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Abstract: Low-temperature stress is a type of abiotic stress that limits plant growth and production in
both subtropical and tropical climate conditions. In the current study, the effects of 24-epi-brassinolide
(EBR) as analogs of brassinosteroids (BRs) were investigated, in terms of hormone content, antioxi-
dant enzyme activity, and transcription of several cold-responsive genes, under low-temperature
stress (9 ◦C) in two different tomato species (cold-sensitive and cold-tolerant species). Results in-
dicated that the treatment with exogenous EBR increases the content of gibberellic acid (GA3) and
indole-3-acetic acid (IAA), whose accumulation is reduced by low temperatures in cold-sensitive
species. Furthermore, the combination or contribution of BR and abscisic acid (ABA) as a synergetic
interaction was recognized between BR and ABA in response to low temperatures. The content
of malondialdehyde (MDA) and proline was significantly increased in both species, in response
to low-temperature stress; however, EBR treatment did not affect the MDA and proline content.
Moreover, in the present study, the effect of EBR application was different in the tomato species
under low-temperature stress, which increased the catalase (CAT) activity in the cold-tolerant species
and increased the glutathione peroxidase (GPX) activity in the cold-sensitive species. Furthermore,
expression levels of cold-responsive genes were influenced by low-temperature stress and EBR
treatment. Overall, our findings revealed that a low temperature causes oxidative stress while
EBR treatment may decrease the reactive oxygen species (ROS) damage into increasing antioxidant
enzymes, and improve the growth rate of the tomato by affecting auxin and gibberellin content. This
study provides insight into the mechanism by which BRs regulate stress-dependent processes in
tomatoes, and provides a theoretical basis for promoting cold resistance of the tomato.

Keywords: cold stress; cold-responsive genes; anti-oxidants; proline; malondialdehyde;
hormone profiling

1. Introduction

Low-temperature stress in plants, categorized as freezing stress or chilling stress,
is one of the main environmental stresses that adversely affects plant production across
the world, especially in subtropical and tropical climate conditions. This environmental
extreme is escalating due to global climate change and is, therefore, threatening sustainable
crop production [1,2]. Cold stress impacts the photosynthetic system, impairing the cycle
of carbon reduction, the thylakoid electron transport, and the stomatal control of CO2,
providing enhanced accumulation of sugars, lipids peroxidation, and water balance distur-
bance [3–6]. Moreover, a low temperature negatively impacted plants, especially in regards
to macromolecules activity, altering the fluidity of the membrane, and reducing osmotic
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potential of the cell [7]. Regarding the metabolic processes and pathways—cold stress
affects antioxidant enzyme activities, membrane fatty acid compositions, and adjusting of
the redox state and gene expression [8].

Once plants are exposed to stresses, such as cold stress, different kinds of reactive
oxygen species (ROS) are generated, which can undertake a series of oxidation–reduction
reactions. Plants defend themselves by enzymatic and non-enzymatic antioxidants [9]. An
alternative defense strategy could be supplementing hormones, which could enhance an-
tioxidant and detoxification ability in order to cope and tolerate stressful conditions [10,11].
Previous studies identified numerous hormones and signaling molecules associated with
plant responses to particular stress. For instance: ethylene engaged in red light-induced an-
thocyanin biosynthesis in cabbage [12], the antioxidant system, and ABA in brassinosteroid-
induced water stress tolerance of grapevines [13]. Coordination of signaling molecules and
hormones positively influences the plant’s responses to stress and ultimately its preser-
vation in unfavorable conditions [14–16]. Moreover, brassinosteroids (BRs) as steroidal
hormones are involved in an array of physiological and developmental processes via
their active engagement in processes, such as antioxidant metabolism [4,17,18], photo-
synthesis [4,19], nitrogen metabolism [20,21], plant–water relations [22], and osmolyte
accumulation [23] in various conditions [1,24–26]. Treatment with 24-epi-brassinolide
(EBR) regulates the ascorbate–glutathione (AsA–GSH) component cycle in low-temperature
stress on a temporal basis, leading to increased low-temperature tolerance in grapevines at
the seedling stage [7]. Transcriptome analysis revealed that treatment with EBR in cold
conditions raises the transcript levels of genes related to photosynthesis and chlorophyll
biosynthesis, including those encoding for photosystem II (PSII) oxygen-evolving enhancer
protein, photosystem I (PSI) subunit, light-harvesting chlorophyll protein complexes I and
II, and ferredoxin [27].

Furthermore, BRs illustrated engagement in the regulation of ROS metabolism through
the expression of many antioxidant genes that enhance the activity of antioxidant enzymes,
such as catalase (CAT), superoxide dismutase (SOD), and peroxidase (POX) [17]. Under
low-temperature conditions, plants, by active BR signaling and accumulation of the acti-
vate Brassinazole resistant 1 (BZR1) (a BR signaling positive regulator protein), elevate the
respiratory burst oxidase homolog 1 (RBOH1) transcript levels and the apoplastic H2O2 pro-
duction [28]. The RBOH1 encodes NADPH oxidase that is involved in ROS in the apoplast,
mainly for signaling purposes [25] Moreover, crosstalk between the alternative oxidase
(AOX) pathway and BR plays a pivotal role in ameliorating plant tolerance to cold stress,
and it has been shown that BR-induced AOX synthesis protects photosystems by bounding
ROS synthesis exposed to low-temperature stress [29]. In young grapevine seedlings, foliar
application of 24-epi-brassinolide adjusted proteins, free proline contents, and soluble
sugars activates the antioxidant machinery to increase chilling stress tolerance [30].

Tomato is a popular garden fruit worldwide because of its edible fruits, rich in an-
tioxidants, and capable of fighting against ROS. Overexpression of DWARF or exogenous
EBR application enhances low-temperature tolerance by diminishing oxidative damage
in tomato plants [31]. It is worth noting that ROS may also act as a signal in mediating
BR-adjusted responses in low-temperature tolerance [32]. A previous study showed that,
to protect the plants from oxidative damage, glutaredoxin (GRX), 2-cysteine peroxire-
doxin (2-Cys Prx), and RBOH1 participate in a signaling cascade to mediate BR-induced
low-temperature tolerance in tomatoes [31]. It was shown that BRs can interact with
auxin, salicylic acid, cytokinin, abscisic acid, jasmonic acid, gibberellin, and ethylene, in
controlling several morpho-physiological processes in plants [33]. The objective of the
current study was to evaluate the effects of 24-epi-brassinolide (EBR) treatment on hormone
content, antioxidant activity, the content of malondialdehyde (MDA) and proline, and
gene expression of cold-responsive genes on the tomato species under low-temperature
stress. This study provides insight into the mechanisms by which BRs regulate stress-
dependent processes in tomatoes and provides a theoretical basis for promoting cold
resistance in tomato.
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2. Materials and Methods
2.1. Plant Materials and Growth Condition

In this study, seeds of the two contrasting tomato species, cold-sensitive
(Solanum lycopersicum cv. ‘Moneymaker’) and cold-tolerant (S. habrochaites, Accession
‘LA1777’) [34], were selected to investigate the effects of BR on tomato seedlings under low-
temperature stress. Firstly, seeds were sterilized using 2% sodium hypochlorite solution
for 12 min and then washed with double distilled water and dried. The three sterilized
seeds of each species were sown in plates containing 50% vermicompost and 50% perlite.
In this study, 30 plates were used for each tomato species. The plates were maintained
in a growth chamber at 23 ± 2 ◦C with the 16 h light/8 h dark cycling. After 40 days,
tomato plates of each species were divided two groups; half of them were sprayed with
5 mg/L of 24-epi-brassinolide (EBR) and repeated after 6 h. After 3 h from the last spraying,
each treatment was divided into two groups; the first group was transferred to a growth
chamber at 9 ± 1 ◦C and the second group was maintained at 23 ± 1 ◦C. After three days,
the leaves of each sample were cut and stored in liquid nitrogen and transferred to −80 ◦C
for the next analysis. In the present study, control plants were cultivated at 23 ◦C and
without spraying EBR.

2.2. Hormone Profiling

To analyze the free forms of the hormones, including abscisic acid (ABA), indole-3-
acetic acid (IAA), and gibberellin (GA3), the young leaves (2.0 g) of each treatment were
well-powdered using liquid nitrogen and then samples were crushed by cold methanol.
The extract was achieved using 30 mL of 80% cold aqueous methanol in darkness at 4 ◦C.
To determine the hormone content, 10 µL of the extract was injected. The concentration
of each hormone was determined using HPLC (Unicam, Cambridge, UK) with a C18
reverse-phase column (4.6 × 250 mm Diamonsic C18, 5 µm, PerkinElmer, Ohio, USA) and
column temperature was 35 ◦C, gradient elution, mobile phase in methanol, and 1 mL/min
flow rate at a wavelength of 254 nm. The peak area of the standard was considered to
determine the sample concentration. Moreover, the standards of ABA, IAA, and GA3
were received from Sigma–Aldrich (Steinheim, Germany). The content of IAA and GA3
was measured based on the method defined by Tang et al. [35]. The content of ABA was
determined according to the method characterized by Li et al. [36].

2.3. Lipid Peroxidation Assay and Proline Content

The malondialdehyde (MDA) content has been identified as a marker of lipid peroxi-
dation rate associated with oxidative stress. In the current study, 200 mg of fresh leaves
were homogenized using 1% TCA (w/v). The MDA content was measured according to
the method defined by Campos et al. [37]. Moreover, 0.5 g of leaves were homogenized
by 10 mL of 3% sulfosalicylic acid to determine the proline content in each sample. In the
current study, the free proline content was analyzed using a method described by Zhang
and Huang [38].

2.4. Enzyme Activity

The tomato leaves (300 mg) were ground to a powder in liquid nitrogen and mixed
in 3 mL of 0.1 M extraction phosphate buffer (pH 7.5) and the mixed sample was shortly
vortexed. The homogenized samples were centrifuged at 13,000 rpm for 15 min at 4 ◦C.
The supernatant of each sample was transferred to determine the enzyme activities. The
glutathione peroxidase (GPX; EC 1.11.1.9) activity was distinguished using a method
described by Mittova et al. [39], and catalase (CAT; EC 1.11.1.6) activity was measured as
described by Aebi [40].

2.5. RNA Extraction and Real Time PCR

The leaves of tomato seedlings were well powdered in liquid nitrogen and the total
RNA of each sample was extracted using RNX TM-Plus (SinaClon, Tehran, Iran), based on
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the manufacturer’s protocols. The extracted RNA samples were then treated by RNase-free
DNase I (Thermo Fisher Scientific, Wilmington, MA, USA). The Nano Photometer (Implen
N50, Munich, Germany) and a 1% (W/V) agarose gel were used to check the quality and
quantity of extracted RNA samples. The cDNA was synthesized using 1 µg total RNA and
M-MULV reverse transcriptase (Thermo Fisher Scientific, Wilmington, MA, USA) based on
the instructions of manufacture. The real-time PCR reactions were run using RealQ Plus 2x
Master Mix Green High ROXTM (Ampliqon, Odense, Denmark) on an ABI StepOne system.
In this study, four genes belonging to the apetala2/ethylene responsive factor (AP2/ERF)
gene family, involved in response to low-temperature stress [41] and the inducer of CBF
expression 1 (ICE1), as a key transcription factor gene involved in cold stress tolerance [42],
were selected to study the expression patterns by real-time PCR. The elongation factor 1α
(EF-1α; Solyc06g005060) gene, as an internal control gene, was used to calculate the relative
expression of target genes. The specific real-time PCR primers of genes were designed and
evaluated by the online Primer3 Plus tool (Table 1). Finally, the relative expression levels of
selected genes were calculated using the 2−∆∆Ct method [43].

Table 1. List of used primers in real-time PCR reactions.

Gene Name Gene ID Primer (5′-3′) Product Size (bp)

ERF.B13 Solyc08g078190 F: GGTGAAGAAGTATGAATGGATCGA 71
R: TCACAGGAACCGAAACAATCG

ERF2 Solyc01g090310 F: CTTATGACCAAGCCGCATTC
74R: ACCCGAGCCGATTAAATGAG

ERF52 Solyc03g117130 F: CATTGGGGATCTTGGGTTTC
143R: TTAGTGCGTGCTGTTGAACC

ERF13 Solyc04g054910 F: TCAAGTATGGCCTCCTGCAA
88R: GAGCAACCTTCACTATTACATGAC

ICE1 Solyc03g118310 F: ATGGAGGAACTGGTTCTTGG
139R: TCCACACCTCCATCATCAAC

EF-1α Solyc06g005060 F: GGAACTTGAGAAGGAGCCTAAG
158R: CAACACCAACAGCAACAGTCT

2.6. Statistical Analyses

All experiments were run in triplicate with three technical replicates, and the effect of
the low temperature and EBR treatments on analyzed variables within each species was
analyzed by one-way ANOVA and Tukey test using Minitab software (version 17). The
final graphs were created using Prism 6 software (GraphPad Software Inc., San Diego, CA,
USA) based on the average of each treatment and the standard deviation (SD).

3. Results
3.1. Effects of EBR on Endogenous Hormones in Tomato Leaves Exposed to a Low Temperature

After three days of exposure to low-temperature stress, the content of both GA3 and
IAA hormones significantly decreased in cold-sensitive species, but not in cold-tolerant
species, although a slight decrease of IAA content under stress was still observed (Figure 1).
Exogenous EBR treatment could significantly increase the content of GA3 and IAA in cold-
sensitive species in comparison to the control under low-temperature stress. Moreover, the
ABA content in both tomato species significantly increased in response to low-temperature
stress. A sharp increase in the ABA content was observed in cold-sensitive species that
received EBR treatment compared with the control under the low-temperature stress. The
treatment with EBR had different effects in cold-sensitive and cold-tolerant species. In fact,
although the trend of accumulation in response to a low temperature was similar to that
observed in an untreated plant (-EBR), in the cold sensitive species, the treatment with EBR
did not significantly affect the GA3, ABA, and IAA content in unstressed conditions, with
respect to untreated plants (-EBR). However, it led to a higher accumulation of hormones
under stress with respect to untreated plants. The opposite was true for cold-tolerant
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species: in all cases (IAA, ABA, GA3), treatment with EBR led to a higher accumulation of
hormones in unstressed plants with respect to untreated ones, whereas it did not affect the
hormone concentration in stressed plants.
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Figure 1. Profile of hormone content (in nanomoles per gram fresh weight (nmol/grfw)) of tomato
leaves in response to temperature change and EBR application. Different letters above a bar show
significant difference according to the Tukey’s range test at p < 0.05.

The ABA/GA3 and ABA/IAA ratio increased in both species after three days of expo-
sure to low-temperature stress (Figure 2). Interestingly, the ABA/GA3 and ABA/IAA ratio
in cold-tolerant species were higher than the cold-sensitive species. However, the results of
the current study revealed that EBR could not affect the ABA/GA3 and ABA/IAA ratio.
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3.2. MDA and Proline Are Increased By a Low Temperature

The content of MDA and proline significantly increased in both species, especially in
the cold-tolerant species in response to low-temperature stress (Figure 3). Interestingly,
EBR treatment could not affect the content of MDA and proline when compared with the
control under normal temperature and low-temperature stress. However, in general, the
EBR treatment slightly reduced the content of MDA and proline.
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3.3. Effects of EBR on Activity of Antioxidant Enzymes

According to the results of antioxidant activity, EBR treatment could affect the GPX
activity in both tomato species (Figure 4). In normal conditions (23 ◦C), the EBR treatment
increased the GPX activity compared to the untreated plants in both species, whereas
in low-temperature stress, the treatment significantly enhanced GPX activity only in the
cold-sensitive species. EBR treatment showed different effects in the tomato species under
low-temperature stress (Figure 4). The cold-sensitive species, in plants not treated with
EBR, showed an increase in CAT activity under cold stress, whereas the treatment with
EBR seemed to impair the CAT response to cold. Interestingly, EBR treatment significantly
increased the CAT activity in the cold-tolerant species.
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3.4. Effect of EBR on Expression Pattern of ERF Genes

The expression pattern of four members of the ERF multigenic family, together with
the MYC-like bHLH transcriptional activator ICE1, was investigated. The expression levels
of ERF genes, as well as the ICE1 gene, were significantly affected by low temperatures
compared to normal temperatures (Figure 5). Most studied genes were significantly
upregulated in both species in response to low-temperature stress while the expression
pattern of ERF13 was sharply downregulated in the cold-tolerant species. Furthermore,
EBR treatment increased the expression levels of the ERF2, ERF13, ERF.B13, and ICE1 genes
in the cold-sensitive genotype comparing to the control, while they were not affected by
EBR treatment in the cold-tolerant species. Our results revealed that studied genes are
involved in response to low-temperature stress and BR may associate with cold tolerance.
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4. Discussion
4.1. EBR Improves Cold Tolerance by Affecting ABA Content

Various interactions between plant hormones induce a heterogeneous network of
plant responses that make it challenging to predict plant performance in response to
adverse conditions [44,45]. Moreover, BR can regulate stress responses by cross-talking
with other phytohormones [33,46]. In this study, the synergetic interaction was observed
between BR and ABA in response to low-temperature stress, where endogenous ABA
content significantly increased in the cold-sensitive species under low-temperature stress
and EBR treatment. However, the ABA/GA3 and ABA/IAA ratios were not influenced
by EBR application. Abscisic acid (ABA) is known as a stress hormone that is influenced
by stress and raises plant durability during abiotic stresses, such as drought and cold
stress [47]. Moreover, ABA can decrease the damage of dehydration by closing the stomatal
pore and maintaining the cellular water [48,49]. However, several antagonistic effects
have been observed between signaling components of BRs and ABA under different stress
conditions [47,50]. One well-known case of crosstalk occurs at the GSK3-like kinase BIN2
(BRASSINOSTEROID-INSENSITIVE 2), which inhibits the signaling components of the BR
pathway, but can be activated by ABA [51]. Moreover, it was stated that ABA negatively
controls the BR signaling pathway via phosphorylation of BES1 (bri1-EMS-SUPPRESSOR 1)
as a BR signaling positive regulator [52]. Furthermore, Divi et al. found that BR effects are
masked by ABA in Arabidopsis responses to heat stress, and only in the ABA-deficient aba1-1
mutant, BR application could make the positive effect [53]. On the other hand, Bajguz
stated that BR can enhance the ABA content in Chlorella vulgaris under stress conditions [54].
Overall, it seems that the interaction between ABA and BR plays important role in increas-
ing stress tolerance through controlling the synthesizing antioxidants, photosynthesis,
and expression of stress response genes [55]. Our results indicated that application of BR
is involved in low-temperature stress tolerance by directly/indirectly affecting the ABA
content of the tomato species.

4.2. EBR Application Affects the Auxin and GA Content under Low-Temperature Stress

The synergetic interactions are stated between BR and auxin in regulating the cel-
lular processes related to growth, such as cell proliferation and cell expansion [53,56,57].
Furthermore, it was defined that BR and GA are involved in several common cellular
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processes and BR can regulate cell elongation from GA metabolism [58]. In the current
study, the content of IAA and GA was significantly decreased in cold-sensitive species
under low-temperature stress. The decrease in the content of GA and IAA through cold
stress limits the plant growth and lets it withstand adverse environmental conditions, such
as cold, salt, and osmotic stress [59,60]. Moreover, previous studies stated that the IAA
content is decreased in response to abiotic stresses, including salinity and cold stress [61,62].
Cold stress can inhibit the activity of acropetal auxin transport by controlling the PIN2
as an auxin efflux carrier [62]. It seems that the transport of auxin from root to shoot is
reduced in tomato seedlings under cold stress. Furthermore, the ABA/GA3 and ABA/IAA
ratio were increased under low-temperature stress that revealed an antagonist interaction
between ABA with auxin and GA in response to low-temperature stress.

The content of GA3 and IAA was significantly increased by EBR application in the cold-
sensitive species, compared with the control, under low-temperature stress. Various studies
on the role of plant hormones in response to adverse conditions have been performed, but
the exact interaction between BR with auxin and GA has not yet been determined, based on
molecular information. The expression of many target genes that are involved in growth
processes and stress response are commonly controlled by both BR and auxin [57,63,64].
Furthermore, BR and auxin may be involved in the induction of the phosphoinositide and
calcium–calmodulin signaling as a second messenger in cellular signal transduction [57].
In the present study, the IAA content increased under low-temperature stress. It seems that
BR might affect the polar transporter of auxin [65], and under low-temperature stress, the
auxin transfer may increase from root to shoot. Moreover, BR can induce the expression
of genes involved in GA biosynthesis, such as GA3ox-2 [58]. Furthermore, BR can interact
with DELLAs, as the GA suppressors, from BZR1, a BR signaling positive regulator [66–68].
In general, it seems that the application of EBR may affect the GA biosynthesis and increase
the GA content in the tomato seedlings under low-temperature stress. Overall, the use
of EBR treatment as a stimulant may induce some cellular signaling pathways associated
with stress tolerance and reduce the adverse effects of stress on growth by increasing the
content of growth-regulating hormones, such as GA and auxin.

4.3. MDA and Proline Are Not Affected by EBR Treatment

Abiotic stresses, such as low-temperature stress, hurt the cell membrane through
enforced lipid peroxidation and membrane oxidation [11,69]. Antioxidant enzymes activity
and the proline content were enhanced by the 28-homobrassinolide treatment in the
Brassica juncea under cadmium stress. Moreover, the content of proline in roots was higher
than in the leaves [70]. The content of MDA under salinity stress in rice seedlings was
reduced by EBL treatment [71]. In this study, we discovered that MDA content significantly
enhanced in the cold-sensitive species in low-temperature conditions, showing that the
plasma membrane was affected and lipid peroxidation increased. In the same line, the
increased activities of the antioxidant systems, as a result of BR applications, remarkably
defeat the chilling injury of the tomato species by minimizing membrane lipid peroxidation
in stress conditions. Moreover, proline content increased in response to low-temperature
stress. During stress, proline, as an osmolyte, plays a critical role in controlling cell turgor
and stability of membranes [72]. Furthermore, proline can reduce lipid peroxidation
and acts as an antioxidant to overcome the oxidative stress created by cold stress [72,73].
Application of brassinosteroid in peppermint (Mentha piperita L.) under salinity hampered
the death of the plant even at severe stress (150 mM) and prevented negative impact
of salinity stress through elevating the activities of antioxidant enzymes and reducing
the lipid peroxidation [74]. Moreover, our results revealed that the content of MDA and
proline were not influenced by EBR treatment. Overall, it seems that BRs work from a
proline-independent pathway to increase endurance to low-temperature stress, although
more detailed studies are needed.
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4.4. Effects of EBR on Activity of Antioxidant Enzymes

To enhance uncontrolled free radicals, plants respond by non-enzymatic and enzy-
matic antioxidants to regulate cellular homeostasis and mitigate oxidants [75,76]. Moreover,
maintenance and regulation of redox homeostasis seem to be crucial to elevate chilling
tolerance in tomato plants [77,78]. Thus, adjustment of the antioxidant system is remarked
as a significant mechanism for increasing tomato chilling tolerance. It was demonstrated
that using BRs induces antioxidant enzyme activity as well as non-enzymatic antioxidants.
For instance, maize seedlings treated by brassinolide (BL) increased the activities of SOD,
CAT, APX, carotenoid content, and ascorbic acid [10]. Antioxidative enzymes activity
and mRNA expression of Cat A, Mn-SOD, Cat B, Cu/Zn-SOD, GR, and APX remarkably
enhanced with EBL treatment under heavy metal stress in Oryza sativa L. [79]. In the
present study, the effect of EBR application on the antioxidant activity, CAT, and GPX, in
the tomato species, was different under low-temperature stress. Different behaviors of CAT
were observed in both cold sensitive and cold tolerant species, or, in other words, the cold
stress led to an increase in CAT activity in both species. However, the enhancement was
much higher in cold sensitive compared to the cold tolerant species (Figure 4). There were
substantial differences based on the genotype considered in BR treated plants; the CAT ac-
tivity in the cold-tolerant species was increased by EBR treatment compared with untreated
plants under low-temperature stress. In fact, cold tolerant plants treated with EBR showed
an increase in CAT activity, which was higher than untreated plants. In cold sensitive
genotypes the EBR treatment seem to impair the CAT activity, whereas in cold-sensitive
species, the GPX activity was more influenced by EBR application (Figure 4). It seems that
the effect of BR on the activity of antioxidant enzymes depends on the plant species, likely
depending on the amount of stress received, the tomato species uses different mechanisms
to reduce the induced oxidants. Previous studies on the effect of BR on elevated tolerance of
resistant and susceptible tomato species in low temperatures indicated that EBR treatment
enhanced the activities of the enzymes in pepper [80], cucumber [81], and eggplant [82] in
low temperatures. It seems that oxidative stress is induced by low-temperature stress in the
tomato species. Antioxidant enzymes, CAT, and GPX are induced to reduce the oxidants
and keep cellular redox. From these results, it could be concluded that BR treatment could
play a significant role in the alleviation of ROS damage by increasing antioxidant the
defense system, resulting in elevating the tolerance of the tomato species to chilling stress.

4.5. Effects of Low-Temperature Stress on Cold-Related Genes

Ethylene responsive factor (ERF) genes belong to the AP2/ERF gene family, known as a
large gene family of transcription factors [83,84]. The ERF gene family, as a key regulator,
plays an important role in response to adverse conditions, such as cold stress in plant
species [85,86]. In this study, the expression level of cold-responsive genes, ERF genes,
and ICE1, selected based on previous studies [41,42], was significantly induced by low-
temperature stress. ICE1 as an upstream transcription factor can regulate cold-responsive
genes, such as CBF genes [42]. Interestingly under EBR application in a cold-tolerant species,
expression patterns of ERF genes and ICE1 reversed to normal temperature conditions.
However, Kagale et al. indicated that the EBL application could induce the expression of
cold-related genes [87]. Extensive studies were performed on the role of AP2/ERF gene
family in response to abiotic and biotic stresses as well as hormone treatments, but the
effect of BR on this gene family has not yet been investigated. Recently, Xie et al. stated
that TINY, an AP2/ERF transcription factor, may negatively affect the expression of BR-
responsive genes while it positively controls drought-responsive genes in Arabidopsis [88].
In addition, previously, it has been revealed that EBR treatment increases the basic thermo-
tolerance of Brassica napus [89]. The merit of EBR to grant tolerance in plants to different
stresses was corroborated via expression analysis of a subset of cold and drought stress
marker genes [87]. Brassinosteroid induced auxin-related genes and cell wall-modifying in
soybeans, contrarily, transcriptome analysis demonstrated the twisted BR roles in various
biological processes by suppressing some WRKY genes engaged in senescence and stress
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responses [90]. Overall, our results disclosed that exogenous EBR application might interact
with endogenous hormones and reduce the negative effects of low temperatures that induce
the expression of cold-responsive genes, ERFs and ICE1, to return to a state similar to that
without stress.

5. Conclusions

In the current study, the effect of the EBR application was investigated in two tomato
species under low-temperature stress. The results depicted that low-temperature stress
can create oxidative stress and reduce the content of growth-regulatory hormones, IAA
and GA3. Moreover, the EBR application increased the content of endogenous ABA, and a
synergetic interaction was observed between BR and ABA in response to low-temperature
stress. Furthermore, our findings indicated that ABA/GA3 and ABA/IAA ratios are not
affected by EBR treatment. In the current study, we found that EBR treatment could not
affect the content of MDA and proline under low-temperature stress, but could increase
the content of antioxidant enzymes to reduce ROS induced by low-temperature stress.
Overall, we concluded that EBR diminishes the adverse effect of low-temperature stress by
increasing the content of endogenous phytohormones, increasing the content of antioxidant
enzymes, and controlling the gene expression. Furthermore, it seems that BR effects are
dependent on the tomato species.
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