettuce plants 

with heat treatment at all the time points examined, compared to control (p  <  0.05, Student’s t test). 

Each bar represents mean  ±  SE of three independent experiments. 

Figure 4. Relative expression level of heat shock protein genes at different time points under heat
stress. Alterations in expression levels of lettuce heat shock protein genes with (37 ◦C) and without
(20 ◦C) heat treatment for 24 h. The expression levels of LsHSP genes are higher in lettuce plants with
heat treatment at all the time points examined, compared to control (p < 0.05, Student’s t test). Each
bar represents mean ± SE of three independent experiments.
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Using the 24 protein sequences of lettuce HSPs with mRNA levels greater than 100-
fold increase compared to those of the control, a phylogenetic tree was constructed using
MEGA X (Figure 5A). Three major clusters were identified among the lettuce HSPs based on
the available domains (Figure 5B). The first cluster of genes contained the alpha-crystallin
domain, the next cluster contained the nucleotide-binding domain (NBD) of the HSP70
superfamily, and the last cluster contained the Histidine kinase/HSP90-like ATPase domain.
To visualize the expression levels of the LsHSP genes under heat stress, a heat map was also
generated displaying the changes in gene expression at each time point examined under
heat stress together with the available domains in the HSPs (Figure 5B). It is noteworthy that
similar expression patterns were detected among members belonging to the same group in
the phylogenetic tree, which raises the possibility of a conserved functional activity.
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4. Discussion
4.1. Effects of Heat Stress Treatment on the Early Vegetative Growth of Lettuce

Heat stress is one of the major problems that limit plant growth and metabolism,
leading to significant loss of yield potential for various agricultural crops around the
globe [25]. Due to drastic and rapid changes in the global climate, the negative effects of
these stresses on the crop have been aggravated [26,27]. Each plant species has a specific
temperature range for minimum, maximum, and optimum growth and development [28].
Lettuce is a cool-season crop with an optimal growing temperature ranging from 17 to
28 ◦C [29]. We demonstrated that the growth of lettuce was significantly suppressed by
heat treatment for 24 h, indicating that a short period of abnormal high temperatures can
have serious implications for lettuce yields [6].



Horticulturae 2021, 7, 312 10 of 14

4.2. Heat Stress Treatment Increased the Expression of LsHSP70-2711 in Lettuce

To identify lettuce HSP genes that respond early to heat stress, lettuce samples were
harvested at different time points under heat stress and the expression level of LsHSP70-
2711, a known lettuce HSP gene was examined [24]. The expression level of the gene was
the highest at the 1 h time point after heat treatment, and then decreased gradually until
the 16 h time point. At the 24 h time point, when ambient temperature increased by 2 ◦C,
a slight increase in the gene expression was observed. A previous work supports our
experimental data, where LsHSP70-2711 exhibited the highest expression levels after heat
stress for 1 h, although it was not among the 24 greatest differentially expressed HSP genes
we identified [24].

Heat stress can trigger several mechanisms of defense such as induced gene expression
to produce stress-associated molecular chaperones called HSPs. In general, major HSPs
play important roles in preventing mis-folded, denatured and aggregated proteins caused
by stress conditions [30,31], which contribute to abiotic and biotic stress tolerance and
facilitate recovery and survival after a return to normal growth conditions [32]. Thus, the
peak of LsHSP70-2711 expression at the 1 h time point in response to heat stress supports
the notion that LsHSP70 may play an important role in early responses to stress, which are
associated with the accumulation of unfolded or denatured proteins.

4.3. Transcriptome Profiling of Heat-Treated Lettuce and DEG Analysis

Transcriptome analyses have recently been reported in vegetables such as tomato [33],
pepper [34], radish [35], and bottle gourd [36] under heat stress conditions. However,
transcriptome analyses regarding heat stress in lettuce have not yet been reported. Thus,
based on the temporal gene expression pattern of LsHSP70-2711 under heat stress, we
compared the expression profile of lettuce treated with and without heat treatment for
1 h through whole transcriptome sequencing. We identified the most upregulated five
genes, LsHSP70A, LsHSP70B, LsHSP17.3A, LsHSP17.9A and LsHSP17.9B, which are all
HSPs that were revealed by transcriptomic analyses. We also selected 24 lettuce HSP genes
that showed more than a 100-fold upregulation as candidate genes for further analyses.
Those HSP genes with the highest expression at the 1 h time point after heat stress may
contribute to the recognition of stress and production of HSPs to prevent the irreversible
aggregation of other proteins and may participate in refolding proteins during the heat
stress condition [37].

4.4. Temporal Expression Patterns of Lettuce HSP Genes under Heat Stress

We performed qRT-PCR to examine the expression patterns of the identified 24 HSP
genes during heat stress. The expression of the 24 genes was dramatically elevated in lettuce
with heat treatment for 1 h compared to control. However, the expression of 24 HSP genes
tended to be reduced as the heat stress condition continued. Thus, the level of difference in
the expression of 24 LsHSP genes in lettuce plants with and without heat treatment was
greatest at the 1 h time point after heat stress, but was reduced as plants adapted to the
stress over time. These observations are consistent with the previous result showing that
maximum expression levels of HSP18.1 and HSP17.9 occurred at the beginning of a 4 h
heat stress period and declined by the end of the 4 h stress despite the continued exposure
to high leaf temperature [38]. Some endogenous factors other than heat stress may also
regulate the expression of HSP genes when plants are consistently exposed to heat stress.

In the current study, most genes had a dramatically decreased level of gene expression
at the 4 h time point, while LsSHSPA, LsHSP17.5 and LsHSP18.1 had relatively gradual
decreases in expression. These three genes retained a level of expression of over 50% at
the 4 h time point compared to the peak expression at the 1 h time point under the heat
stress condition. Various HSPs have been identified in many crop plants that are related
to heat stress, with different expression patterns under heat stress and with overlapping
and distinct functions [39]. The gene expression of 9 HSP genes in rice (Oryza sativa)
had different maximum expressions at various time points depending on the gene [40],
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supporting our finding that some HSP genes are quickly and sharply induced in response to
heat stress, while others can be induced slowly to induce adaptation to higher temperatures.

The 24 LsHSP genes were grouped based on the phylogenetic analysis and/or major do-
mains available in each protein. Small HSPs (sHSPs) with low molecular weight of 15–42 kDa
were the most dominant proteins produced in plants during heat stress [38,41–43] and these
proteins have a conserved alpha-crystallin domain (ACD) [44]. In our study, we found that
the most dominant genes among top 24 HSP genes code for sHSPs, and particularly, the
expression of LsHSP17.9 genes was highly upregulated under the heat stress conditions. The
major function of sHSPs is involvement in the degradation of the misfolded proteins, mostly
through the ubiquitin–proteasome pathway [45] and/or preventing irreversible unfolding or
wrong protein aggregation by binding to partially folded or denatured proteins [43]. One of
the characteristics that distinguishes sHSPs from other HSP class members is that they exhibit
an ATP-independent chaperone activity [46]. Thus, the high expression level of sHSP genes
may be primarily responsible for the regulation of the early response when plants are exposed
to heat stress.

In addition to sHSP genes, HSP70 genes were also significantly induced in response to
heat stress. Previous research has shown that HSP70s are a class of molecular chaperones
that play a crucial role in protecting plant cells from the detrimental effects of heat stress [47].
Structurally, HSP70s contain three major functional domains: a N-terminal nucleotide-
binding domain (NBD) with ATPase activity, a substrate-binding domain (SBD), and a
C-terminal lid region that covers the SBD [48–50]. The binding of ATP at the NBD, and
its subsequent hydrolysis influences the substrate binding affinity of the SBD through
allostery, suppressing protein aggregation and refolding misfolded proteins [51]. HSP83 is
homologous to the chaperone HSP90, which has a histidine kinase/HSP90-like ATPase
domain and also plays an important role in protein folding from the early stage of protein
synthesis together with HSP70 and other associated co-chaperones [52]. The expression of
HSP83 has been shown to increase during heat shock in Arabidopsis thaliana [53]. We also
found that the expression of LsHSP83 was enhanced under heat stress conditions. Thus, it
is suggested that LsHSP70 and LsHSP83 play a critical role in protecting lettuce cells from
heat stress.

5. Conclusions

In the present study, we identified 24 lettuce HSP genes through transcriptome se-
quencing that were highly upregulated within 1 h of heat stress treatment. They were
divided into three clusters based on phylogenetic relationships together with the conserved
domains available in each protein. Furthermore, we demonstrated potential relationships
between the temporal expression patterns of LsHSP genes at different time points of heat
treatment and the phylogenetic relationships. Functional validation of each LsHSP gene
remains to be examined in our future work.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/horticulturae7090312/s1, Table S1: Sequences of primers used in qRT-PCR; Figure S1:
Schematic representation of experimental design used for heat treatment on lettuce. The diagram
illustrates the experimental photoperiod (16 h light), heat treatment period (pink bar—24 h), zeitgeber
time (ZT, time after light onset), sampling time (blue bar) and experimental flow for qRT-PCR analyses;
Figure S2: Relative expression level of a heat shock protein gene, LsHSP70-2711 at different time
points examined under the heat stress condition in lettuce. Relative expression of a heat shock protein
gene LsHSP70-2711 in lettuce at indicat-ed time points under the heat stress condition (37 ◦C).
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