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Abstract: Flowering is an important phenophase of plant species, however, knowledge about the
regulatory mechanism controlling flowering cues in loquat is limited. To identify candidate genes
regulating flowering time in loquat, we used RNA-Seq technology to conduct a comparative tran-
scriptome analysis of differentiating apical buds collected from the early-flowering variety ‘Baiyu’
and the late-flowering variety ‘Huoju’. A total of 28,842 differentially expressed transcripts (DETs)
were identified. Of these, 42 DETs controlled flowering time while 17 other DETs were associated
with the ABA signaling pathway. Compared with those in ‘Huoju’, EjFT, EjFY, EjFLK, and EjCAL1-
like were significantly upregulated in ‘Baiyu’. Moreover, transcripts of the ABA 8′-hydroxylases
(EjABH2, EjABH4, and EjABH4-like2), the ABA receptors (EjPYL4/8), and the bZIP transcription factor
EjABI5-like were upregulated in ‘Baiyu’ compared with ‘Huoju’. Hence, they might regulate loquat
flowering time. There was no significant difference between ‘Baiyu’ and ‘Huoju’ in terms of IAA
content. However, the ABA content was about ten-fold higher in the apical buds of ‘Baiyu’ than in
those of ‘Huoju’. The ABA:IAA ratio sharply rose and attained a peak during bud differentiation.
Thus, ABA is vital in regulating floral bud formation in loquat. The results of the present study help
clarify gene transcription during loquat flowering.

Keywords: differentially expressed transcript; Eriobotya japonica Lindl.; flowering time; transcrip-
tomic analysis

1. Introduction

Flowering is the onset of plant reproduction and an important phenophase. Un-
derstanding the mechanisms that control flowering events is essential for efficient fruit
reproduction [1]. Flowering has evolved to maximize outcrossing and mitigate the damag-
ing effects of frost. It involves elegant mechanisms that integrate complex signals including
photoperiod and temperature [2,3]. Flower bud differentiation and, by extension, flowering
itself, are influenced by sophisticated regulatory networks [4–7]. Several major pathways
in Arabidopsis include floral integrator genes that govern flowering time. Photoperiod
as well as circadian, ambient temperature, vernalization, autonomous, gibberellin, and
aging pathways are implicated [8]. FLOWERING LOCUS T (FT) is a crucial mobile sig-
nal [9]. FT and FT-like play pivotal roles in the flowering of fruit trees in the Rosaceae
family such as apple [10,11], pear [12], peach [13], and loquat [14–16]. Flowering time is
affected by environmental conditions and phytohormones. Previous studies have demon-
strated phytohormone crosstalk in flower induction [17,18]. ABA is generally considered
a flowering suppressor [19]. In loquat, however, ABA plays a positive role in flower bud
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formation [16,20]. The ABA content dramatically rises in loquat apical buds and strongly
influences loquat flower bud induction and differentiation [20]. To date, however, little is
known about the mechanism by which ABA promotes loquat bud differentiation or the
ABA-associated regulatory pathway that controls loquat flowering time.

Loquat (Eriobotrya japonica Lindl.) (Rosaceae) is a subtropical evergreen fruit tree
native to China. It blooms in autumn and forms terminal panicles in early winter [14,21].
Loquat floral buds are usually derived from vegetative buds on shoots produced mainly
during summer [22]. The loquat flower bud may persist for several months. Bud initiation
may require special environmental conditions such as high temperature and moderate
drought stress [23]. In Shanghai, China, loquat flower bud differentiation occurs between
July and September followed by blooming from early October to January of the following
year. However, the mechanisms regulating loquat bud differentiation and flowering
time are poorly understood. RNA-Seq technology comprehensively identifies transcripts
and facilitates transcriptome analysis. It enables rapid gene discovery and creates more
sensitive and accurate transcriptome profiles than other techniques [24]. RNA-Seq recently
revealed candidate genes regulating specific biological processes in triploid loquat such
as the gibberellin-induced fruit setting pathway [24], fruit development and ripening [25],
and low-temperature stress response [26,27]. However, neither transcript information nor
gene expression profiling during loquat flower bud differentiation has been determined.
Hence, the application of RNA-Seq to identify candidate genes associated with flowering
time in loquat would help elucidate the mechanism by which this process is controlled.

In the present study, a comparative transcriptome analysis was conducted to reveal
the molecular mechanism regulating flowering time in loquat. Differentiating flower buds
were collected from the early-flowering variety ‘Baiyu’ and the late-flowering variety
‘Huoju’. Differentially expressed transcripts (DETs) were explored to identify candidate
genes involved in the regulation of flowering in loquat.

2. Materials and Methods
2.1. Plant Materials

Two loquat (Eriobotrya japonica Lindl.) varieties with distinct flowering traits were
used in this study. ‘Baiyu’ is an early-flowering cultivar while ‘Huoju’ is a late-flowering
variety. Both were planted at the Jinshan Fruit Tree Experimental Station of the Shanghai
Academy of Agricultural Sciences, Shanghai, China (30◦47′27′′; 121◦8′6′′). During flower
bud differentiation (early July to late August in Shanghai), about 30 apical buds were
randomly picked at 7-d intervals between 13 July 2017 and 24 August 2017. All samples
were immediately frozen in liquid nitrogen and stored at −80 ◦C before being analyzed.

2.2. Endogenous Phytohormone Determination by LC-MS

About 0.5 g of fresh apical bud was ground in liquid nitrogen and homogenized in
5 mL of ethyl acetate. The suspension was vortexed for 1 min and stored in the dark at 4 ◦C
for 12 h. The mixture was centrifuged at 10,000× g and 4 ◦C for 10 min. The supernatant
was collected and the residue was extracted twice with 3 mL ethyl acetate at 10,000× g
and 4 ◦C. The solution was vacuum-concentrated to dryness at 30 ◦C and the residue was
dissolved in 250 mL chromatographic methanol. The solution was then passed through a
0.22-µm membrane filter and a 10 µL aliquot was injected into a liquid chromatograph-mass
spectrometer (LC-MS). Changes in the levels of endogenous phytohormones including
abscisic acid (ABA) and indoleacetic acid (IAA) at each sampling period were analyzed
according to the methods of Niu et al. (2014) [28]. The mobile phase consisted of methanol
and 0.5% (v/v) acetic acid dissolved in redistilled water. The standards were IAA (I2886) and
ABA (A1094) (Sigma-Aldrich Corp., St. Louis, MO, USA). Calibration curves were plotted
using 0 ng/mL, 2.5 ng/mL, 5.0 ng/mL, 10 ng/mL, 12.5 ng/mL, 25 ng/mL, 50 ng/mL, and
100 ng/mL of each standard. Linear regressions of the calibration curves are shown in
Table S1.
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2.3. Total RNA Extraction and RNA-Seq

Total RNA was extracted with a mirVana miRNA Isolation Kit (Thermo Fisher Scien-
tific, Waltham, MA, USA) according to the manufacturer’s protocol. RNA integrity was
validated with an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).
RNA-Seq libraries were constructed with a TruSeq Stranded mRNA LTSample Prep Kit (Il-
lumina, San Diego, CA, USA) and applied to an Illumina HiSeq X Ten sequencing platform
for RNA-Seq analysis by Shanghai OE Biotech. Co. Ltd. (Shanghai, China).

2.4. Quality Control and de Novo Assembly

Raw data (reads) were processed with Trimmomatic [29]. Low-quality reads and
those containing poly-N were removed to obtain clean reads. Adaptor and low-quality
sequences were removed and the clean reads were assembled into expressed sequence tag
clusters (contigs). They were then assembled de novo into transcripts by the paired-end
method using Trinity v. trinityrnaseq_r20131110 [30]. The longest transcript was selected
as a unigene based on sequence similarity and length, and used in the subsequent analysis.

2.5. Functional Annotation

Unigene function was annotated by aligning the unigenes with the databases NCBI
non-redundant (NR), SwissProt, and Clusters of Orthologous Groups for Eukaryotic Com-
plete Genomes (KOG). For this purpose, Blastx was used at a threshold E-value of 10−5 [31].
Proteins with the highest numbers of hits to the unigenes were used to assign functional
annotations to them. Gene ontology (GO) classification was performed by the mapping
relationship between SwissProt and the GO terms. The unigenes were mapped to the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database to annotate their potential
metabolic pathways [32].

2.6. Identification of Differentially Expressed Transcripts (DETs) Involved in Flowering Time

Fragments per kilobase per million mapped reads (FPKM) and read count values
for each unigene were calculated with bowtie2 and eXpress [33–35]. Differentially ex-
pressed transcripts (DETs) were identified with the DESeq (2012) functions SizeFactors and
nbinomTest [36]. p < 0.05 and FoldChange > 2 were set as the thresholds for significant dif-
ferential expression. A hierarchical cluster analysis of the DETs was performed to explore
transcript expression patterns. GO and KEGG pathway enrichment analyses of the DETs
were performed on the hypergeometric distribution.

2.7. Gene Expression Analysis by qRT-PCR

Total RNA was extracted from the loquat apical buds collected at each sampling date.
First-strand cDNA was synthesized from 1 g total RNA using the PrimerScript RT Reagent
Kit with gDNA Eraser (RR047; TaKaRa Bio Inc., Shiga, Japan), diluted tenfold with ddH2O,
and used as templates for qRT-PCR. The qRT-PCR mixture (10 µL) comprised 5 µL SYBR
Premix ExTaq (RR820; TaKaRa), 0.5 µL of each primer (10 µM), 1 µL cDNA, and 2.5 µL
RNase-free water. The qRT-PCR was performed on a LightCycler480 instrument (Roche
Diagnostics, Basel, Switzerland) according to the manufacturer’s instructions. The two-step
qRT-PCR program was as follows: 95 ◦C for 30 s, followed by 40 cycles at 95 ◦C for 5 s
and 60 ◦C for 20 s [24]. Template-free controls were included in each run for each primer
pair. β-actin was the internal reference. Degenerate primer sequences for the qRT-PCR are
shown in Table S2.

2.8. Statistical Analysis

The data were subjected to one-way analysis of variance (ANOVA) in SPSS v. 18.0
(SPSS Inc., Chicago, IL, USA). Differences between treatment means were considered
significant at p ≤ 0.05. Graphics were created with GraphPad Prism v. 6.0 (GraphPad
Software Inc., La Jolla, CA, USA).
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3. Results
3.1. Loquat Apical Bud Phytohormone Analyses

The IAA levels were low in the ‘Baiyu’ and ‘Huoju’ apical buds throughout bud
differentiation. They did not significantly differ from each other (Figure 1a). The ABA
level in ‘Baiyu’ was about tenfold higher than that in ‘Huoju’ and reached maxima at
the sampling dates of 3 August and 10 August (Figure 1b). The ABA:IAA ratios varied
widely between cultivars (Figure 1c). In ‘Baiyu’, ABA:IAA exhibited a ‘down-up-down’
trend. It was relatively lower at the earlier stage (13–27 July, i.e., T0–T2), but sharply rose
at sampling time (3 August, T3). Hence, this period might have been the key flower bud
differentiation stage (Figure 1c). ABA:IAA did not fluctuate in ‘Huoju’ throughout the
experimental period (Figure 1c). The foregoing results indicated that elevated ABA content
and ABA:IAA balance might be required for loquat flower bud differentiation.
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Figure 1. Dynamics of endogenous phytohormone IAA (a), ABA (b) and ratio of ABA to IAA (c) during loquat flower
bud differentiation. T0–T6 in horizontal axis indicates sampling dates, i.e., 7–13, 7–19, 7–27, 8–03, 8–10, 8–17, and 8–24,
respectively. * indicates significance at p ≤ 0.05. Bars indicate standard error.

3.2. Sequence Analysis and Assembly

To obtain a transcriptome landscape for flower bud differentiation, cDNA samples
were extracted from the ‘Baiyu’ and ‘Huoju’ apical buds at each sampling date and se-
quenced on the Illumina HiSeq 4000 platform. Table 1 is an overview of cDNA sequencing.
A total of 46.84–49.19 million (M) pairs of 150-bp reads were generated from ‘Baiyu’
(Table 1). After stringent quality assessment and data cleaning, 40.85–46.91 M clean reads
with Q30 (base quality > 30) remained. Their Q30 and GC content ranges were 87.95–93.54%
and 46.92–47.44%, respectively (Table 1). For ‘Huoju’, high-throughput sequencing gen-
erated 48.97–49.89 M pairs of 150-bp reads and 46.26–47.56 M clean reads with Q30 were
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generated after stringent quality filtering. Their Q30 and GC content ranges were 93.00–
93.70% and 46.71–47.23%, respectively (Table 1).

Table 1. IIIumina transcriptomes of apical buds during loquat flower bud differentiation.

Cultivar Sampling Date Raw Reads Clean Reads Q30 (%) GC (%)

‘Baiyu’ T0 48,991,094 46,581,732 93.30 47.44
T1 46,842,090 44,358,410 93.02 47.14
T2 49,193,824 46,596,186 93.12 47.02
T3 47,387,894 40,851,014 87.95 47.36
T4 49,068,496 46,912,890 93.54 47.02
T5 48,987,770 46,583,754 93.22 47.22
T6 48,997,596 46,632,968 93.14 46.92

‘Huoju’ T0 49,150,924 47,013,524 93.70 46.93
T1 49,784,092 47,560,900 93.54 46.99
T2 49,889,156 47,546,378 93.35 47.13
T3 49,605,682 47,133,928 93.29 47.57
T4 48,971,664 46,264,188 93.00 47.23
T5 49,348,500 46,926,020 93.17 47.14
T6 49,333,148 47,048,570 93.23 46.71

Note: T0–T6 in horizontal axis indicates sampling dates, i.e., 7–13, 7–19, 7–27, 8–03, 8–10, 8–17, and
8–24, respectively.

Next-generation short-read sequences were assembled de novo with Trinity (v. trinityr-
naseq_r20131110) into 162,080 unigenes with mean size = 1109.34 bp and N50 length = 1625 bp
(Table 2). Unigene length was in the range of 301–2000 nt, and the total length was
87,192,678 nt (Table 2; Figure S1). Distribution of the unigene lengths are shown in
Figure S1.

Table 2. Summary statistics of assembled gene sequences.

Term ≥300 bp ≥500 bp ≥1000 bp Total Number Total Length (nt) Average Length N50

Unigene 78,599 55,189 28,292 162,080 87,192,678 1109.34 1625

3.3. Sequence Annotation

Several complementary approaches were utilized to annotate the assembled sequences.
The sequences were aligned against the NR, Swissport, KEGG, KOG, eggNOG, GO, and
Pfam databases using the Diamond program. The threshold E-value was 10−5, and
45,107 NR, 31,795 Swissport, 15,890 KEGG, 23,886 KOG, 38,848 eggNOG, 28,705 GO, and
57 Pfam sequences were identified (Table 3). All unigenes were annotated and matched
against loquat genome database (Table S3), and distribution of the top ten species was de-
termined by the Pollution_test based on BLASTx and the NT database. The cutoff E-value
was 1 × e−10, and coverage was >80%. About 47.96%, 46.53%, and 2.21% of the unigenes
matched sequences from Malus domestica, Pyrus × bretschneideri, and Eriobotrya japonica,
respectively (Figure S2).

Table 3. Summary statistics of unigenes annotated by different databases.

Anno_Database Annotated Number 300 ≤ Length < 1000 Length ≥ 1000

NR 45,107 (57.39%) 20,034 (25.49%) 25,073 (31.90%)
Swissport 31,795 (40.45%) 11,273 (14.34%) 20,522 (26.11%)

KEGG 15,890 (20.22%) 6774 (8.62%) 9116 (11.60%)
KOG 23,886 (30.39%) 8853 (11.26%) 15,033 (19.13)

eggNOG 38,848 (49.43%) 15,125 (19.24%) 23,723 (30.18%)
GO 28,705 (36.52%) 10,314 (13.12%) 18,391 (23.40%)

Pfam 57 (0.07%) 50 (0.06%) 7 (0.01%)
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GO and KEGG analysis categorized the functions of the predicted loquat genes
(Tables S4 and S5). The unigenes (28,705) were classified into three main categories, includ-
ing ‘biological process’ (24,099), ‘cellular component’ (25,113), and ‘molecular function’
(24,690) (Figure 2). In the ‘biological process’ category, the unigenes implicated in ‘cellular
process’ and ‘metabolic process’ predominated. There were also high percentages of uni-
genes under the categories ‘response to stimulus’, ‘biological regulation’, and ‘regulation of
biological process’. For the ‘cellular component’ category, many unigenes were categorized
under ‘cell’, ‘cell part’, and ‘organelle’. Under the ‘molecular function’ category, most of
the unigenes were involved in ‘binding’, ‘catalytic activity’, and ‘transporter activity’. The
GO enrichment of whole uingenes in each library is shown in Figures S9–S15.
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3.4. Loquat DET Identification

Seven cDNA libraries (Huoju_713-vs-Baiyu_713, Huoju_719-vs-Baiyu_719, Huoju_727-
vs-Baiyu_727, Huoju_803-vs-Baiyu_803, Huoju_810-vs-Baiyu_810, Huoju_817-vs-Baiyu_817,
and Huoju_824-vs-Baiyu_824) were sequenced, and FPKMs were calculated for all uni-
genes. Differences in gene expression were evaluated based on p < 0.05 and FoldChange > 2.
DETs were identified by pairwise comparisons against each library (Figure S3); unigenes
obtained by RNA-Seq were matched to gene ID in loquat genomic database (Table S6). A
total of 28,842 DETs were detected. Of these, 15,383 were upregulated and 13,459 were
downregulated (Table 4). At each stage, 4109 DETs (1885 upregulated and 2224 down-
regulated) were detected for Huoju_713-vs-Baiyu_713; 4335 DETs (2628 upregulated and
1707 downregulated) were detected for Huoju_719-vs-Baiyu_719; 4327 DETs (2341 upreg-
ulated and 1986 downregulated) were detected for Huoju_727-vs-Baiyu_727; 3252 DETs
(1339 upregulated and 1913 downregulated) were detected for Huoju_803-vs-Baiyu_803;
4160 DETs (2039 upregulated and 2121 downregulated) were detected for Huoju_810-
vs-Baiyu_810; 4112 DETs (2420 upregulated and 1692 downregulated) were detected for
Huoju_817-vs-Baiyu_817; and 4547 DETs (2731 upregulated and 1816 downregulated) were
detected for Huoju_824-vs-Baiyu_824 (Table 4). Most DETs either increased or decreased.



Horticulturae 2021, 7, 171 7 of 15

GO and KEGG enrichment revealed 284 upregulated and 259 downregulated transcripts
common to all seven libraries (Figure 3).

Table 4. Statistics of upregulated or downregulated unigenes in each library.

Item Upregulated Downregulated Total

Huoju_713-vs-Baiyu_713 1885 2224 4109
Huoju_719-vs-Baiyu_719 2628 1707 4335
Huoju_727-vs-Baiyu_727 2341 1986 4327
Huoju_803-vs-Baiyu_803 1339 1913 3252
Huoju_810-vs-Baiyu_810 2039 2121 4160
Huoju_817-vs-Baiyu_817 2420 1692 4112
Huoju_824-vs-Baiyu_824 2731 1816 4547
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3.5. Identification of DETs Involved in Flowering Time

We calculated the distributions of the unigenes in the various pathways to identify
the DETs controlling flowering time in ‘Baiyu’ and ‘Huoju’. Based on the FPKM values,
GO or KEGG enrichment, 15 pathways were enriched. The most representative pathways
were flower development, regulation of flower development, and flower morphogenesis.
A total of 42 other unigenes were identified, including 5 EARLY FLOWERING-like proteins,
11 flowering time control proteins such as FY-like, FPA, and FCA-like, 12 FLOWERING
LOCUS proteins, 8 EMBRYONIC FLOWER-LIKE proteins, and 6 other flowering-associated
unigenes (Figure 4, Table S7).

Flowering locus T (EjFT, CL3783Contig2), flowering time control protein FY-like (EjFY,
CL21741Contig1), flowering locus K homology domain-like (EjFLK, CL9491Contig1), and
truncated transcription factor CAULIFLOWER A-like (EjCAL1, Comp12801_c0_seq1_1)
were selected to analyze the relative differences in their expression during ‘Baiyu’ and
‘Huoju’ flower bud differentiation. A qRT-PCR evaluated the expression profiles obtained
from RNA-Seq data (Figure 5). EjFT, EjFY, EjFLK, and EjCAL1-like were significantly
upregulated in the apical buds of ‘Baiyu’ compared with those of ‘Huoju’, especially in
the early stage of 13–27 July (T0–T2) which was the key period of loquat flower bud
differentiation. Hence, these genes play vital roles in flowering time regulation (Figure 5).
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Transcriptome data showed that the EjFY and EjFLK expression levels were higher in
‘Baiyu’ than ‘Huoju’ throughout apical bud differentiation (Figure S4b,c).
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3.6. Identification of DETs Involved in ABA Signalling

ABA plays important roles in regulating loquat apical bud differentiation and flow-
ering time. Based on the FPKM values and the GO or KEGG enrichment analyses, we
identified DETs involved in ABA signaling. A total of 17 ABA signaling pathways were
enriched. The most representative pathways were ABA response, ABA biosynthesis, ABA
transmembrane transporter activity, and others. After GO enrichment at p = 0.05, 23 DETs
directly involved in ABA signaling were identified, including 9 ABA 8′-hydroxylases
(EjABH), 7 ABA receptors (PYL-likes; EjPYL-likes), and 7 bZIP transcription factors (AB-
SCISIC ACID-INSENSITIVE 5-like proteins; EjABI5-like) (Figure 6, Table S8).
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We selected eight DETs associated with the ABA signaling pathway, namely, EjABH2
(CL3962Contig1), EjABH4 (CL151Contig1), EjABH4-like (CL9428Contig1), EjABH4-like2
(CL5254Contig1), EjPYL4 (CL136Contig4), EjPYL4-like (CL136Contig1), EjPYL8
(CL48723Contig1), and EjABI5-like (comp13046_c0_seq1_1). We then determined the rela-
tive differences in their expression levels during ‘Baiyu’ and ‘Huoju’ flower bud differenti-
ation (Figures 7 and 8). The qRT-PCR evaluated the expression profiles of the foregoing
ABA signaling-related DETs, and the output of this analysis showed good agreement with
the RNA-Seq data (Figures 7 and 8, Figures S5 and S6). EjABH2, EjABH4, and EjABH4-like2
were significantly upregulated in the apical buds of ‘Baiyu’ compared with those of ‘Huoju’,
especially at the early stage of 13 July (T0) to 3 August (T3). Hence, these DETs might play
vital roles in regulating flowering time. However, EjABH4-like was upregulated in ‘Huoju’
but downregulated in ‘Baiyu’ between 13 July (T0) and 27 July (T2). Therefore, EjABH4-like
might negatively regulate flowering time (Figure 7 and Figure S5). The ABA receptor
EjPYL4-like was significantly upregulated on 3 August (T3), especially in ‘Baiyu’. At that
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time, both EjPYL4 and EjPYL8 were upregulated in ‘Huoju’ compared with ‘Baiyu’ (Figure
8 and Figure S6). EjABI5-like was upregulated in ‘Baiyu’ throughout bud differentiation
(Figure 8 and Figure S6).

Horticulturae 2021, 7, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 7. EjABH2 (a), EjABH4 (b), EjABH4-like (c), and EjABH4-like2 (d) expression during loquat bud differentiation. 
Note: T0–T6 in horizontal axis indicates sampling dates, i.e., 7–13, 7–19, 7–27, 8–03, 8–10, 8–17, and 8–24, respectively; * 
indicates significance at p ≤ 0.05; ** indicates significance at p ≤ 0.01; bars indicate standard error. 

 
Figure 8. EjPYL4 (a), EjPYL4-like (b), EjPYL8 (c), and EjABI5-like (d) expression during loquat bud differentiation. Note: 
T0–T6 in horizontal axis indicates sampling dates, i.e., 7–13, 7–19, 7–27, 8–03, 8–10, 8–17, and 8–24, respectively; * indi-
cates significance at p ≤ 0.05; bars indicate standard error. 

Figure 7. EjABH2 (a), EjABH4 (b), EjABH4-like (c), and EjABH4-like2 (d) expression during loquat bud differentiation.
Note: T0–T6 in horizontal axis indicates sampling dates, i.e., 7–13, 7–19, 7–27, 8–03, 8–10, 8–17, and 8–24, respectively;
* indicates significance at p ≤ 0.05; ** indicates significance at p ≤ 0.01; bars indicate standard error.

Horticulturae 2021, 7, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 7. EjABH2 (a), EjABH4 (b), EjABH4-like (c), and EjABH4-like2 (d) expression during loquat bud differentiation. 
Note: T0–T6 in horizontal axis indicates sampling dates, i.e., 7–13, 7–19, 7–27, 8–03, 8–10, 8–17, and 8–24, respectively; * 
indicates significance at p ≤ 0.05; ** indicates significance at p ≤ 0.01; bars indicate standard error. 

 
Figure 8. EjPYL4 (a), EjPYL4-like (b), EjPYL8 (c), and EjABI5-like (d) expression during loquat bud differentiation. Note: 
T0–T6 in horizontal axis indicates sampling dates, i.e., 7–13, 7–19, 7–27, 8–03, 8–10, 8–17, and 8–24, respectively; * indi-
cates significance at p ≤ 0.05; bars indicate standard error. 

Figure 8. EjPYL4 (a), EjPYL4-like (b), EjPYL8 (c), and EjABI5-like (d) expression during loquat bud differentiation. Note:
T0–T6 in horizontal axis indicates sampling dates, i.e., 7–13, 7–19, 7–27, 8–03, 8–10, 8–17, and 8–24, respectively; * indicates
significance at p ≤ 0.05; bars indicate standard error.



Horticulturae 2021, 7, 171 11 of 15

4. Discussion

Early flowering is a useful trait in high-value crops as it may enable early fruit harvest
and timely market distribution. However, early-flowering loquat cultivars have low yield
because they are exposed to low wintertime temperatures. Extension or delay of flowering
can reduce the risk of cold stress injury and increase or stabilize production. Nevertheless,
flowering time is a complex biological process influenced by numerous factors. Identifying
the environmental and genetic mechanisms regulating loquat flowering time could expedite
breeding and enhance fruit production (Lin et al. 1999). In the present study, we performed
a comparative transcriptome analysis of differentiating loquat flower buds. To the best of
our knowledge, this study is the first to use RNA-Seq to identify candidate genes regulating
flowering time in loquat.

Transcriptome analysis is an effective approach to study the genes participating in the
flowering pathway [37,38]. This approach identified DETs associated with various develop-
mental stages of flowering in Moso bamboo [39], apple [40], and chrysanthemum [41–43].
Certain flowering genes such as EjFT1/2 [15], EjAP1 [14], EjSOC1/2 [44], EjGI, and EjCO [45]
were recently identified in loquat and cloned from it. However, little is known about the
mechanisms regulating the transformation from vegetative to flower bud in loquat. To
identify flowering time-related genes and clarify their transcription during bud differenti-
ation in loquat, we conducted a comparative transcriptome analysis on early-flowering
‘Baiyu’ and late-flowering ‘Huoju’. We generated 40.85–46.91 M and 46.26–47.56 M pairs of
150-bp clean reads from ‘Baiyu’ and ‘Huoju’, respectively (Tables 1 and 2). After functional
annotation, 28,842 DETs were identified (Table 3; Figures 2 and 3; Figures S1 and S2). These
data revealed the DET transcription characteristics and biological processes involved in
loquat flower bud differentiation.

Several flowering loci have been identified in Arabidopsis. Overexpression of FLOW-
ERING T (FT) leads to early flowering and loss-of-function in the flowering time repressor
FLOWERING LOCUS C (FLC). In this manner, the late-flowering phenotype is elimi-
nated [46]. EjLFY-1 in strawberry is homologous to LEAFY (LFY) in loquat. Liu et al.
reported that EjLFY-1 overexpression accelerates strawberry flowering, shortens the time
required for flower induction, and maintains the early-flowering trait in the asexual
progeny [47]. Our transcriptome data identified certain known flowering genes such
as flowering locus T-like (EjFT-like) [15] and flowering time control protein FY-like (EjFY) [47].
They also revealed other genes possibly regulating the early flowering trait such as flow-
ering locus K (EjFLK), EARLY FLOWERING-LIKE protein (EjELF), CAULIFLOWER A-like
(EjCAL1), and others (Figure 4). Our transcriptome data revealed that the expression
pattern of unigenes varied significantly between ‘Baiyu’ and ‘Huoju’ (Figure S7) and the
qRT-PCR indicated that that the flowering-related genes EjFT, EjCAL1-like, EjFY, and EjFLK
were upregulated in ‘Baiyu’ compared with ‘Huoju’, especially in the early stage of bud
differentiation (Figure 5 and Figure S4). Thus, early flowering might have been partially
mediated by upregulation of these genes in the buds. However, the functional character-
istics and molecular mechanisms of these DETs in the control of loquat flowering time
remain to be elucidated.

Flowering is a complex biological process integrating multiple endogenous and en-
vironmental signals that ensure timely flowering. This process is regulated by phytohor-
mones [48,49]. Several studies demonstrated the importance of interactions among various
phytohormones in flower induction [50,51]. In Arabidopsis, ABA is a floral repressor, and
flowering is delayed by exogenous ABA application and overexpression of ABSCISIC
ACID INSENSITIVE MUTANT 5 (ABI5). The latter is mediated by upregulation of FLC
and the ABI5 promoter encoding bZIP-type transcription factors [52,53]. It was previously
reported that ABA plays the opposite role in loquat, and its level sharply rises during
flower bud differentiation [20]. Flowering time was advanced when 200 ppm ABA was
sprayed onto loquat apical buds (unpublished data). In the present study, IAA content
was low in ‘Baiyu’ and ‘Huoju’ apical buds during floral bud development (Figure 1a).
Nevertheless, both the ABA content and the ABA:IAA ratio were significantly higher in
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‘Baiyu’ than ‘Huoju’ (Figure 1b,c). Hence, the early flowering trait observed in ‘Baiyu’ may
be partially explained by massive ABA accumulation in its buds. The results obtained in
the present study supported the theory that in loquat, an increase in the ABA content in
the bud is conductive to flower bud formation [20]. We speculated that ABA accumulation
during loquat bud differentiation could be promoted by certain environmental conditions
such as elevated temperatures and moderate drought. Drought and high temperatures
cause water loss, induce stomatal closure, and trigger the drought escape response which,
in turn, favors early flowering [54,55]. Flowering induction in the short-day plant Lemna
aequinoctialis was associated with high ABA content [56]. Leng et al. reported that ABA
and its signaling play important roles in regulating floral development and fruit set in
sweet cherry. ABA accumulation increased and peaked with floral development. ABA
synthetase PaNCED1 expression was consistent with changes in ABA accumulation [57].
In the present study, most ABA signaling genes such as EjABHs, EjPYLs, and EjABI5-
like showed higher transcription levels in the buds of ‘Baiyu’ than in those of ‘Huoju’
(Figures 6–8, Figures S5 and S6). Thus, ABA signaling has a potential regulatory role in
loquat flowering time. However, it is unclear whether this positive effect on the expression
of genes regulating flowering time can be directly or indirectly attributed to ABA. Further-
more, it is unknown how ABA signaling genes interact with flowering genes and their
regulatory networks in loquat. Other stress-related signaling pathways and factors may
determine whether flowering will be early or late [58]. Drought stress promoted flowering
under long-day conditions in Arabidopsis [59,60] and Citrus latifolia [61]. Salt stress delayed
flowering in Arabidopsis [62–64]. Recent research has focused on the potential mechanisms
by which stress regulates flowering. Substances produced under stress conditions were
considered transmissible flowering stimuli. Salicylic acid was regarded as the most likely
compound involved in stress-induced flowering [65]. Nevertheless, the physiological re-
sponses and molecular regulatory networks implicated in stress-induced loquat flowering
remain obscure. In addition, flowering is influenced by multiple factors such as tree age
and nutrition, phytohormones, sunshine duration, ambient temperature, and other envi-
ronmental conditions. A great number of transcription factors (TFs) have been identified,
of which AP2, ARF, ARR-B, C2H2, ERF, MYB family, WORK, bHLH, and bZIP were the
predominated subgroups (Figure S8, Tables S9–S15), these TFs may participate in the loquat
flowering pathway. However, functional roles of these DETs and TFs associated with these
pathways have yet to be identified.

5. Conclusions

To the best of our knowledge, this report is the first to provide comprehensive tran-
scriptome and DET profiling data associated with loquat floral bud differentiation. Ap-
proximately 28,842 DETs involved in multiple regulatory pathways were significantly
differentially regulated between early-flowering and late-flowering loquat cultivars. Forty-
two candidate DETs were identified that might play important roles in flowering time
control. Seventeen candidate DETs involved in the ABA signaling pathway were identified.
The results of the present study could help clarify the gene transcription and regulatory
networks involved in loquat flowering time. They also provide an empirical basis for
further study on the progression of bud development and the determination of flowering
time in loquat.
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com/article/10.3390/horticulturae7070171/s1. Figure S1: Sequence length distributions of unigenes
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regulated unigenes in each library. Figure S4. Fpkm-based expression of EjFT (a), EjFY (b), EjFLK (c)
and EjCAL1-like (d) during bud differentiation in loquat. Note: T0–T6 in horizontal axis indicates
sampling dates, i.e., 7–13, 7–19, 7–27, 8–03, 8–10, 8–17, and 8–24, respectively. Figure S5: Fpkm-
based expression of EjABH2 (a), EjABH4 (b), EjABH4-like (c), and EjABH4-like2 (d) during bud
differentiation in loquat. Note: T0–T6 in horizontal axis indicates sampling dates, i.e., 7–13, 7–19,
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EjPYL4-like (b), EjPYL8 (c), and EjABI5-like (d) during bud differentiation in loquat. Note: T0–T6 in
horizontal axis indicates sampling dates, i.e., 7–13, 7–19, 7–27, 8–03, 8–10, 8–17, and 8–24, respectively.
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vs-Baiyu_810. Figure S14: GO enrichment of Huoju_817-vs-Baiyu_817. Figure S15: GO enrichment
of Huoju_824-vs-Baiyu_824. Table S1: Linear regression of ABA and IAA measured by LC-MS.
Table S2: Primers for qRT-PCR analysis used in this study. Table S3: Matching of unigenes obtained
by RNA-Seq data against genome database of loquat. Table S4: Unigene annotation based on GO
enrichment. Table S5: Unigene annotation based on KEGG enrichment. Table S6: List of all DETs
information with unigene ID, functional annotation and FPKM value. Table S7: The 42 candidate
unigenes involved in flowering. Table S8: The 23 candidate unigenes involved in ABA signaling.
Table S9: Transcription factors distribution in Huoju_713-vs-Baiyu_713. Table S10: Transcription
factors distribution in Huoju_719-vs-Baiyu_719. Table S11: Transcription factors distribution in
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